
1312

Background and Purpose—The debate over the fact that experimental drugs proposed for the treatment of stroke fail in 
the translation to the clinical situation has attracted considerable attention in the literature. In this context, we present 
a retrospective pooled analysis of a large data set from preclinical studies, to examine the effects of early versus late 
administration of intravenous recombinant tissue-type plasminogen activator.

Methods—We collected data from 26 individual studies from 9 international centers (13 researchers; 716 animals) that 
compared recombinant tissue-type plasminogen activator with controls, in a unique mouse model of thromboembolic 
stroke induced by an in situ injection of thrombin into the middle cerebral artery. Studies were classified into early (<3 
hours) versus late (≥3 hours) drug administration. Final infarct volumes, assessed by histology or magnetic resonance 
imaging, were compared in each study, and the absolute differences were pooled in a random-effect meta-analysis. The 
influence of time of administration was tested.

Results—When compared with saline controls, early recombinant tissue-type plasminogen activator administration was 
associated with a significant benefit (absolute difference, −6.63 mm3; 95% confidence interval, −9.08 to −4.17; I2=76%), 
whereas late recombinant tissue-type plasminogen activator treatment showed a deleterious effect (+5.06 mm3; 95% 
confidence interval, +2.78 to +7.34; I2=42%; P

int
<0.00001). Results remained unchanged after subgroup analyses.

Conclusions—Our results provide the basis needed for the design of future preclinical studies on recanalization therapies using 
this model of thromboembolic stroke in mice. The power analysis reveals that a multicenter trial would require 123 animals 
per group instead of 40 for a single-center trial.    (Stroke. 2016;47:1312-1318. DOI: 10.1161/STROKEAHA.116.012238.)
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Intravenous recombinant tissue-type plasminogen activator 
(r-tPA), administered within 4.5 hours after stroke onset, is 

the only pharmacological treatment approved for acute isch-
emic stroke.1 However, it can only be administered to a minor-
ity of patients, achieves early arterial recanalization in <50% 
of cases, and has deleterious effects, including intracerebral 
hemorrhage, thus underlying the need for developing new 
acute strategies to be used for the treatment of stroke.

Testing potential acute therapies in animal models is pres-
ently the most common strategy for the development of new 
drugs for use in stroke. However, many approaches that 
showed efficacy in experimental stroke models have either not 
been translated or failed when tested in clinical trials.2–6 This 
translational roadblock is commonly attributed to inherent 
weaknesses of preclinical studies that include, lack of clini-
cal relevance of the stroke models,7,8 monocentric design, and 
small sample sizes.9 Thus, improving the validity and repro-
ducibility of preclinical studies is warranted. Some authors 
advocate for the use of multicenter preclinical studies,10 
and much effort was expended to develop new experimen-
tal models that mimic more closely the pathophysiology of 
stroke.11–13 Reporting of systematic reviews and meta-analysis 
of preclinical stroke studies from groups such as Collaborative 
Approach to Meta-Analysis and Review of Animal Data from 
Experimental Studies (http://www.dcn.ed.ac.uk/camarades/
default.htm: About) has increased.14–18 These approaches 
allow one to take into account the fact that individual studies 
may have used small sample sizes, and to compare data from 
>1 type of experimental stroke model.

In 2007, we developed a thromboembolic model of stroke 
in mice,12 which seems physiologically relevant and is now 
used by several groups to evaluate the effects of r-tPA either 
alone or where necessary in combination with putative neu-
roprotective drugs.19–21 However, no large-scale validation of 
this model is available to date. Therefore, we evaluated the 
effects of early (<3 hours) and late (≥3 hours) r-tPA adminis-
tration in this stroke model in a retrospective pooled analysis 
of individual data from 9 international research centers.

Materials and Methods

Selection Criteria, Search Strategy, 
and Data Collection
Eligible studies for inclusion in this analysis were those that (1) 
used the thromboembolic stroke model described below accord-
ing to a Standard Operating Procedure, (2) compared human r-tPA 
(Alteplase) treatment alone with a control saline group, whatever 
the time-window of treatment after stroke onset or the dose of r-tPA 
used, and (3) evaluated efficacy on lesion volumes measured either 
by magnetic resonance imaging (MRI) or histology at 24 hours post 
stroke onset. There were no restrictions on the strain of mice, or the 
dose of r-tPA used, during the protocol. Relevant studies were identi-
fied by a systematic search of the scientific literature of studies pub-
lished from 2007 to 2013, and by collecting data from studies that 
we were aware of but not yet published. Thus, at the time of this 
meta-analysis, 9 international centers were identified and made their 
data available for this study. The inclusion criterion was a reduction 
of cerebral blood velocity to at least 60% of the baseline value before 
initiating treatment. No animals were excluded from the final analysis 
because of premature death—related to technical complication—or 
as a result of the drug itself, during or after administration. However, 
85 animals were excluded from the global analysis (47 saline controls 

