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Wave-processing of Long-Scale Information in Neuronal Chains

José Antonio Villacorta-Atienza and Valeri A. Makarov∗

Dept. of Applied Mathematics, Facultad de Ciencias Matemáticas,
Universidad Complutense, Avda Complutense s/n, Madrid 28040, Spain

Investigation of mechanisms of information handling in neural assemblies involved in computa-
tional and cognitive tasks is a challenging problem. Synergetic cooperation of neurons in time
domain, through synchronization of firing of multiple spatially distant neurons, has been widely
spread as the main paradigm. Complementary, the brain may also employ information coding and
processing in spatial dimension. Then the result of computation depends also on the spatial dis-
tribution of long-scale information. The latter bi-dimensional alternative is notably less explored
in the literature. Here we propose and theoretically illustrate a concept of spatiotemporal rep-
resentation and processing of long-scale information in laminar neural structures. We argue that
relevant information may be hidden in self-sustained traveling waves of neuronal activity and then
their nonlinear interaction yields efficient wave-processing of spatiotemporal information. Using as
a testbed a chain of FitzHugh-Nagumo neurons we show that the wave-processing can be achieved
by incorporating into the single-neuron dynamics an additional voltage-gated membrane current.
This local mechanism provides a chain of such neurons with new emergent network properties. In
particular, nonlinear waves as a carrier of long-scale information exhibit a variety of functionally
different regimes of interaction: from complete or asymmetric annihilation to transparent cross-
ing. Thus neuronal chains can work as computational units performing different operations over
spatiotemporal information. Exploiting complexity resonance these composite units can discard
stimuli of too high or too low frequencies, while selectively compress those in the natural frequency
range. We also show how neuronal chains can contextually interpret raw wave information. The
same stimulus can be processed differently or identically according to the context set by a periodic
wave train injected at the opposite end of the chain.

INTRODUCTION

Distributed spatiotemporal processing of neural infor-
mation is widely recognized as the basis for binding and
generation of ultimate cognitive abilities in the brain
[1, 2]. Gamma waves have been postulated as a carrier of
such high order functions [3, 4]. Recently the propagation
of solitary waves in two-dimensional neuronal structures
has been proposed as a mean for generation of compact
internal representations of external dynamic situations
[5, 6]. Thus growing evidence suggests that neurons can
participate in a collective processing of long-scale infor-
mation, relevant part of which is shared over all neurons
but not concentrated at the single neuron level. In this
context we define wave-processing of information as a
computation (in terms of modification of global informa-
tion contained in neuronal structure) mediated by non-
trivial interaction of waves propagating over neuronal tis-
sue. Thus the brain may actively work not only in time
domain but also effectively use spatial dimension for in-
formation processing.
Despite wide consensus on significant relevance of long-

scale waves for information processing, neurophysiolog-
ical and biophysical bases of their origin and interac-
tion are largely unknown. Indeed, in the vast major-
ity of experimental and theoretical models, waves travel-
ing over dissipative excitable media (including neuronal
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structures) vanish at collision (see e.g. [7–9]). For exam-
ple, refractory period behind traveling waves of spreading
depression forces their annihilation after collision [10, 11].
Obviously complete destruction of neuronal excitation
caused by the interaction of waves cannot contribute to
effective and versatile processing of information. A re-
markable exception is the backpropagation of action po-
tentials in dendrites involved in plasticity mechanisms
and stimulus selection [12]. Recent experimental and
modeling results show that annihilation of colliding den-
dritic spikes, far to be a residual phenomenon, could
be crucial for information processing in active dendrites
[13, 14].
Another handicap for spreading the concept of wave-

processing is its scant experimental support due to sig-
nificant difficulties in detection of macroscopic waves in
multi-electrode data and their functional interpretation
[15]. Most of the waves described in the literature have
pathologic nature and hardly participate in information
processing. Examples are large-range epileptic waves,
spreading depression of Leao, spiral waves in hart tis-
sue, etc. [11, 16–18]. Nevertheless, importance of self-
sustained waves propagating and interacting throughout
the intricate neuron morphology has been recently put
in evidence [4, 19, 20]. Thus investigation of mechanisms
allowing neuronal structures to process information in
a significantly spatiotemporal way is a challenging the-
oretical and experimental problem with vital impact in
different fields of Neuroscience, Medicine, and Nonlinear
Dynamics.
One of the most successful approach for dealing with

