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Statement of the problem

We are interested in approximating the optimal average cost
and an optimal policy of a discrete-time Markov control
process.

We consider a control model with general state and action
spaces.

Most of the approximation results in the literature are
concerned with MDPs with discrete state and action spaces.
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Our approach

We propose procedures to discretize the state and action
spaces.

Discretization of the state space is based on sampling an
underlying probability measure.

Discretization of the action space is made by selecting actions
that are “dense” in the Hausdorff metric.

We show that our approximation error converges in probability
to zero at an exponential speed.
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Dynamics of the control model

It is a stochastic controlled dynamic system.

The system is in state x0.

The controller takes an action a0 and incurs a cost c(x0, a0).

The system makes a transition x1 ∼ Q(·|x0, a0).
The system is in state x1. Etc.

On an infinite horizon we have:

a state process: {xt}t≥0;

an action process: {at}t≥0;

a cost process: {c(xt , at)}t≥0.
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Definition of the control model

The control model M
Consider a control model

�
X ,A, {A(x) : x ∈ X},Q, c) where

The state space X is a Borel space, with metric ρX .

The action space A is a Borel space, with metric ρA.

A(x) is the measurable set of available actions in state x ∈ X .

Q ≡ Q(B |x , a) is a stochastic kernel on X given K, where

K = {(x , a) ∈ X × A : a ∈ A(x)}.

c : K → R is a measurable cost function.
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Definition of the control model

Let Π the family of randomized history-dependent policies.

Let F be the family of deterministic stationary policies, i.e.,
the class of f : X → A such that f (x) ∈ A(x) for x ∈ X .

Optimality criteria

Given π ∈ Π and an initial state x ∈ X , the total expected α-
discounted cost (0 < α < 1) and the long-run average cost are

Vα(x ,π) = Eπ,x
� ∞�

t=0

αtc(xt , at)
�

J(x ,π) = lim sup
t→∞

Eπ,x
�1
t

t−1�

k=0

c(xt , at)
�
.
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Definition of the control model

Optimality criteria

The optimal discounted cost is

V ∗
α(x) = inf

π∈Π
Vα(x ,π).

The optimal average cost is

J∗(x) = inf
π∈Π

J(x ,π).

A policy π∗ ∈ Π is average optimal if

J(x ,π∗) = J∗(x) for all x ∈ X .
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Discretizing the state space

Main idea

We suppose that there exists a probability measure µ on X
and a nonnegative measurable function q(·|·, ·) on X ×K such
that

Q(B |x , a) =
�

B
q(y |x , a)µ(dy)

for all measurable B ⊆ X and every (x , a) ∈ K.

On a probability space (Ω,F ,P) we take a sample of n i.i.d.
random observations {Yk}1≤k≤n with distribution µ and we
consider the empirical probability measure

µn(B) =
1

n

n�

k=1

I{Yk ∈ B}.
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Discretizing the state space

Main idea

In the transition kernel, we replace µ with µn

Q(B |x , a) =
�

B
q(y |x , a)µ(dy) �

�

B
q(y |x , a)µn(dy)

We have “discretized” the state space: from X to {Yk}1≤k≤n.
Integration is discretized: from µ to µn.

We must be able to compute the estimation error

����
�

X
g(y)µ(dy)−

�

X
g(y)µn(dy)

���� .

We need a convergence µn → µ allowing to measure such
estimation errors for a certain class of functions g .
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Convergence of probability measures on Polish spaces

Metrics

Total variation.
The metric d(λ, µ) = supB∈B(X ) |λ(B)− µ(B)| corresponds to

d(λ, µ) =
1

2
sup
f

����
�

X
fdλ−

�

X
fdµ

����

for continuous f : X → [−1, 1].

In our case...
We do not have d(µn, µ) → 0.
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Convergence of probability measures on Polish spaces

Metrics

Weak convergence. The (Lévy-Prokhorov) metric d(λ, µ) is

inf
δ>0

�
µ(A) ≤ λ(N(A, δ)) + δ,λ(A) ≤ µ(N(A, δ)) + δ, ∀A

�
,

and corresponds to the convergence of sequences: λn → λ iff

�

X
fdλn →

�

X
fdλ for bounded Lipschitz-cont. f : X → R.

