# Numerical Approximations for Average Cost Markov Decision Processes

François Dufour <sup>1</sup> Tomás Prieto-Rumeau <sup>2</sup>

<sup>1</sup>INRIA, Bordeaux, France

<sup>2</sup>UNED, Madrid, Spain

### Dpto. de Estadística e Investigación Operativa II, UCM 10 de abril de 2014



1 Introduction

2 Lipschitz-continuous control models

3 Approximation of the control model

An application

《曰》《卽》《臣》《臣》 [][[]]

#### Statement of the problem

- We are interested in approximating the optimal average cost and an optimal policy of a discrete-time Markov control process.
- We consider a control model with general state and action spaces.
- Most of the approximation results in the literature are concerned with MDPs with discrete state and action spaces.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필.

5900

Approximation of average MDPs

Dufour and Prieto-Rumeau Introduction Lipschitz-continuous control models Approximation of the control model An application

#### Our approach

- We propose procedures to discretize the state and action spaces.
- Discretization of the state space is based on sampling an underlying probability measure.
- Discretization of the action space is made by selecting actions that are "dense" in the Hausdorff metric.
- We show that our approximation error converges in probability to zero at an exponential speed.

### Dynamics of the control model

It is a stochastic controlled dynamic system.

- The system is in state  $x_0$ .
- The controller takes an action  $a_0$  and incurs a cost  $c(x_0, a_0)$ .
- The system makes a transition  $x_1 \sim Q(\cdot|x_0, a_0)$ .
- The system is in state  $x_1$ . Etc.

On an infinite horizon we have:

- a state process:  $\{x_t\}_{t\geq 0}$ ;
- an action process:  $\{a_t\}_{t\geq 0}$ ;
- a cost process:  $\{c(x_t, a_t)\}_{t \ge 0}$ .

| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                               |  |
| Definition of the control mod                                                                               | del                           |  |

#### The control model $\mathcal{M}$

Consider a control model  $(X, A, \{A(x) : x \in X\}, Q, c)$  where

- The state space X is a Borel space, with metric  $\rho_X$ .
- The action space A is a Borel space, with metric  $\rho_A$ .
- A(x) is the measurable set of available actions in state  $x \in X$ .
- $Q \equiv Q(B|x, a)$  is a stochastic kernel on X given  $\mathbb{K}$ , where

$$\mathbb{K} = \{(x, a) \in X \times A : a \in A(x)\}.$$

•  $c : \mathbb{K} \to \mathbb{R}$  is a measurable cost function.

### Definition of the control model

Lipschitz-continuous control models Approximation of the control model

• Let  $\Pi$  the family of randomized history-dependent policies.

Introduction

An application

• Let  $\mathbb{F}$  be the family of **deterministic stationary** policies, i.e., the class of  $f : X \to A$  such that  $f(x) \in A(x)$  for  $x \in X$ .

### Optimality criteria

Given  $\pi \in \Pi$  and an initial state  $x \in X$ , the total expected  $\alpha$ -discounted cost (0 <  $\alpha$  < 1) and the long-run average cost are

$$V_{\alpha}(x,\pi) = E^{\pi,x} \Big[ \sum_{t=0}^{\infty} \alpha^{t} c(x_{t},a_{t}) \Big]$$
$$J(x,\pi) = \limsup_{t \to \infty} E^{\pi,x} \Big[ \frac{1}{t} \sum_{k=0}^{t-1} c(x_{t},a_{t}) \Big].$$

Dufour and Prieto-Rumeau Introduction Lipschitz-continuous control models Approximation of the control model An application Approximation of average MDPs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Definition of the control model

#### Optimality criteria

• The optimal discounted cost is

$$V^*_{lpha}(x) = \inf_{\pi \in \Pi} V_{lpha}(x,\pi).$$

• The optimal average cost is

$$J^*(x) = \inf_{\pi \in \Pi} J(x,\pi).$$

• A policy  $\pi^* \in \Pi$  is average optimal if

$$J(x,\pi^*)=J^*(x)$$
 for all  $x\in X$ .

