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Introduction

Statement of the problem

@ We are interested in approximating the optimal average cost
and an optimal policy of a discrete-time Markov control
process.

@ We consider a control model with general state and action
spaces.

@ Most of the approximation results in the literature are
concerned with MDPs with discrete state and action spaces.
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Our approach

@ We propose procedures to discretize the state and action
spaces.

@ Discretization of the state space is based on sampling an
underlying probability measure.

@ Discretization of the action space is made by selecting actions
that are “dense” in the Hausdorff metric.

@ We show that our approximation error converges in probability
to zero at an exponential speed.
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Introduction

Dynamics of the control model

It is a stochastic controlled dynamic system.
@ The system is in state xp.
@ The controller takes an action ap and incurs a cost ¢(xp, ao).
@ The system makes a transition x; ~ Q(:|xo, ao)-
@ The system is in state x;. Etc.
On an infinite horizon we have:
@ a state process: {xt}+>0;
@ an action process: {a¢}+>0;

@ a cost process: {c(xt,at)}e>0-
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Definition of the control model

The control model M

Consider a control model (X, A, {A(x) : x € X}, Q, ¢) where
@ The state space X is a Borel space, with metric px.
@ The action space A is a Borel space, with metric pa.
@ A(x) is the measurable set of available actions in state x € X.
°

Q = Q(B]Jx, a) is a stochastic kernel on X given K, where
K={(x,a) e X xA:aec A(x)}.

c : K — R is a measurable cost function.
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Introduction

Definition of the control model

@ Let 1 the family of randomized history-dependent policies.

@ Let [ be the family of deterministic stationary policies, i.e.,
the class of f : X — A such that f(x) € A(x) for x € X.

Optimality criteria

Given m € [l and an initial state x € X, the total expected a-
discounted cost (0 < a < 1) and the long-run average cost are

Vo(x,7) = E”’X[iatc(xt,at)]
t=0

J(x,m) = limsup E”’X[

t—00
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Definition of the control model

Optimality criteria

@ The optimal discounted cost is

Vi (x) = inf Vu(x, 7).
mell

@ The optimal average cost is

J*(x) = inf J(x, 7).

mell

@ A policy #* € Il is average optimal if

J(x,7*) = J*(x) forall x € X.

Dufour and Prieto-Rumeau Approximation of average MDPs



Introduction

Discretizing the state space

@ We suppose that there exists a probability measure 1 on X
and a nonnegative measurable function g(-|-,-) on X x K such
that

Q(Blx,a) = /B q(y|x, a)u(dy)

for all measurable B C X and every (x, a) € K.

@ On a probability space (2, F,P) we take a sample of n i.i.d.
random observations { Yj }1<k<n with distribution 1 and we
consider the empirical probability measure

1 (B) = %Z 1{Y, € BY.

k=1
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Discretizing the state space

@ In the transition kernel, we replace pu with wu,

Q(B|x,a) = /B q(y|x, a)u(dy) ~ /B q(y|x, a)un(dy)

@ We have “discretized” the state space: from X to {Yx }1<k<n-
Integration is discretized: from p to wp.

@ We must be able to compute the estimation error

/X g(y)u(dy) — /X g(y)un(dy)‘-

@ We need a convergence i, — i allowing to measure such
estimation errors for a certain class of functions g.
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Introduction

Convergence of probability measures on Polish spaces

e Total variation.
The metric d(A, 1) = supgep(x) [A(B) — u(B)]| corresponds to

/fd)\—/ fdu‘
X X

1
d(\, p) = 5 SUP

for continuous f : X — [—1,1].

@ In our case...
We do not have d(up, 1) — 0.
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Convergence of probability measures on Polish spaces

o Weak convergence. The (Lévy-Prokhorov) metric d(A, p) is

inf {u(A) < A(N(A,8)) + 8, X(4) < u(N(A,9)) +3, YA},

and corresponds to the convergence of sequences: A\, — A iff
/ fd X\, —>/ fd\ for bounded Lipschitz-cont. f : X — R.
X X

@ In our case... There is no explicit relation between

d(\, 1) and sup‘/fd,u—/fd)\‘.
f
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Introduction

Convergence of probability measures on Polish spaces

Lipschitz-continuous functions

o f: A— R (for ACR) is L-Lipschitz-continuous, for some
L>0,if

If(x)—f(y)| < L-|x—y| forallx,ye€A.

@ Roughly: functions with bounded derivative, e.g., ax + b,
cos x, e X on [0, co).

@ Not Lipschitz-continuous: e on R, 4/x on [0, c0).