processing of long scale information uses the FitzHugh-
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Nagumo (FN) paradigm, which under simple mathemat-
ical assumptions captures essential functional features
exhibited by neurons. The FN-model has been widely
used to describe biological neural networks, interaction
and propagation of waves, and processing of information
(see e.g. [21–23] and references therein). Nonetheless
these works assume that neurons locally create informa-
tion, which is then transmitted, shared, and processed at
the network level. We, however, shall demonstrate that
laminar neuronal structures modeled by classical chains
of coupled FN-like neurons are functionally capable of
wave-processing of long-scale information by means of
nonlinear interaction of self-sustained waves.
Head-on collision of self-sustained waves in classical

FN-chains leads to their complete annihilation. Such
monostable interaction offers little, if any, computational
capacity, whereas versatile wave-processing of informa-
tion requires bistable interaction of waves. Thus, simulta-
neously with wave annihilation the network dynamics has
to admit at least one more significantly different response
to the input stimuli, i.e. traveling waves should be able to
cross each other. Transparent crossing of self-sustained
waves has been known for a long time. However, in the
last decades it has been shown that such behavior is not
exclusive attribute of solitons, but a generic property ob-
served experimentally [24, 25] and numerically [21, 26–
30]. The mechanism of crossing of self-sustained waves
has been attributed to different nonlocal properties of the
medium as e.g. cross-diffusion [30].
In this work we show that versatile wave-processing of

long-scale information in laminar neural structures, de-
scribed within the FN-paradigm, can be achieved by in-
troducing into the single-neuron dynamics an additional
voltage-gated membrane current. This local mechanism,
ubiquitous in real neurons, provides a chain of such neu-
rons with new emergent network properties. In particu-
lar, nonlinear waves as a carrier of long-scale information
exhibit a variety of functionally different regimes of inter-
actions from complete or partial annihilation to transpar-
ent crossing. Thus neuronal chains can work as compu-
tational units performing different operations over spa-
tiotemporal information. To further illustrate the great
potential of the concept we show that neuronal chains
can “discard” stimuli of too high or too low frequen-
cies, while selectively compress those in the “natural”
frequency range, i.e. we observe the phenomenon of com-

plexity resonance. We also show how raw wave informa-
tion can be contextually “interpreted” by the neuronal
chain, i.e. the chain can process the same stimulus dif-
ferently or identically according to the context set by a
periodic wave train injected at the opposite end.

INTERACTION OF WAVES IN CHAINS OF

COUPLED NEURONS

We shall illustrate the concept of the information wave-
processing by using a one-dimensional chain of FN-like

neurons:

u̇j = f(uj, vj) + d(uj−1 − 2uj + uj+1)

v̇j = ǫ(uj + b− avj)
(1)

where uj and vj are the so-called membrane potential
and recovering variable of the jth neuron, respectively;
0 < ǫ ≪ 1 is the smallness parameter; and f(u, v) ac-
counts for nonlinear kinetics of the transmembrane cur-
rents. Finally a > 0, b > 0; and the parameter d ≥ 0
accounts for the strength of couplings between neighbor-
ing neurons. The chain (1) is considered with Dirichlet
boundary conditions: u0 = uN+1 = u∗, where N is the
total number of neurons in the chain and u∗ is the resting
potential.

FitzHugh-Nagumo dynamics

In the original FN-neuron the membrane kinetics is
given by:

fFN(u, v) = u− u3/3− v (2)

Setting in (1) a = 1.3 and b = 0.273 (ǫ = 0.09, d = 0)
we ensure that single FN-neuron has a unique attractor,
a stable steady state, given by

fFN(u
∗, v∗) = 0, u∗ = av∗ − b

where u∗ ≈ −1.12 a.u. defines the resting potential. Any
perturbation of the neuronal state decays to the steady
state, however, small but finite excitation can lead to a
large excursion in the phase plane, i.e. to a spike (Fig.
1A).