and 15 early and 31 late r-tPA treated) because either an excessively 
high-dose of thrombin was used (3 UI) in noncompliance with the 
Standard Operating Procedure or an unmatched control group was 
used (ie, early saline versus late r-tPA treated). For each study, we 
collected raw data that included the identification of each experi-
menter, mouse strain, sex, experimental treatment (including the dose 
of thrombin used), the dose of r-tPA administered, the time of admin-
istration of r-tPA after stroke onset, and the lesion volume (Table I 
in the online-only Data Supplement). Early r-tPA administration was 
defined when the injection was performed within the first 3 hours, and 
late r-tPA administration was defined when r-tPA was injected after 3 
hours post stroke onset.

Animals and Ethics
Depending on the research centers, experiments were performed 
on groups of male mice (Swiss or C57/Bl6) weighing 25 to 40 g 
and 20 and 30 g, respectively (Charles Rivers Laboratory; Janvier 
Laboratory, Jackson Laboratories, Harland Laboratories, and the 
Center Universitaire de Resources Biologiques of Caen—Normandie 
Universitie). All animals were housed under standard conditions with 
a 12-hour light/dark cycle and access to food and water ad libitum.

Studies were performed in accordance with the mandate of either 
the European Community Council Directive of November 24, 1986 
(86/609/EEC) or the National Institutes of Health guide for the Care 
and Use of Laboratory Animals. Animal procedures were approved by 
the regional Ethical Committees for Laboratory Animal Experiments 
for each center. All efforts were made to minimize the possible suf-
fering of the animals.

Thromboembolic Stroke Model
Cerebral ischemia was induced as described previously,12 and 
all centers followed a Standard Operating Procedure (Standard 
Operating Procedure; Materials and Methods in the online-only Data 
Supplement). In brief, the mice were anesthetized with isoflurane 
(induction 4%–5%, maintenance 1%–2%) in eight of nine centers. In 
1 center, mice were anesthetized with a ketamine/xylazine mixture (IP, 
50 and 6 mg/kg, respectively). A small craniotomy was performed, the 
dura was excised, and the middle cerebral artery was exposed. The 
pipette (glass micropipette, tip size 30–50 μm) was introduced into the 
lumen of the artery and 1 or 2 μL of murine α-thrombin (Hematologic 
Technologies) was injected to induce a clot, in situ. One center 
used human α-thrombin (0.75 UI/μL; Hematologic Technologies). 
Different doses of thrombin were used by the different centers (0.75–3 
UI). However, we considered that a dose >2 U/μL of thrombin was 
too high to allow reperfusion after r-tPA treatment. Thus, 23 animals 
were excluded from the global analysis because 3 UI of thrombin was 
used. To allow stabilization of the clot, the pipette was removed 10 
minutes after the injection of thrombin. Thrombolysis was initiated via 
the tail vein (200 μL) of human recombinant tPA (r-tPA; Boeringher 
Ingelheim, Alteplase; 10% in bolus, 90% in perfusion >40 minutes) 
at different doses (0.9, 5, and 10 mg/kg, IV) and at different times 
after stroke onset (from 20 minutes to 4 hours). Control mice received 
saline under identical conditions. Rectal temperature was maintained 
at 37±0.5°C throughout the surgical procedure using a feedback-reg-
ulated heating system. Cerebral blood flow velocity was used as an 
index of the occlusion and was measured using either laser Doppler 
within the middle cerebral artery territory or Doppler Speckle on the 
dorsal surface of the skull during 60 to 120 minutes.

Outcome Assessment
The primary outcome was the lesion volume measured 24 hours after 
stroke onset either by histological staining or MRI analysis. Brains 
were cryosectioned, and slices (20 μm) were stained interchangeably 
using cresyl violet, thionine, or hematoxylin/eosin. One section in 10 
(10- or 20-μm thick) was stained and analyzed (covering the entire 
lesion). Regions of interest were determined through the use of a ste-
reotaxic atlas for the mouse and an image analysis system (ImageJ soft-
ware) was used to measure the infarct. MRI images were obtained from 
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T2-weighted RARE sequences with either a 7T Bruker pharmascan 
MRI (echo time [TE]/repetition time [TR]=51.3 ms/2500 ms) or a 9.4T 
Bruker biospec (TR/TE=3300/60 ms). Lesion areas were quantified 
on T2-weighted images with ImageJ software (version 1.45r; National 
Institutes of Health).