æ

《曰》《卽》《臣》《臣》

## Discretizing the state space

### Main idea

• We suppose that there exists a probability measure  $\mu$  on Xand a nonnegative measurable function  $q(\cdot|\cdot, \cdot)$  on  $X \times \mathbb{K}$  such that

$$Q(B|x,a) = \int_B q(y|x,a)\mu(dy)$$

for all measurable  $B \subseteq X$  and every  $(x, a) \in \mathbb{K}$ .

 On a probability space (Ω, F, ℙ) we take a sample of n i.i.d. random observations {Y<sub>k</sub>}<sub>1≤k≤n</sub> with distribution µ and we consider the empirical probability measure

$$\mu_n(B) = \frac{1}{n} \sum_{k=1}^n \mathbf{I}\{Y_k \in B\}.$$

Approximation of average MDPs

Dufour and Prieto-Rumeau Introduction Lipschitz-continuous control models Approximation of the control model An application

Discretizing the state space

### Main idea

• In the transition kernel, we replace  $\mu$  with  $\mu_n$ 

$$Q(B|x,a) = \int_{B} q(y|x,a)\mu(dy) \rightsquigarrow \int_{B} q(y|x,a)\mu_n(dy)$$

- We have "discretized" the state space: from X to {Y<sub>k</sub>}<sub>1≤k≤n</sub>. Integration is discretized: from μ to μ<sub>n</sub>.
- We must be able to compute the estimation error

$$\left|\int_X g(y)\mu(dy) - \int_X g(y)\mu_n(dy)\right|$$

• We need a **convergence**  $\mu_n \rightarrow \mu$  allowing to measure such estimation errors for a **certain class** of functions g.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Lipschitz-continuous control models Approximation of the control model An application

# Convergence of probability measures on Polish spaces

### Metrics

• Total variation. The metric  $d(\lambda, \mu) = \sup_{B \in \mathcal{B}(X)} |\lambda(B) - \mu(B)|$  corresponds to

$$d(\lambda,\mu) = \frac{1}{2} \sup_{f} \left| \int_{X} f d\lambda - \int_{X} f d\mu \right|$$

for continuous  $f : X \rightarrow [-1, 1]$ .

• In our case... We do not have  $d(\mu_n, \mu) \rightarrow 0$ .

| Dufour and Prieto-Rumeau           |
|------------------------------------|
| Introduction                       |
| ipschitz-continuous control models |
| pproximation of the control model  |
| An application                     |

Approximation of average MDPs

・ロト ・ 日 ・ エヨ ・ ト ・ ヨ ・ うへぐ

# Convergence of probability measures on Polish spaces

#### Metrics

• Weak convergence. The (Lévy-Prokhorov) metric  $d(\lambda, \mu)$  is

$$\inf_{\delta>0}\Big\{\mu(A)\leq\lambda(N(A,\delta))+\delta,\lambda(A)\leq\mu(N(A,\delta))+\delta,\ \forall A\Big\},$$

and corresponds to the convergence of sequences:  $\lambda_n \rightarrow \lambda$  iff

$$\int_X f d\lambda_n \to \int_X f d\lambda \quad \text{for bounded Lipschitz-cont.} \ f: X \to \mathbb{R}.$$

• In our case... There is no explicit relation between

$$d(\lambda,\mu)$$
 and  $\sup_f \left| \int f d\mu - \int f d\lambda 
ight|_{T^2}$ 

E

《曰》《卽》《臣》《臣》

Introduction Lipschitz-continuous control models Approximation of the control model An application

### Convergence of probability measures on Polish spaces

### Lipschitz-continuous functions

f: A → ℝ (for A ⊆ ℝ) is L-Lipschitz-continuous, for some L > 0, if

$$|f(x) - f(y)| \le L \cdot |x - y|$$
 for all  $x, y \in A$ .

- Roughly: functions with bounded derivative, e.g., ax + b, cos x, e<sup>-x</sup> on [0,∞).
- Not Lipschitz-continuous:  $e^{-x}$  on  $\mathbb{R}$ ,  $\sqrt{x}$  on  $[0,\infty)$ .
- This definition is extended for functions  $f : Z_1 \rightarrow Z_2$ , with  $Z_1$  and  $Z_2$  with metrics  $d_1$  and  $d_2$ :

 $d_2(f(x), f(y)) \leq L \cdot d_1(x, y)$  for all  $x, y \in Z_1$ .