Voltage-gated depolarizing high-threshold current

Let us now introduce into the neuron’s kinetics an ad-
ditional voltage-gated high-threshold current, e.g. due to
Ca2+ conductance

f(u, v) = fFN(u, v) + γH(u− uth) (3)

where H(·) denotes a Heaviside-like step function (we as-
sume H ∈ C(R, [0, 1])), uth is the voltage threshold (we
set uth = 1.7 in numerical simulations), and γ describes
the magnitude of the additional current. We note that
the generalized neuron model with the kinetics (3) re-
duces to the classical FN-neuron at γ = 0.
For uth big enough (uth > 2 for ǫ → 0) the neuron

conserves FN-intrinsic excitable property and can gener-
ate spikes similarly to the FN-neuron (Figs. 1A and 1B,
blue curves). By rising γ above the critical value:

γ∗ = (uth + b)/a+ u3
th/3− uth

a pair of additional steady states appears on the phase
plane of single neuron through a fold bifurcation. Thus
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FIG. 1. Single neuron dynamics. A) Original FN-neuron. Small but finite excitations can produce spikes (red and blue
curves). B) Bistable-excitable neuron (FN-neurons equipped with additional voltage-gated membrane current, γ = 2.7). The
neuron admits FN-like spikes (blue curve) and transitions between “down” and “up” states (green and red curves).

the neuron becomes bistable and can stay at rest either
in “down” or “up” states, whereas a saddle point sepa-
rates their basins of attraction. Strong enough perturba-
tions can switch the neuron between down and up states
whereas at the down state it can also generate spikes (Fig.
1B). The bistable property of the neuron together with
excitability makes the collective dynamics of a chain of
such neurons (e.g. interaction of waves) nontrivial.

Role of depolarizing current in head on collision of

waves in neuronal chains

Classical excitable FN-chain (1), (2) for strong enough
coupling, d, admits self-sustained pulse-like running
waves. Figure 2A illustrates head-on collision of such
waves, which leads to their annihilation. As mentioned
above such behavior is typical for waves with refractory
period (see e.g. [8] for general discussion and [10, 16] for
electrophisiological and theoretical examples). Thus only
trivial wave-processing of information, i.e. its annihila-
tion, can be achieved in this chain.
To cope with this restriction, above we introduced the

generalized FN-model (1), (3). Figure 2B shows the wave
behavior in the chain of bistable-excitable neurons. At
the beginning the wave dynamics repeats the classical
FN-chain (snapshot t1). Indeed, in standard conditions
of waves propagation the membrane potential uj(t) does
not reach the threshold uth and the extra membrane cur-
rent in (3) is negligible. Hence no difference exists be-
tween the wave behavior of the classical chain and the
chain of bistable-excitable neurons. However, when the
waves collide, the membrane potential in the collision re-
gion overcomes uth and the appearing extra membrane
current changes their dynamics (Fig. 2B, snapshot t2).
Balance between the depolarizing membrane current

and the axial (along the chain) diffusive current creates a
new quasi-stable structure, the wave generator (Fig. 2B,
snapshot t2). The drive exerted by the wave generator
transiently avoids collapsing of the chain excitation and
emits two new waves propagating in opposite directions
(Fig. 2B, snapshots t3, t4). Finally, when the newly cre-
ated waves run away, the balance between the excitatory
and dissipative currents breaks and the wave generator
collapses (Fig. 2B, snapshots t5).
Thus the relation between the magnitude of the

voltage-gated excitatory current controlled by γ and the
axial (coupling) current controlled by d defines the func-
tional regime of the wave collisions. As we shall see below
the chain (1), (3) can exhibit a rich repertoire of behav-
iors and unexpected computational capabilities, which
stem from the possibility of waves to cross each other. It
is also worth noting that for small enough inter-neuronal
coupling d the chain possesses several stationary or quasi-
stationary behaviors including variants of spatial chaos
(see for details e.g. [31, 32]). We, however, concen-
trate here on the wave behaviors and hence below restrict
d ≥ 1.