In our case... There is no explicit relation between

d(λ, µ) and sup
f

���
�

fdµ−
�

fdλ
���.
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Convergence of probability measures on Polish spaces

Lipschitz-continuous functions

f : A → R (for A ⊆ R) is L-Lipschitz-continuous, for some
L > 0, if

|f (x)− f (y)| ≤ L · |x − y | for all x , y ∈ A.

Roughly: functions with bounded derivative, e.g., ax + b,
cos x , e−x on [0,∞).

Not Lipschitz-continuous: e−x on R,
√
x on [0,∞).

This definition is extended for functions f : Z1 → Z2, with Z1

and Z2 with metrics d1 and d2:

d2(f (x), f (y)) ≤ L · d1(x , y) for all x , y ∈ Z1.
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Convergence of probability measures on Polish spaces

Metrics

1-Wasserstein metric. For probability measures in P1(X ) with
finite first moment:

�
X ρX (x , x0)µ(dx) < ∞:

W1(λ, µ) = inf
{ν:ν1=λ,ν2=µ}

�

X×X
ρX (x1, x2)ν(dx1, dx2).

N.B.: The p-Wasserstein metric uses
�
ρX (x1, x2)

�p
.

The dual Kantorovich-Rubinstein characterization gives

W1(λ, µ) = sup
f ∈L1(X )

���
�

fdµ−
�

fdλ
���

for all 1-Lipschitz continuous functions.
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Convergence of probability measures on Polish spaces

The 1-Wasserstein metric is equivalent to weak convergence
plus convergence of absolute first moments.

For distribution functions F1 and F2 on R:
W1(µ1, µ2) =

�
R |F1(x)− F2(x)|dx .
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Figure: 1-Wasserstein distance between γ(1/2, 1) and γ(1, 2).
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The transportation problem

Given two probability measures λ and µ on X , transport the
mass with distribution λ so as to obtain a mass with
distribution µ, with cost function c(x1, x2) ≥ 0.

Find a function T : X → X minimizing

�

X
c(x1,T (x1))λ(dx1) such that µ = λ ◦ T−1.

The Kantorovich formulation is to find a probability measure
ν on X × X with marginals λ and µ attaining

inf
{ν:ν1=λ,ν2=µ}

�

X×X
c(x1, x2)ν(dx1, dx2).
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Convergence of empirical probability measures

Theorem (Boissard, 2011)

If µ ∈ P1(X ) satisfies the modified transport inequality:

W1(µ,λ) ≤ C
�
H(λ|µ) +

�
H(λ|µ)

�

for some C > 0 and all λ ∈ P1(X ) then there exists γ0 such that
for all 0 < γ ≤ γ0 there exist C1,C2 > 0 with

P{W1(µn, µ) > γ} ≤ C1 exp{−C2n} for all n ≥ 1.

Here, H(λ|µ) is the entropy H(λ|µ) =
�
log dλ

dµdλ. A sufficient
condition is the existence of a > 0 and x0 ∈ X such that

�

X
exp{a · ρX (x , x0)}µ(dx) < ∞.
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Our setting

If f is Lf -Lipschitz-continuous

���
�

f (y)µn(dy)−
�

f (y)µ(dy)
��� ≤ LfW1(µn, µ)

and the probability that

���
�

f (y)µn(dy)−
�

f (y)µ(dy)
��� > γ

goes to zero at an exponential rate. So, we will place ourselves in
the “Lipschitz continuity” setting.

The elements of the control model will be supposed to be
Lipschitz-continuous.

The action space will be discretized in a
“Lipschitz-continuous” way.
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Hypotheses

For each x ∈ X , the set A(x) is compact, and x �→ A(x) is
Lipschitz continuous with respect to the Hausdorff metric, i.e.,

dH(A(x),A(y)) ≤ LρX (x , y) for all x , y ∈ X ,

with dH(C1,C2) = max{supx1∈C1
ρX (x1,C2), supx2∈C2

ρX (x2,C1)}.

C₁ 
C₂ 

d(C₁,C₂) 

Dufour and Prieto-Rumeau Approximation of average MDPs

Introduction
Lipschitz-continuous control models
Approximation of the control model

An application

Hypotheses

There exists a Lipschitz-continuous function w : X → [1,∞) such
that for all (x , a) ∈ K

The cost function c is Lipschitz-continuous and

|c(x , a)| ≤ cw(x).