@ This definition is extended for functions f : Z1 — Z», with Z;
and Z> with metrics d; and db:

da(f(x), f(y)) < L-di(x,y) forallx,y € Z.
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Convergence of probability measures on Polish spaces

@ 1-Wasserstein metric. For probability measures in P1(X) with
finite first moment: [y px(x, xo)u(dx) < oo:

Wi, p) = inf / px (x1,x2)v(dx1, dx2).
{van=XAve=p} Jxx X

o N.B.: The p-Wasserstein metric uses (px(x1,x2))".

@ The dual Kantorovich-Rubinstein characterization gives

Wi(A i) = sup ‘/fdu /fdA‘

fE]Ll(X)

for all 1-Lipschitz continuous functions.
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Convergence of probability measures on Polish spaces

@ The 1-Wasserstein metric is equivalent to weak convergence
plus convergence of absolute first moments.

@ For distribution functions F; and F> on R:
Wi (1, p2) = [ [F1(x) — Fa(x)]dx.
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Figure: 1-Wasserstein distance between v(1/2,1) and ~(1,2).
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The transportation problem

@ Given two probability measures A and p on X, transport the
mass with distribution A so as to obtain a mass with
distribution g, with cost function c(x1,x2) > 0.

@ Find a function T : X — X minimizing
/ c(x1, T(x1))M\(dx1) such that p=Xo T~ 1
X

@ The Kantorovich formulation is to find a probability measure
v on X x X with marginals A\ and yu attaining

inf / c(x1, x2)v(dxy, dx2).
XxX

{viri=\vo=p}
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Introduction

Convergence of empirical probability measures

Theorem (Boissard, 2011)
If w € P1(X) satisfies the modified transport inequality:

Wi (i1, A) < C(HO ) + VHOIR))

for some C > 0 and all A € P1(X) then there exists o such that
for all 0 < v < ~yg there exist C1, Co > 0 with

P{Wh(tn, ) > v} < Crexp{—Con} foralln>1.

Here, H(A|p) is the entropy H(A|u) = [ log Z—/’)d)\. A sufficient
condition is the existence of a > 0 and xg € X such that

/ exp{a - px(x,x0)}p(dx) < oo.
X
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Our setting

If f is L¢-Lipschitz-continuous

[ fmalay) = [ FIntan)| < LWaGun. )

and the probability that

[ fmaley) [ F )| >

goes to zero at an exponential rate. So, we will place ourselves in
the “Lipschitz continuity” setting.

@ The elements of the control model will be supposed to be
Lipschitz-continuous.

@ The action space will be discretized in a
“Lipschitz-continuous” way.
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Lipschitz-continuous control models

Hypotheses

For each x € X, the set A(x) is compact, and x — A(x) is
Lipschitz continuous with respect to the Hausdorff metric, i.e.,

dr(A(x), Aly)) < Lox(x,y) forall x,y € X,

with dH(Cl, C2) = max{supxlecl px(Xl, CQ), SUpP,,cc, px(XQ, Cl)}
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Lipschitz-continuous control models

Hypotheses

There exists a Lipschitz-continuous function w : X — [1,00) such
that for all (x,a) € K

@ The cost function c is Lipschitz-continuous and
lc(x, a)] < Tw(x).

The density function q(y|x, a) verifies
o qlylx,a) < gw(x).
@ It is Lipschitz-continuous in y (resp., (x, a)) uniformly in
(x,a) (resp., y).
o y — w(y)q(y|x,a) is Lw(x)-Lipschitz-continuous.
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Lipschitz-continuous control models

Hypotheses

@ Qw(xp, ap) is finite for some (xp, ag) € K and there is some
0 < d < 1 such that

/XW(,V)\Q(dyIX, a) — Q(dy|x’, a)| < 2d(w(x) + w(x)) (1)

for all (x,a) and (x/, ) in K.

@ As a consequence of (1), there exists b > 0 such that
Qw(x,a) < dw(x)+ b for all (x,a) € K.

This is the usual “contracting” condition for average cost MDPs.
We impose (1) because it implies a uniform geometric ergodicity
condition under which we can use the vanishing discount approach
to average optimality.
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Dynamic programming equation

We say that u: X — Ris in L,,(X) if v is Lipschitz-continuous and
there exists M > 0 with |u(x)| < Mw(x) for all x € X.
Theorem (Discounted cost)

Given a discount factor 0 < a < 1, the optimal discounted cost
Vi e Ly (X) and it satisfies the a-DCOE

Vi(x) = min {c(x,a)+a/Xv;;(y)Q(dy|x,a)} for x € X.

acA(x)

x — V,(x, ) might not be continuous, but x — inf cn Va(x,m) is
continuous!

o
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Lipschitz-continuous control models

Dynamic programming equation

Theorem (Average cost)

@ There exist g € R and h € L,,(X) that are a solution to the
ACOE

g + h(x) = aénAi(rL) {c(x, a) + /X h(y)Q(dy|x, a)} for x € X.

o We have g = J*(x) = infren J(x,m) for all x € X.
e Iff € IF attains the minimum in the ACOE, then it is average
optimal.