Approximation of average MDPs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



Convergence of probability measures on Polish spaces

### Metrics

• 1-Wasserstein metric. For probability measures in  $\mathcal{P}_1(X)$  with finite first moment:  $\int_X \rho_X(x, x_0) \mu(dx) < \infty$ :

$$W_1(\lambda,\mu) = \inf_{\{\nu:\nu_1=\lambda,\nu_2=\mu\}} \int_{X\times X} \rho_X(x_1,x_2)\nu(dx_1,dx_2).$$

- N.B.: The *p*-Wasserstein metric uses  $(\rho_X(x_1, x_2))^p$ .
- The dual Kantorovich-Rubinstein characterization gives

$$W_1(\lambda,\mu) = \sup_{f \in \mathbb{L}_1(X)} \left| \int f d\mu - \int f d\lambda \right|$$

for all 1-Lipschitz continuous functions.

### Convergence of probability measures on Polish spaces

An application

- The 1-Wasserstein metric is equivalent to weak convergence plus convergence of absolute first moments.
- For distribution functions  $F_1$  and  $F_2$  on  $\mathbb{R}$ :  $W_1(\mu_1, \mu_2) = \int_{\mathbb{R}} |F_1(x) - F_2(x)| dx.$

Lipschitz-continuous control models Approximation of the control model



Figure: 1-Wasserstein distance between  $\gamma(1/2, 1)$  and  $\gamma(1, 2)$ .

|                                                                                                                                         | 《曰》《聞》《言》《言》 言 《오오            |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Dufour and Prieto-Rumeau<br>Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application | Approximation of average MDPs |
| The transportation problem                                                                                                              |                               |

- Given two probability measures λ and μ on X, transport the mass with distribution λ so as to obtain a mass with distribution μ, with cost function c(x<sub>1</sub>, x<sub>2</sub>) ≥ 0.
- Find a function  $T : X \to X$  minimizing

$$\int_X c(x_1, T(x_1))\lambda(dx_1)$$
 such that  $\mu = \lambda \circ T^{-1}$ .

• The Kantorovich formulation is to find a probability measure  $\nu$  on  $X \times X$  with marginals  $\lambda$  and  $\mu$  attaining

$$\inf_{\{\nu:\nu_1=\lambda,\nu_2=\mu\}}\int_{X\times X}c(x_1,x_2)\nu(dx_1,dx_2).$$

ロト (日) (日) (日)

Lipschitz-continuous control model Approximation of the control model

# Convergence of empirical probability measures

Theorem (Boissard, 2011)

If  $\mu \in \mathcal{P}_1(X)$  satisfies the modified transport inequality:

$$W_1(\mu,\lambda) \leq C\Big(H(\lambda|\mu) + \sqrt{H(\lambda|\mu)}\Big)$$

for some C > 0 and all  $\lambda \in \mathcal{P}_1(X)$  then there exists  $\gamma_0$  such that for all  $0 < \gamma \leq \gamma_0$  there exist  $C_1, C_2 > 0$  with

$$\mathbb{P}\{W_1(\mu_n,\mu) > \gamma\} \le C_1 \exp\{-C_2 n\} \quad \textit{for all } n \ge 1.$$

Here,  $H(\lambda|\mu)$  is the entropy  $H(\lambda|\mu) = \int \log \frac{d\lambda}{d\mu} d\lambda$ . A sufficient condition is the existence of a > 0 and  $x_0 \in X$  such that

$$\int_X \exp\{a \cdot \rho_X(x, x_0)\} \mu(dx) < \infty.$$

5900

Sac

| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                               |
| Our setting                                                                                                 |                               |

If f is  $L_f$ -Lipschitz-continuous

$$\left|\int f(y)\mu_n(dy)-\int f(y)\mu(dy)\right|\leq L_fW_1(\mu_n,\mu)$$

and the probability that

$$\left|\int f(y)\mu_n(dy) - \int f(y)\mu(dy)\right| > \gamma$$

goes to zero at an exponential rate. So, we will place ourselves in the "Lipschitz continuity" setting.