The density function q(y |x , a) verifies
q(y |x , a) ≤ qw(x).

It is Lipschitz-continuous in y (resp., (x , a)) uniformly in
(x , a) (resp., y).

y �→ w(y)q(y |x , a) is Lw(x)-Lipschitz-continuous.
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Hypotheses

Qw(x0, a0) is finite for some (x0, a0) ∈ K and there is some
0 < d < 1 such that
�

X
w(y)|Q(dy |x , a)−Q(dy |x �, a�)| ≤ 2d(w(x) + w(x �)) (1)

for all (x , a) and (x �, a�) in K.

As a consequence of (1), there exists b ≥ 0 such that

Qw(x , a) ≤ dw(x) + b for all (x , a) ∈ K.

This is the usual “contracting” condition for average cost MDPs.
We impose (1) because it implies a uniform geometric ergodicity
condition under which we can use the vanishing discount approach
to average optimality.
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Dynamic programming equation

Notation

We say that u : X → R is in Lw (X ) if u is Lipschitz-continuous and
there exists M > 0 with |u(x)| ≤ Mw(x) for all x ∈ X .

Theorem (Discounted cost)

Given a discount factor 0 < α < 1, the optimal discounted cost
V ∗
α ∈ Lw (X ) and it satisfies the α-DCOE

V ∗
α(x) = min

a∈A(x)

�
c(x , a) + α

�

X
V ∗
α(y)Q(dy |x , a)

�
for x ∈ X .

x �→ Vα(x ,π) might not be continuous, but x �→ infπ∈Π Vα(x ,π) is
continuous!
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Dynamic programming equation

Theorem (Average cost)

There exist g ∈ R and h ∈ Lw (X ) that are a solution to the
ACOE

g + h(x) = min
a∈A(x)

�
c(x , a) +

�

X
h(y)Q(dy |x , a)

�
for x ∈ X .

We have g = J∗(x) = infπ∈Π J(x ,π) for all x ∈ X.

If f ∈ F attains the minimum in the ACOE, then it is average
optimal.

Sketch of the proof: Define hα(x) = V ∗
α(x)− V ∗

α(x0). Show that
{hα} is equicontinuous, and that its Lipschitz constant does not
depend on α. Let α → 1.
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Approximation of the control model

Discretization of the action space

For all d > 0 there exists a family Ad(x), for x ∈ X , of subsets of A
satisfying:

Ad(x) is a nonempty closed subset of A(x), for x ∈ X .

For every x ∈ X ,

dH(A(x),Ad(x)) ≤ dw(x).

The multifunction x �→ Ad(x) is Ld-Lipschitz continuous with
respect to the Hausdorff metric, with supd>0 Ld < ∞.
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Approximation of the control model

Definition

Given n ≥ 1 and d > 0, the control model Mn,d is defined by the
elements �

X ,A, {Ad(x) : x ∈ X},Qn, c
�
,

Recall that Q(B |x , a) =
�
B q(y |x , a)µ(dy). Here,

Qn(B |x , a) =
�
B q(y |x , a)µn(dy)�
X q(y |x , a)µn(dy)

=

�
k:Yk∈B q(Yk |x , a)�n
k=1 q(Yk |x , a)

.

Note that Qn(·|x , a) has finite support, and it assigns probability
proportional to q(Yk |x , a) to Yk .
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Properties of Mn,d

If v ∈ Lw (X ) —w -bounded and Lipschitz-continuous— we can
compare Qv and Qnv :

|Qv(x , a)− Qnv(x , a)| ≤ Cvw(x)W1(µ, µn),

but not when v is not Lipschitz-continuous.

We will use the notation:

Kd = {(x , a) ∈ X × A : a ∈ Ad(x)}.
Πd and Fd are the families of all policies and deterministic
stationary policies for the control model Mn,d.

The expectation operator is Eπ,x
n,d .

Let

J∗n,d(x) = inf
π∈Πd

lim sup
t→∞

Eπ,x
n,d

�1
t

t−1�

k=0

c(xt , at)
�
.
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Properties of Mn,d

Define

c =
1− d

4(Lwq + Lq(1 + 4(d + b)))

and suppose that ω ∈ Ω is such that W1(µ, µn(ω)) ≤ c. Then we
have:

Qn(X |x , a) = 1 for all (x , a) ∈ Kd.