Sketch of the proof: Define h,(x) = V}(x) — VZ(xp). Show that
{ha} is equicontinuous, and that its Lipschitz constant does not
depend on a. Let o — 1.
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Approximation of the control model

Discretization of the action space

For all ® > 0 there exists a family Ay(x), for x € X, of subsets of A
satisfying:
@ Ay(x) is a nonempty closed subset of A(x), for x € X.

@ For every x € X,
du(A(x), Av(x)) < dw(x).

@ The multifunction x — Ay(x) is Ly-Lipschitz continuous with
respect to the Hausdorff metric, with sup,-q Ly < oo.
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Approximation of the control model

Approximation of the control model

Definition
Given n > 1 and 0 > 0, the control model M, ; is defined by the
elements

(X,A, {Av(x) : x € X}, Qp, c),

Recall that Q(B|x,a) = [z q(y|x, a)u(dy). Here,

_ fB q(y|x, a)un(dy) _ Zk:YkeB q( Yk|x, a)
Ixalylx, apa(dy) — Doi—q a(Yilx,a)

Note that Q,(:|x, a) has finite support, and it assigns probability
proportional to g( Yk|x, a) to Y.

Qn(Blx, a)
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Properties of M5

If v € L, (X) —w-bounded and Lipschitz-continuous— we can
compare Qv and Q,v:

|Qv(x; a) = Qnv(x,a)] < Cow(x)Wa(p, pin),

but not when v is not Lipschitz-continuous.
We will use the notation:
o Ky ={(x,a) e X xA : ae A(x)}.
@ [1; and [y are the families of all policies and deterministic
stationary policies for the control model M, 5.
® The expectation operator is £, 3"

o Let .
t_

1
na(x) = inf IimsupE,:’DX[?Zc(Xt,at)]

melly t—oo —0
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Approximation of the control model

Properties of M,

Define
1—-d

4(Lwg + Lg(1 +4(d + b)))

and suppose that w € Q is such that Wi(u, pn(w)) < c. Then we
have:

® Qn(X]x,a) =1 for all (x,a) € K.
e For all (x,a) € Ky,

¢ =

Qnw(x,a) < #W(X) + 2b.

@ For all (x,a) and (X, ") in K,
/XW(Y)|Qn(dY|X7 a) = Qn(dy|x’, a)| < (1+d)-(w(x)+w(x))
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Properties of M5

If w e Q is such that Wq(u, pn(w)) < ¢ then

@ The control model M5 is uniformly geometrically ergodic
and it verifies the “same” properties as M.

o The optimal average cost J;, ,(x) = g, is constant and it
satisfies the ACOE: for all x € X

g+ h0x) = min_ {e(x.a)+ [ h()Qu(dylx,2)}

for some h € B, (X).

@ Besides, h is unique up to additive constants.
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Approximation of the control model

Convergence of the optimal average cost

Theorem

There exists g > 0 such that for any 0 < € < gg there exist 0 > 0
and constants S, > 0 such that

P*{|gno — g > e} < Sexp{—Thn}.

for all n > 1.
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Sketch of the proof

@ From the ACOE for M we have
g + h(x) < c(x, a) + Qh(x, a).
@ Replace Q with @, and obtain
g + h(x) < c(x,a) + Qnh(x, a) + Cw(x)Wi(u, ttn)-

lterate this inequality t times, divide by t, and take the limit
as t — oo to obtain g < g5y + CWi(u, fin).
@ For an M-canonical policy f € F

g + h(x) = c(x, f) + Qh(x, f).
Take the “projection” f of f on Fy and obtain
g + h(x) > c(x, ) + Qh(x, f) — Cow(x).
@ Replace Q with @, and proceed as before.
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Approximation of the control model

Approximation of an optimal policy

e Starting from the ACOE for M,

gy +h() = min {c(x,a) + / By) Quldylx; 3)1,
acAy(x) X

let ?,,,a € I, be a canonical policy.
@ Since ?;,,a € IF, “use it” in the control model M to obtain the
expected average cost J(x, fn)

o Compare J(X,ﬁ,’a) and g.
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Approximation of an optimal policy

Difficulties

@ For a function v, we have that Qv is Lipschitz-continuous, but
Q@nvV is locally Lipschitz-continuous.

@ The function h in the ACOE for M5 is locally
Lipschitz-continuous.

@ We cannot directly compare Qh with Qph.

o There exists a Lipschitz-continuous h with
1A — Bl < CWA (st pn).

o Use this h to compare Qh and Q,h.
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Approximation of the control model

Approximation of an optimal policy

Theorem
There exists g > 0 such that for any 0 < € < gg there exist 0 > 0
and constants S, > 0 such that

P*{J(fno,x) — g > e} < Sexp{—Tn}.

for alln > 1 and x € X.
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Finite state and action approximations

For applications, suppose that the sets Ay(x) are finite.