Statistical Analyses
Our primary analysis was to determine whether the efficacy of r-tPA 
differed according to the time-window of treatment and consisted of a 
pooled analysis of mean differences in infarct volume between r-tPA 
and saline (control), with stratification by treatment time-window 
(classified into <3 and ≥3 hours). For each experiment, we calcu-
lated the mean (±SD) difference in infarct volume between the r-tPA 
and the control group. The weighted mean difference was obtained 
using a random-effect meta-analysis; the weight given to each experi-
ment being equal to the inverse of the variance of the difference. We 
then assessed whether the effect of r-tPA on infarct volumes differed 
between early and late r-tPA, using an interaction test. We also exam-
ined whether the result differed according to various experimental 
characteristics (eg, the mouse strain (Swiss versus C57Bl6), method 
of outcome assessment (MRI versus histology), and dose of throm-
bin used 0.75, 1, or 1.5 U/μL). This analysis was performed with 
RevMan 5.3 software. Finally, we performed a sensitivity analysis 
after exclusion of data from the largest center (Caen).

Results
We collected data from 26 experimental studies performed 
between 2007 and 2013 (from 13 experimenters in 9 different 

laboratories; Table I in the online-only Data Supplement). In 
total, data from 716 mice were available for the study. As pre-
viously explained, we excluded 85 animals. Thus, 623 animals 
(291 saline treated and 332 r-tPA treated) were included in the 
final analysis (Table I in the online-only Data Supplement). 
In the r-tPA group, 235 animals had early r-tPA treatment (<3 
hours: from 20 to 40 minutes post ictus) and 97 late treatment 
(≥3 hours: 180 and 240 minutes post ictus; given 200 μL IV 
whatever the dose used 0.9, 5, or 10 mg/kg). As such, data 
were evaluated in 19 early administration studies and in 9 late 
r-tPA treatments.

In the pooled analysis, the early r-tPA was associated with 
a significant reduction in the final infarct volume (absolute 
difference, −6.63 mm3; 95% confidence interval, −9.08 to 
−4.17; P

sig
<0.0001; I2=76%; Figure  1),19–28 whereas the late 

r-tPA treatment showed a deleterious effect (+5.06 mm3; 95% 
confidence interval, +2.78 to +7.34; P

sig
<0.0001; I2=42%; 

Figure 1), with a statistically significant qualitative interaction 
(P

int
<0.00001).

A similar beneficial effect was observed for the early r-tPA 
treatment when considering the 7 studies performed outside 
the Caen laboratory: absolute difference=−10.61 mm3; 95% 
confidence interval, −14.80 to −6.43; P

sig
=0.008; I2=66% 

(Figure 2).20–25 Looking at the 2 studies performed outside 
of our laboratory that applied late r-tPA treatment, there was 

Figure 1. Pooled analysis of lesion volumes expressed in mm3, comparing the mean values of saline (control) and recombinant tissue-
type plasminogen activator (r-tPA)–treated animals. Total is the number of animals per group. CI indicates confidence interval.
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still no beneficial effect (absolute difference=+3.07 mm3; 95% 
confidence interval, −1.63 to +7.77; P

sig
=0.6; I2=0%; Figure 

2). Again, the interaction with the time-window was still sig-
nificant (P

int
<0.0001).

Interaction at the subgroups level (Table)—which includes 
mouse strain (Swiss mice versus C57/Bl6 mice); method of 
evaluation to determine the lesion volume (ie, histology ver-
sus MRI analysis); whether studies were published, whether 
the studies were performed in a blinded manner; expertise of 
the experimenters; or whether the studies reporting hemor-
rhages are included; and dose of r-tPA administered—had no 
influence on the effects of r-tPA (Figure 1).

Discussion
In this retrospective study of a large pooled analysis of mul-
ticenter preclinical data (based on a thromboembolic stroke 
model), we demonstrated that early (<3 hours) administration 
of r-tPA after cerebral ischemia is associated with a significant 
reduction in lesion volume, whereas late administration (≥3 
hours) has no, or a deleterious, effect.