- The elements of the control model will be supposed to be Lipschitz-continuous.
- The action space will be discretized in a "Lipschitz-continuous" way. 《曰》《曰》《曰》《曰》

### Hypotheses

For each  $x \in X$ , the set A(x) is compact, and  $x \mapsto A(x)$  is Lipschitz continuous with respect to the Hausdorff metric, i.e.,

An application

Lipschitz-continuous control models Approximation of the control model

 $d_H(A(x), A(y)) < L\rho_X(x, y)$  for all  $x, y \in X$ ,

with  $d_H(C_1, C_2) = \max\{\sup_{x_1 \in C_1} \rho_X(x_1, C_2), \sup_{x_2 \in C_2} \rho_X(x_2, C_1)\}.$ 



|                                                                                                             | ◆□▶ ◆□▶ ◆重▶ ◆重▶ ○重 - 釣���     |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|
| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs |
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                               |
| Hypotheses                                                                                                  |                               |

590

There exists a Lipschitz-continuous function  $w: X \to [1, \infty)$  such that for all  $(x, a) \in \mathbb{K}$ 

• The cost function c is Lipschitz-continuous and

$$|c(x,a)| \leq \overline{c}w(x).$$

The density function q(y|x, a) verifies

- $q(y|x,a) \leq \overline{q}w(x)$ .
- It is Lipschitz-continuous in y (resp., (x, a)) uniformly in (x, a) (resp., y).
- $y \mapsto w(y)q(y|x, a)$  is Lw(x)-Lipschitz-continuous.

ㅁㅏㅅ@ㅏㅅ돋ㅏㅅ돋ㅏ

#### Lipschitz-continuous control models Approximation of the control model An application

### Hypotheses

•  $Qw(x_0, a_0)$  is finite for some  $(x_0, a_0) \in \mathbb{K}$  and there is some 0 < d < 1 such that

$$\int_X w(y) |Q(dy|x,a) - Q(dy|x',a')| \le 2d(w(x) + w(x'))$$
(1)

for all (x, a) and (x', a') in  $\mathbb{K}$ .

• As a consequence of (1), there exists  $b \ge 0$  such that

$$Qw(x,a) \leq dw(x) + b$$
 for all  $(x,a) \in \mathbb{K}$ .

This is the usual "contracting" condition for average cost MDPs. We impose (1) because it implies a uniform geometric ergodicity condition under which we can use the vanishing discount approach to average optimality.



#### Notation

We say that  $u: X \to \mathbb{R}$  is in  $\mathbb{L}_w(X)$  if u is Lipschitz-continuous and there exists M > 0 with  $|u(x)| \le Mw(x)$  for all  $x \in X$ .

#### Theorem (Discounted cost)

Given a discount factor  $0 < \alpha < 1$ , the optimal discounted cost  $V^*_{\alpha} \in \mathbb{L}_w(X)$  and it satisfies the  $\alpha$ -DCOE

$$V_{\alpha}^{*}(x) = \min_{a \in A(x)} \left\{ c(x,a) + \alpha \int_{X} V_{\alpha}^{*}(y) Q(dy|x,a) \right\}$$
 for  $x \in X$ .

 $x \mapsto V_{\alpha}(x,\pi)$  might not be continuous, but  $x \mapsto \inf_{\pi \in \Pi} V_{\alpha}(x,\pi)$  is continuous!

《曰》《卽》《臣》《臣》 [] 臣

# Dynamic programming equation

### Theorem (Average cost)

• There exist  $g \in \mathbb{R}$  and  $h \in \mathbb{L}_w(X)$  that are a solution to the ACOE

$$g+h(x)=\min_{a\in A(x)}\left\{c(x,a)+\int_X h(y)Q(dy|x,a)
ight\}$$
 for  $x\in X.$ 

- We have  $g = J^*(x) = \inf_{\pi \in \Pi} J(x, \pi)$  for all  $x \in X$ .
- If  $f \in \mathbb{F}$  attains the minimum in the ACOE, then it is average optimal.

Sketch of the proof: Define  $h_{\alpha}(x) = V_{\alpha}^*(x) - V_{\alpha}^*(x_0)$ . Show that  $\{h_{\alpha}\}$  is equicontinuous, and that its Lipschitz constant does not depend on  $\alpha$ . Let  $\alpha \to 1$ .