For all (x , a) ∈ Kd,

Qnw(x , a) ≤ 1 + d

2
w(x) + 2b.

For all (x , a) and (x �, a�) in Kd

�

X
w(y)|Qn(dy |x , a)−Qn(dy |x �, a�)| ≤ (1+d) ·(w(x)+w(x �))
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Properties of Mn,d

Theorem

If ω ∈ Ω is such that W1(µ, µn(ω)) ≤ c then

The control model Mn,d is uniformly geometrically ergodic
and it verifies the “same” properties as M.

The optimal average cost J∗n,d(x) ≡ g∗
n,d is constant and it

satisfies the ACOE: for all x ∈ X

g∗
n,d + h(x) = min

a∈Ad(x)

�
c(x , a) +

�

X
h(y)Qn(dy |x , a)

�

for some h ∈ Bw (X ).

Besides, h is unique up to additive constants.
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Convergence of the optimal average cost

Theorem

There exists ε0 > 0 such that for any 0 < ε ≤ ε0 there exist d > 0
and constants S, T > 0 such that

P∗{|g∗
n,d − g | > ε} ≤ S exp{−T n}.

for all n ≥ 1.
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Sketch of the proof

From the ACOE for M we have

g + h(x) ≤ c(x , a) + Qh(x , a).

Replace Q with Qn and obtain

g + h(x) ≤ c(x , a) + Qnh(x , a) + Cw(x)W1(µ, µn).

Iterate this inequality t times, divide by t, and take the limit
as t → ∞ to obtain g ≤ g∗

n,d + CW1(µ, µn).

For an M-canonical policy f ∈ F

g + h(x) = c(x , f ) + Qh(x , f ).

Take the “projection” f̃ of f on Fd and obtain

g + h(x) ≥ c(x , f̃ ) + Qh(x , f̃ )− Cdw(x).

Replace Q with Qn and proceed as before.
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Approximation of an optimal policy

Main idea

Starting from the ACOE for Mn,d

g∗
n,d + h(x) = min

a∈Ad(x)

�
c(x , a) +

�

X
h(y)Qn(dy |x , a)

�
,

let �fn,d ∈ Fd be a canonical policy.

Since �fn,d ∈ F, “use it” in the control model M to obtain the

expected average cost J(x ,�fn,d)
Compare J(x ,�fn,d) and g .
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Approximation of an optimal policy

Difficulties

For a function v , we have that Qv is Lipschitz-continuous, but
Qnv is locally Lipschitz-continuous.

The function h in the ACOE for Mn,d is locally
Lipschitz-continuous.

We cannot directly compare Qh with Qnh.

There exists a Lipschitz-continuous h̃ with

||h − h̃||w ≤ CW1(µ, µn).

Use this h̃ to compare Qh̃ and Qnh̃.
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Approximation of an optimal policy

Theorem

There exists ε0 > 0 such that for any 0 < ε ≤ ε0 there exist d > 0
and constants S, T > 0 such that

P∗{J(�fn,d, x)− g > ε} ≤ S exp{−T n}.

for all n ≥ 1 and x ∈ X.
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Finite state and action approximations

For applications, suppose that the sets Ad(x) are finite.

Take a sample Γn = {Yk(ω)} of the probability measure µ.

The control model Mn,d has finite state and action spaces.

We need to determine its optimal average cost g ∗
n,d.

We need to solve the ACOE for Mn,d to find a canonical
policy.
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The linear programming approach

Primal linear programming problem P

min
�

x∈Γn

�

a∈Ad(x)

c(x , a)z(x , a) subject to

�

a∈Ad(x)

z(x , a) =
�

x �∈Γn

�

a�∈Ad(x �)

z(x �, a�)Qn({x}|x �, a�)

�

x∈Γn

�

a∈Ad(x)

z(x , a) = 1 and z(x , a) ≥ 0

It is known that minP = g∗
n,d, the optimal average cost of the

control model Mn,d.
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The linear programming approach

Dual linear programming problem D

max g subject to

g + h(x) ≤ c(x , a) +
�

y∈Γn
Qn({y}|x , a)h(y)

g ∈ R and h(x) ∈ R.