Although pooled analyses of data are common in clinical 
studies, such analyses are rare in preclinical research and no 
pooled analysis exists on r-tPA in ischemic stroke in animals. 
Yet, such an approach is of major importance because most of 
therapeutic strategies with beneficial effects in experimental 
stroke models failed when evaluated in humans, or have not 
been translated into a clinical trial, because of lack of support 
from industry or clinicians. It is therefore crucial to provide 
drug companies and clinicians with reliable stroke models that 
represent the clinical situation as much as possible.

As the benefit of r-tPA is well established in humans, it 
appeared to us interesting to demonstrate that this benefit is 

also clear in an appropriate animal model of ischemic stroke. 
Usually, preclinical studies have small sample sizes, and there 
is often a substantial heterogeneity in the stroke models used. 
Although we focused on a specific model of thromboembolic 
stroke and increased the sample size, we still observed a cer-
tain degree of heterogeneity across studies. This heterogeneity 
may be explained by variations in the animal strain, in the 
method of assessment, or in interindividual technical aspects 
despite a well-standardized model. However, our sensitivity 
analyses were highly consistent with the main finding (ie, a 
time–effect relationship between r-tPA administration and 
infarct volume).

The inclusion of a large sample population (623 animals) 
may have helped contribute to the validation of the model. Our 
group developed and characterized an embolic stroke model 
in mice, in which cerebral ischemia is induced by a local 
injection of thrombin directly into the middle cerebral artery. 
This leads to the immediate formation of a clot, cerebral blood 
flow disruption, and subsequent cortical infarction.12 Several 
other experimental stroke models exist and have been used 
for years in various animal species. However, those that use 
electrocoagulation, ligatures, or a filament are not appropriate 
in which to test thrombolytic drugs. Other researchers use the 
autologous injection of a clot, or microemboli, via the inter-
nal carotid artery to induce stroke, but such methods evince 
poor reproducibility and uniformity in the location of the 
lesion29 and result in a high mortality rate.30,31 Accordingly, 
despite successful r-tPA–induced reperfusion, it is not surpris-
ing to observe opposite effects of r-tPA treatment on infarct 
size depending on the extent to which the models reflect the 
contribution of fibrinolysis, blood–brain barrier alterations, or 
neurotoxicity.

Figure 2. Pooled analysis of lesion volumes expressed in mm3, comparing the mean values of saline (control) and recombinant tissue-
type plasminogen activator (r-tPA)–treated animals after exclusion of Caen data. Total is the number of animals per group. CI indicates 
confidence interval.
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Reporting of systematic reviews and meta-analysis of pre-
clinical stroke studies is increasing.14–18 In the present study, 
we evaluated the effects of r-tPA in a model of thromboem-
bolic stroke with a large sample population and examined the 
effects of r-tPA dose, time of administration, animal strain, 
research center, and method for calculating the infarction 
volume in the mouse. Nonetheless, there are some potential 
limitations in our analysis. Inherent differences exist between 
animal and human studies and applying the same method 
of meta-analysis to preclinical data is not straightforward.16 
Although we had the individual data available, we finally 
opted for a pooled analysis of group (research center) studies. 
Indeed, in each study, there is no heterogeneity in the animal 
model that has the same characteristics at baseline and con-
sequently excludes adjustment for confounding factors. The 
main source of nonuniformity was the experiment (the study) 
itself. However, we also performed the same analyses with 
generalized linear models and found the same interaction with 
time (data not shown). In addition, although we initially used 
10 mg/kg r-tPA, as is usually recommended in rodents, the 
current analysis shows that a dose as low as 0.9 mg/kg (the 
dose used in clinical studies) is sufficient to produce a benefi-
cial effect with early r-tPA treatment.

Although the original publication12 was based on data 
obtained from Swiss mice, the present data show similar 
results when using C57/Bl6 animals. The use of different 
time-windows, different doses, and 2 strains of mice together 

 � Lower 25% trained

  �  Early r-tPA 2 −8.98 (−13.26 to −4.70) 0 …

  �  Late r-tPA 0 … …

Doses of tPA

 � High doses (5–10 mg/kg)

  �  Early r-tPA 18 −5.98 (−8.22 to −3.74) 68 <0.00001

  �  Late r-tPA 8 5.48 (3.12 to 7.84) 39

 � Low dose (0.9 mg/kg)

  �  Early r-tPA 1 −16.30 (−20.57  
to −12.03)

… <0.00001

  �  Late r-tPA 1 2.60 (−2.41 to 7.61) …

Influence of reported hemorrhages

 � Studies with no reported hemorrhages

  �  Early r-tPA 17 −5.50 (−7.66 to −3.34) 59 <0.00001

  �  Late r-tPA 8 5.48 (3.12 to 7.84) 39

 � Studies with reported hemorrhages

  �  Early r-tPA 2 −13.52 (−18.50 to 
−8.54)

73 <0.00001

  �  Late r-tPA 1 2.60 (−2.41 to 7.61) …

CI indicates confidence interval; MRI, magnetic resonance imaging; and 
r-tPA, recombinant tissue-type plasminogen activator.