#### Discretization of the action space

For all  $\vartheta > 0$  there exists a family  $A_{\vartheta}(x)$ , for  $x \in X$ , of subsets of A satisfying:

- $A_{\mathfrak{d}}(x)$  is a nonempty closed subset of A(x), for  $x \in X$ .
- For every  $x \in X$ ,

$$d_H(A(x), A_{\mathfrak{d}}(x)) \leq \mathfrak{d}w(x).$$

• The multifunction  $x \mapsto A_{\mathfrak{d}}(x)$  is  $L_{\mathfrak{d}}$ -Lipschitz continuous with respect to the Hausdorff metric, with  $\sup_{\mathfrak{d}>0} L_{\mathfrak{d}} < \infty$ .

《曰》《國》《臣》《臣》 [][]

### Approximation of the control model

### Definition

Given  $n \ge 1$  and  $\mathfrak{d} > 0$ , the control model  $\mathcal{M}_{n,\mathfrak{d}}$  is defined by the elements

$$(X, A, \{A_{\mathfrak{d}}(x) : x \in X\}, Q_n, c),$$

Recall that  $Q(B|x,a) = \int_B q(y|x,a) \mu(dy)$ . Here,

$$Q_n(B|x,a) = \frac{\int_B q(y|x,a)\mu_n(dy)}{\int_X q(y|x,a)\mu_n(dy)} = \frac{\sum_{k:Y_k\in B} q(Y_k|x,a)}{\sum_{k=1}^n q(Y_k|x,a)}.$$

Note that  $Q_n(\cdot|x, a)$  has finite support, and it assigns probability proportional to  $q(Y_k|x, a)$  to  $Y_k$ .



If  $v \in \mathbb{L}_w(X)$  —*w*-bounded and Lipschitz-continuous— we can compare Qv and  $Q_nv$ :

$$|Qv(x,a) - Q_nv(x,a)| \leq C_vw(x)W_1(\mu,\mu_n),$$

but not when v is not Lipschitz-continuous.

We will use the notation:

- $\mathbb{K}_{\mathfrak{d}} = \{(x, a) \in X \times A : a \in A_{\mathfrak{d}}(x)\}.$
- Π<sub>0</sub> and F<sub>0</sub> are the families of all policies and deterministic stationary policies for the control model M<sub>n,0</sub>.
- The expectation operator is  $E_{n,\mathfrak{d}}^{\pi,\times}$ .
- Let

$$J_{n,\mathfrak{d}}^*(x) = \inf_{\pi \in \Pi_{\mathfrak{d}}} \limsup_{t \to \infty} E_{n,\mathfrak{d}}^{\pi,x} \Big[ \frac{1}{t} \sum_{k=0}^{t-1} c(x_t, a_t) \Big].$$

# Properties of $\mathcal{M}_{n,\mathfrak{d}}$

Define

$$\mathfrak{c} = \frac{1-d}{4(L_{wq}+L_q(1+4(d+b)))}$$

and suppose that  $\omega \in \Omega$  is such that  $W_1(\mu, \mu_n(\omega)) \leq \mathfrak{c}$ . Then we have:

- $Q_n(X|x,a) = 1$  for all  $(x,a) \in \mathbb{K}_{\mathfrak{d}}$ .
- For all  $(x, a) \in \mathbb{K}_{\mathfrak{d}}$ ,

$$Q_nw(x,a) \leq \frac{1+d}{2}w(x)+2b.$$

• For all (x, a) and (x', a') in  $\mathbb{K}_{\mathfrak{d}}$ 

$$\int_X w(y) |Q_n(dy|x, a) - Q_n(dy|x', a')| \le (1+d) \cdot (w(x) + w(x'))$$

| Dufour and Prieto-Rumeau<br>Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application | Approximation of average MDPs |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Properties of $\mathcal{M}_{n,\mathfrak{d}}$                                                                                            |                               |

#### Theorem

If  $\omega \in \Omega$  is such that  $W_1(\mu, \mu_n(\omega)) \leq \mathfrak{c}$  then

- The control model  $\mathcal{M}_{n,\vartheta}$  is uniformly geometrically ergodic and it verifies the "same" properties as  $\mathcal{M}$ .
- The optimal average cost J<sup>\*</sup><sub>n,∂</sub>(x) ≡ g<sup>\*</sup><sub>n,∂</sub> is constant and it satisfies the ACOE: for all x ∈ X

$$g_{n,\mathfrak{d}}^* + h(x) = \min_{a \in A_\mathfrak{d}(x)} \left\{ c(x,a) + \int_X h(y) Q_n(dy|x,a) \right\}$$

for some  $h \in \mathbb{B}_w(X)$ .