Its optimal value is g∗
n,d and, at optimality, we obtain a solution of

g∗
n,d + h(x) ≤ min

a∈Ad(x)

�
c(x , a) +

�

y∈Γn
Qn({y}|x , a)h(y)

�
(2)

but not necessarily of the ACOE.
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Solving the ACOE by linear programming

Our approach to approximate an optimal policy is based on a
canonical policy for Mn,d. We need to solve the ACOE for Mn,d.

Lemma (Maximal property)

Let {z∗(x , a)} be an optimal solution of P, and fix arbitrary x∗

with z∗(x∗, a) > 0.

Let h∗ be the unique solution of the ACOE for Mn,d such that
h∗(x∗) = 0, and let h, with h(x∗) = 0, verify the inequalities in (2).

Then we have h ≤ h∗.
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Solving the ACOE by linear programming

Modified dual linear programming problem D’

max
�

x∈Γn
h(x) subject to

g∗
n,d + h(x) ≤ c(x , a) +

�

y∈Γn
Qn({y}|x , a)h(y)

h(x∗) = 0 and h(x) ∈ R.

Theorem

Solving P and then D’ yields a solution of the ACOE for Mn,d.
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An inventory management system

Consider the dynamics

xt+1 = max{xt + at − ξt , 0} for t ∈ N

where

xt is the stock level at the beginning of period t;

at is the amount ordered at the beginning of period t;

ξt is the random demand at the end of period t.

The capacity of the warehouse is M > 0. Therefore,

X = A = [0,M] and A(x) = [0,M − x ].
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An inventory management system

The controller incurs:

a buying cost of b > 0 for each unit;

a holding cost h > 0 for each period and unit;

and receives p > 0 for each unit that is sold.

The running cost function is

c(x , a) = ba+ h(x + a)− pE [min{x + a, ξ}].

Theorem

If the {ξt} are i.i.d. with distribution function F , with F (M) < 1,
and density function f , which is Lipschitz continuous on [0,M]
with f (0) = 0, then the inventory management system satisfies our
assumptions.
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An inventory management system

Fix 0 < p < 1. The probability measure µ is

µ{0} = p and µ(B) =
1− p

M
λ(B) for measurable B ⊆ (0,M],

The density function of the demand is

f (x) =
1

λ2
xe−x/λ for x ≥ 0.

The approximating action sets are

Ad(x) =
�(M − x)j

qd − 1
: j = 0, 1, . . . , qd − 1

�
.
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An inventory management system

We take 500 samples of size n for the parameters

M = 10, b = 7, h = 3, p = 17, p = 1/10, λ = 5/2, qd = 20.

n = 50 n = 150 n = 300

Mean −26.8755 −26.4380 −26.2817
Std. Dev. 2.2119 1.4578 1.0145

n = 500 n = 700 n = 1000

Mean −26.1717 −26.1553 −26.1659
Std. Dev. 0.8104 0.6662 0.5734

Table: Estimation of the optimal average cost g .

Dufour and Prieto-Rumeau Approximation of average MDPs



Introduction
Lipschitz-continuous control models
Approximation of the control model

An application

An inventory management system

We determine the canonical policy �fn,d for Mn,d and we evaluate it
for M.

n = 50 n = 150 n = 300

Mean −25.6312 −25.8387 −25.9724
Std. Dev. 0.7648 0.5394 0.3954

n = 500 n = 700 n = 1000

Mean −26.0406 −26.0497 −26.0833
Std. Dev. 0.3387 0.3276 0.3133

Table: Estimation of the average cost of the policy �fn,d.
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We compute the relative error of J(x ,�fn,d) with respect to g .

n = 50 n = 150 n = 300 n = 500 n = 700 n = 1000

4.63% 2.27% 1.18% 0.50% 0.40% 0.32%

Table: Relative error.
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We display the approximation of an optimal policy for the control
model M.

Figure: Estimation of an optimal policy
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Conclusions

We have proposed a general procedure to approximate a
continuous state and action MDP.

We can do this for a “Lipschitz-continuous” control model.

We prove exponential rates of convergence (in probability).

For applications, our method provides very good
approximations.
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