Table.  Continued

No. of 
Studies

Mean Difference  
(95% CI)

I 2  
(%)

Test for 
Interaction, 

P Value

Table.  Interaction Between Early and Late r-tPA Treatments 
in Different Subgroups

No. of 
Studies

Mean Difference  
(95% CI)

I 2  
(%)

Test for 
Interaction, 

P Value

Mouse strains

 � Swiss

  �  Early r-tPA 14 −6.31 (−9.03 to −3.58) 79 <0.00001

  �  Late r-tPA 7 5.38 (2.93 to 7.83) 47

 � C57Bl

  �  Early r-tPA 5 −8.18 (−14.90 to −1.46) 64 <0.02

  �  Late r-tPA 2 2.42 (−3.12 to 7.96) 0

Evaluation methods

 � Histology

  �  Early r-tPA 9 −9.92 (−12.49 to −7.35) 52 <0.00001

  �  Late r-tPA 2 5.65 (1.00 to 10.31) 70

 � MRI

  �  Early r-tPA 10 −3.76 (−6.28 to −1.25) 52 <0.0001

  �  Late r-tPA 7 4.41 (1.41 to 7.41) 31

Published vs unpublished studies

 � Published

  �  Early r-tPA 9 −8.77 (−12.74 to −4.80) 87 <0.00001

  �  Late r-tPA 10 6.26 (3.52 to 9.00) 55

 � Unpublished

  �  Early r-tPA 2 −4.70 (−6.78 to −2.62) 7 <0.0003

  �  Late r-tPA 5 2.73 (−0.67 to 6.14) 0

Blind vs not blind studies

 � Blind

  �  Early r-tPA 17 −6.35 (−9.04 to −3.66) 78 <0.00001

  �  Late r-tPA 8 4.19 (1.61 to 6.78) 26

 � Not blind

  �  Early r-tPA 2 −8.76 (−13.05 to −4.47) 0 <0.00001

  �  Late r-tPA 1 7.50 (5.95 to 9.05) …

Caen vs others

 � Caen

  �  Early r-tPA 12 −4.89 (−7.09 to −2.69) 57 <0.00001

  �  Late r-tPA 7 5.31 (2.76 to 7.85) 47

 � Others

  �  Early r-tPA 7 −10.61  
(−14.80 to −6.43)

66 <0.0001

  �  Late r-tPA 2 3.07 (−1.63 to 7.77) 0

Influence of training

 � Upper 25% trained

  �  Early r-tPA 7 −6.45 (9.37 to −3.52) 47 <0.00001

  �  Late r-tPA 3 6.98 (4.10 to 9.86) 53

(Continued) 
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with histological analysis is in agreement with some of the 
recommendations made by the Stroke Treatment Academic 
Industry Roundtable (STAIR) group.32 Furthermore, saline 
was used in all control groups instead of the vehicle contain-
ing l-arginine, which is used in clinical trials. Nevertheless, 
recent experimental studies demonstrated no significant effect 
of l-arginine when compared with saline in a stroke model 
in rabbits.33,34 The outcome we used was infarct volume as 
functional recovery was not consistently assessed. Similarly, 
the influence of sex or comorbidities such as diabetes mel-
litus, hypertension, or age was not addressed. However, the 
main consequence of these factors is likely to increase het-
erogeneity and attenuate the effects, rather than invalidate the 
findings.

In conclusion, we demonstrated in a pooled multicenter 
analysis that in this experimental model of thromboembolic 
stroke, r-tPA treatment is beneficial when given early after 
stroke onset (<3 hours) and not beneficial when the admin-
istration is delayed (≥3 hours). On the global data, a power 
analysis revealed that for a single-center trial, considering a 
power of 0.8 and an α risk of 0.05 (2 sided), a mean infarct 
volume of 20.9 mm3 in the control group and a SD of ±10 
mm3, 40 animals per group (drug treated and a control group) 
would be required to detect a 30% reduction with early tPA. 
In contrast, a multicenter trial would require 3 times more ani-
mals, ie, 123 animals per group (246 overall) if we assume the 
same heterogeneity across experiments that we observed in 
our meta-analysis (I2=76%).
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