• Besides, h is unique up to additive constants.

- < ≣ >

∢ ≣ ≯

ł

Introduction Lipschitz-continuous control models Approximation of the control model An application

### Convergence of the optimal average cost

Theorem

There exists  $\varepsilon_0 > 0$  such that for any  $0 < \varepsilon \leq \varepsilon_0$  there exist  $\vartheta > 0$ and constants S, T > 0 such that

$$\mathbb{P}^*\{|g_{n,\mathfrak{d}}^*-g|>\varepsilon\}\leq \mathcal{S}\exp\{-\mathcal{T}n\}.$$

for all  $n \geq 1$ .

| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                               |
| Sketch of the proof                                                                                         |                               |

 $\bullet\,$  From the ACOE for  ${\cal M}$  we have

$$g+h(x)\leq c(x,a)+Qh(x,a).$$

• Replace Q with  $Q_n$  and obtain

$$g+h(x)\leq c(x,a)+Q_nh(x,a)+Cw(x)W_1(\mu,\mu_n).$$

- Iterate this inequality t times, divide by t, and take the limit as  $t \to \infty$  to obtain  $g \leq g_{n,0}^* + CW_1(\mu, \mu_n)$ .
- For an  $\mathcal{M}$ -canonical policy  $f \in \mathbb{F}$

$$g + h(x) = c(x, f) + Qh(x, f).$$

• Take the "projection"  $\tilde{f}$  of f on  $\mathbb{F}_{\mathfrak{d}}$  and obtain

$$g + h(x) \ge c(x, \tilde{f}) + Qh(x, \tilde{f}) - C \mathfrak{d} w(x).$$

• Replace Q with  $Q_n$  and proceed as before.

Introduction Lipschitz-continuous control models Approximation of the control model An application

# Approximation of an optimal policy

### Main idea

• Starting from the ACOE for  $\mathcal{M}_{n,\mathfrak{d}}$ 

$$g_{n,\mathfrak{d}}^* + h(x) = \min_{a \in A_\mathfrak{d}(x)} \big\{ c(x,a) + \int_X h(y) Q_n(dy|x,a) \big\},$$

let  $\widetilde{f}_{n,\mathfrak{d}} \in \mathbb{F}_{\mathfrak{d}}$  be a canonical policy.

- Since  $\tilde{f}_{n,\mathfrak{d}} \in \mathbb{F}$ , "use it" in the control model  $\mathcal{M}$  to obtain the expected average cost  $J(x, \tilde{f}_{n,\mathfrak{d}})$
- Compare  $J(x, \tilde{f}_{n,0})$  and g.



### Difficulties

- For a function v, we have that Qv is Lipschitz-continuous, but  $Q_nv$  is locally Lipschitz-continuous.
- The function h in the ACOE for M<sub>n,0</sub> is locally Lipschitz-continuous.
- We cannot directly compare Qh with  $Q_nh$ .
- There exists a Lipschitz-continuous  $\tilde{h}$  with

$$||h-\tilde{h}||_{w} \leq CW_{1}(\mu,\mu_{n}).$$

• Use this  $\tilde{h}$  to compare  $Q\tilde{h}$  and  $Q_n\tilde{h}$ .

ㅁㅏ 《畵ㅏ 《돋ㅏ 《돋ㅏ

E

Approximation of an optimal policy

#### Theorem

There exists  $\varepsilon_0 > 0$  such that for any  $0 < \varepsilon \leq \varepsilon_0$  there exist  $\vartheta > 0$  and constants S, T > 0 such that

$$\mathbb{P}^*\{J(\widetilde{f}_{n,\mathfrak{d}},x)-g>\varepsilon\}\leq \mathcal{S}\exp\{-\mathcal{T}n\}.$$

for all  $n \ge 1$  and  $x \in X$ .

|                                                                                                             | <ul> <li>&lt; □ ▶ &lt; ⊡ ▶ &lt; Ξ ▶ &lt; Ξ ▶ &lt; Ξ &lt; )</li> </ul> |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs                                         |  |  |
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                                                                       |  |  |
| Finite state and action approximations                                                                      |                                                                       |  |  |

- For applications, suppose that the sets  $A_{\partial}(x)$  are finite.
- Take a sample  $\Gamma_n = \{Y_k(\omega)\}$  of the probability measure  $\mu$ .
- The control model  $\mathcal{M}_{n,\mathfrak{d}}$  has finite state and action spaces.
- We need to determine its optimal average cost  $g_{n,\mathfrak{d}}^*$ .
- We need to solve the ACOE for M<sub>n,0</sub> to find a canonical policy.