Take a sample ', = {Yx(w)} of the probability measure p.

°
°
@ The control model M ; has finite state and action spaces.
@ We need to determine its optimal average cost g, ,.

o

We need to solve the ACOE for M, to find a canonical
policy.
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An application

The linear programming approach

Primal linear programming problem P
min Z Z c(x,a)z(x,a) subject to

xe€ln acAy(x)

dooz(xa)= ) ) z(X,d)Qu({x}Ix, )

aGAa(X) x'elpa GA@(X’)
Z Z z(x,a)=1 and z(x,a)>0
x€lMn a€Ap(x)

It is known that min P = g7 ,, the optimal average cost of the
control model M ;.
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The linear programming approach

Dual linear programming problem D

max g subject to
g +h(x) < c(x,a) + Y Qu({y}Ix, a)h(y)
y€lns
ge€R and h(x)eR.

Its optimal value is g, and, at optimality, we obtain a solution of

gro+h(x) < min {c(xa)+ Y QUyixaht)} ()

QEAa(X) yer
n

but not necessarily of the ACOE.
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An application

Solving the ACOE by linear programming

Our approach to approximate an optimal policy is based on a
canonical policy for M, ;. We need to solve the ACOE for M, ;.
Lemma (Maximal property)

Let {z*(x,a)} be an optimal solution of P, and fix arbitrary x*
with z*(x*,a) > 0.

Let h* be the unique solution of the ACOE for M4 such that
h*(x*) = 0, and let h, with h(x*) = 0, verify the inequalities in (2).

Then we have h < h*.
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Solving the ACOE by linear programming

Modified dual linear programming problem D’

max Zh(x) subject to

xel,

gro+ h(x) < c(x,a)+ Y Qu({y}lx, a)h(y)

y€ln
h(x*) =0 and h(x)eR.

Solving P and then D' yields a solution of the ACOE for M, 5. \
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An application

An inventory management system

Consider the dynamics
Xt+1 = max{xt + ar — gta 0} fort ¢ N

where
@ Xx; is the stock level at the beginning of period t;
@ a; is the amount ordered at the beginning of period t;

@ &; is the random demand at the end of period t.

The capacity of the warehouse is M > 0. Therefore,

X=A=[0,M and A(x)=][0,M—x].
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An inventory management system

The controller incurs:
@ a buying cost of b > 0 for each unit;
@ a holding cost h > 0 for each period and unit;
@ and receives p > 0 for each unit that is sold.

The running cost function is

c(x,a) = ba+ h(x + a) — pE[min{x + a,&}].

Theorem

If the {&:} are i.i.d. with distribution function F, with F(M) < 1,
and density function f, which is Lipschitz continuous on [0, M|
with f(0) = O, then the inventory management system satisfies our
assumptions.

v

Dufour and Prieto-Rumeau Approximation of average MDPs




An application

An inventory management system

Fix 0 < p < 1. The probability measure u is

and  u(B) = 2P A(B)

v for measurable B C (0, M|,

p{0} =p

The density function of the demand is

1

2 xe /X for x > 0.

The approximating action sets are

(M — x)j

— j:O,l,...,qD—l}.

Ao(x) = {
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An inventory management system

We take 500 samples of size n for the parameters

M=10, b=7, h=3, p=17, p=1/10, A=5/2, g = 20.

n =50 n = 150 n = 300

Mean —26.8755 | —26.4380 | —26.2817
Std. Dev. 2.2119 1.4578 1.0145
n = 500 n=700 | n= 1000

Mean —26.1717 | —26.1553 | —26.1659
Std. Dev. 0.8104 0.6662 0.5734

Table: Estimation of the optimal average cost g.
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An application

An inventory management system

We determine the canonical policy ?n,b for M, and we evaluate it

for M.

n =50 n = 150 n = 300

Mean —25.6312 | —25.8387 | —25.9724
Std. Dev. 0.7648 0.5394 0.3954
n =500 n=700 | n=1000

Mean —26.0406 | —26.0497 | —26.0833
Std. Dev. 0.3387 0.3276 0.3133

Table: Estimation of the average cost of the policy ?,,,a.
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An inventory management system

We compute the relative error of J(x,?,.,,a) with respect to g.

n=50| n=150 | n=300 | n=500 | n=700 | n=1000
4.63% | 227% | 1.18% | 050% | 0.40% | 0.32%

Table: Relative error.
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An application

An inventory management system

We display the approximation of an optimal policy for the control
model M.

Figure: Estimation of an optimal policy
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An application

Conclusions

@ We have proposed a general procedure to approximate a
continuous state and action MDP.

@ We can do this for a “Lipschitz-continuous” control model.
@ We prove exponential rates of convergence (in probability).

@ For applications, our method provides very good
approximations.
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