口 > 《圖 > 《 트 > 《 트 >

## The linear programming approach

Primal linear programming problem P

$$\min \sum_{x \in \Gamma_n} \sum_{a \in A_0(x)} c(x, a) z(x, a) \text{ subject to}$$
$$\sum_{a \in A_0(x)} z(x, a) = \sum_{x' \in \Gamma_n} \sum_{a' \in A_0(x')} z(x', a') Q_n(\{x\} | x', a')$$
$$\sum_{x \in \Gamma_n} \sum_{a \in A_0(x)} z(x, a) = 1 \text{ and } z(x, a) \ge 0$$

It is known that min  $P = g_{n,\mathfrak{d}}^*$ , the optimal average cost of the control model  $\mathcal{M}_{n,\mathfrak{d}}$ .

| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                               |
| The linear programming appr                                                                                 | roach                         |

Dual linear programming problem D

$$\begin{array}{rl} \max & g \quad \text{subject to} \\ g+h(x) \leq c(x,a) + \sum_{y \in \Gamma_n} Q_n(\{y\}|x,a)h(y) \\ g \in \mathbb{R} \quad \text{and} \quad h(x) \in \mathbb{R}. \end{array}$$

Its optimal value is  $g^*_{n,\vartheta}$  and, at optimality, we obtain a solution of

$$g_{n,\mathfrak{d}}^* + h(x) \leq \min_{a \in A_\mathfrak{d}(x)} \left\{ c(x,a) + \sum_{y \in \Gamma_n} Q_n(\{y\}|x,a)h(y) \right\}$$
(2)

《曰》《卽》《臣》《臣》

臣

590

but not necessarily of the ACOE.

Introduction Lipschitz-continuous control models Approximation of the control model An application

## Solving the ACOE by linear programming

Our approach to approximate an optimal policy is based on a canonical policy for  $\mathcal{M}_{n,\vartheta}$ . We need to solve the ACOE for  $\mathcal{M}_{n,\vartheta}$ .

Lemma (Maximal property)

Let  $\{z^*(x, a)\}$  be an optimal solution of P, and fix arbitrary  $x^*$  with  $z^*(x^*, a) > 0$ .

Let  $h^*$  be the unique solution of the ACOE for  $\mathcal{M}_{n,\mathfrak{d}}$  such that  $h^*(x^*) = 0$ , and let h, with  $h(x^*) = 0$ , verify the inequalities in (2). Then we have  $h < h^*$ .



Modified dual linear programming problem D'

$$\begin{array}{ll} \max & \sum_{x\in \Gamma_n} h(x) \quad \text{subject to} \\ g_{n,\mathfrak{d}}^* + h(x) \leq c(x,a) + \sum_{y\in \Gamma_n} Q_n(\{y\}|x,a)h(y) \\ & h(x^*) = 0 \quad \text{and} \quad h(x) \in \mathbb{R}. \end{array}$$

#### Theorem

Solving P and then D' yields a solution of the ACOE for  $\mathcal{M}_{n,\mathfrak{d}}$ .

▲□▶ ▲@▶ ▲≧▶ ▲≧▶

æ

Consider the dynamics

$$x_{t+1} = \max\{x_t + a_t - \xi_t, 0\}$$
 for  $t \in \mathbb{N}$ 

where

- $x_t$  is the stock level at the beginning of period t;
- $a_t$  is the amount ordered at the beginning of period t;
- $\xi_t$  is the random demand at the end of period t.

The capacity of the warehouse is M > 0. Therefore,

$$X = A = [0, M]$$
 and  $A(x) = [0, M - x]$ .



The controller incurs:

- a buying cost of b > 0 for each unit;
- a holding cost h > 0 for each period and unit;
- and receives p > 0 for each unit that is sold.

The running cost function is

$$c(x,a) = ba + h(x+a) - pE[\min\{x+a,\xi\}].$$

### Theorem

If the  $\{\xi_t\}$  are i.i.d. with distribution function F, with F(M) < 1, and density function f, which is Lipschitz continuous on [0, M]with f(0) = 0, then the inventory management system satisfies our assumptions.

うくで

Fix  $0 < \mathfrak{p} < 1$ . The probability measure  $\mu$  is

$$\mu\{0\} = \mathfrak{p} \quad ext{and} \quad \mu(B) = rac{1-\mathfrak{p}}{M}\lambda(B) \quad ext{for measurable } B \subseteq (0, M],$$

The density function of the demand is

$$f(x) = rac{1}{\lambda^2} x e^{-x/\lambda}$$
 for  $x \ge 0$ .

The approximating action sets are

$$A_{\mathfrak{d}}(x) = \Big\{ rac{(M-x)j}{q_{\mathfrak{d}}-1} : j = 0, 1, \dots, q_{\mathfrak{d}}-1 \Big\}.$$

| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                               |
| An inventory management sy                                                                                  | vstem                         |

We take 500 samples of size n for the parameters

$$M = 10, \ b = 7, \ h = 3, \ p = 17, \ \mathfrak{p} = 1/10, \ \lambda = 5/2, \ q_{\mathfrak{d}} = 20.$$

|           | <i>n</i> = 50  | <i>n</i> = 150 | <i>n</i> = 300 |
|-----------|----------------|----------------|----------------|
| Mean      | -26.8755       | -26.4380       | -26.2817       |
| Std. Dev. | 2.2119         | 1.4578         | 1.0145         |
|           | <i>n</i> = 500 | <i>n</i> = 700 | n = 1000       |
| Mean      | -26.1717       | -26.1553       | -26.1659       |
| Std. Dev. | 0.8104         | 0.6662         | 0.5734         |

Table: Estimation of the optimal average cost g.

《曰》《卽》《臣》《臣》

E

We determine the canonical policy  $\tilde{f}_{n,\mathfrak{d}}$  for  $\mathcal{M}_{n,\mathfrak{d}}$  and we evaluate it for  $\mathcal{M}$ .

|           | <i>n</i> = 50  | <i>n</i> = 150 | <i>n</i> = 300 |
|-----------|----------------|----------------|----------------|
| Mean      | -25.6312       | -25.8387       | -25.9724       |
| Std. Dev. | 0.7648         | 0.5394         | 0.3954         |
|           | <i>n</i> = 500 | <i>n</i> = 700 | n = 1000       |
| Mean      | -26.0406       | -26.0497       | -26.0833       |
| Std. Dev. | 0.3387         | 0.3276         | 0.3133         |

Table: Estimation of the average cost of the policy  $\tilde{f}_{n,\mathfrak{d}}$ .

| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                               |  |  |  |  |  |
| An inventory management system                                                                              |                               |  |  |  |  |  |

We compute the relative error of  $J(x, \tilde{f}_{n,0})$  with respect to g.

| <i>n</i> = 50 | <i>n</i> = 150 | <i>n</i> = 300 | <i>n</i> = 500 | <i>n</i> = 700 | n = 1000 |
|---------------|----------------|----------------|----------------|----------------|----------|
| 4.63%         | 2.27%          | 1.18%          | 0.50%          | 0.40%          | 0.32%    |

Table: Relative error.

ㅁㅏㅓ@ㅏㅓ돋ㅏㅓ돋ㅏ

We display the approximation of an optimal policy for the control model  $\mathcal{M}.$ 



### Figure: Estimation of an optimal policy

|                                                                                                             | <ul><li>A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N</li></ul> |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dufour and Prieto-Rumeau                                                                                    | Approximation of average MDPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Introduction<br>Lipschitz-continuous control models<br>Approximation of the control model<br>An application |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conclusions                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

- We have proposed a general procedure to approximate a continuous state and action MDP.
- We can do this for a "Lipschitz-continuous" control model.
- We prove exponential rates of convergence (in probability).
- For applications, our method provides very good approximations.

《曰》《曰》《曰》

E