BASES OF INFORMATION WAVE-PROCESSING

As we shall see further the computational abilities of
neuronal chains are based on coexistence of significantly
different scenarios of wave collisions. In other words, for
effective information processing the chain must admit at
least two collision scenarios for the same parameter val-
ues. Above (Fig. 2B) we observed one scenario, the
wave-crossing, which (in some extent) conserves the in-
formation in the chain. Let us now show that the dy-
namics of the chain of bistable-excitable neurons can be
even more complex.
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FIG. 2. Head on collisions of waves in neuronal chains. A) Snapshots of the membrane potential along the classical
FN-chain (d = 1) for five consecutive time instants t1, . . . , t5. Long scale self-sustained waves travel (arrows mark direction
of propagation) and annihilate at collision. B) Wave collision in the chain of bistable-excitable neurons (γ = 2.7, d = 1).
Dashed horizontal line marks the voltage threshold uth = 1.7. At collision a transient extra membrane current provokes
wave regeneration (t = t2, t3). The newly emitted waves propagate in opposite directions, while the wave generator collapses
(t = t4, t5).

Collision scenarios

First, we assume that colliding pulses are stationary
waves, i.e. all transient processes of the wave formation
have vanished and waves are given by

uj(t) = ũ(j ± ct) < uth

where ũ(·) is a pulse-like function and c is the wave ve-
locity. Figures 3A-3D show the spatiotemporal evolution
of two symmetric colliding waves for different values of
the magnitude of additional excitatory membrane cur-
rent (controlled by γ).
For small enough γ two colliding waves annihilate as

it typically happens in the FN-chain in particular and
in reaction-diffusion systems in general (Fig. 3A). For
moderate values of γ the waves cross each other enabling
transparent transmission of wave-information (Fig. 3B).
We notice a positive phase-shift at the collision, i.e. de-
lay in the wave reemission. For even higher γ the neu-
rons involved in collision are switched to the up-state
and form a pacemaker that emits periodic sequence of
waves (Fig. 3C), i.e. a new source of wave-information
emerges in the chain at the place of spatial coincidence
of waves. Finally for high enough γ the up-state becomes
dominating and two phase waves emerging at the colli-
sion switch the chain from down to up-state (Fig. 3D).
Such behavior is similar to waves of spreading depres-
sion in the hippocampus [16]. We note that the phase
transition is “supersonic”, i.e. it propagates faster than
subthreshold “sound” waves.

Second, we consider asymmetric collisions of a station-
ary traveling wave with a wave newly excited by a stimu-
lus applied near the place of future collision. In general,
asymmetric collisions lead to asymmetry in the wave cre-
ation. For moderate γ we observe selective annihilation
of a part of the information (Fig. 3E vs 3B). Such be-
havior is untypical for solitons and for traveling waves in
most of the reaction-diffusion systems (including the clas-
sical FN-chain). We also note that the behaviors shown
in Figs. 3B and 3E correspond to the same parame-
ter values, i.e. the chain exhibits bistable interaction of

waves, condition required for effective wave-processing of
information. For slightly higher γ the waves cross each
other as in Fig. 3B but now the newly created waves are
desynchronized, i.e. they receive different phase shifts
(Fig. 3F). For the value of γ corresponding to the for-
mation of a pacemaker the released waves again have
different phase shifts (Fig. 3C vs 3G). Similarly, in the
phase wave regime the wave emitted to the right has
lower phase shift (Fig. 3H vs 3D).

Bifurcation analysis of wave-processing

The numerically found different collisions’ scenarios
(Fig. 3) correspond to functionally different states of
the information processing in the chain. In order to gain
insight into the dynamics of wave interaction we studied
bifurcations occurring in the system.
The stationary solutions of Eqs. (1), (3) are given by
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the 2D map:

(u,w)T 7→

(

2u− w −
1

d
f

(

u,
u+ b

a

)

, u

)T

(4)

The map admits three constant solutions (fixed points):

(u,w) = (sk, sk), k = 1, 2, 3

which correspond to the steady states of a single neuron
(Fig. 1B), for example, s1 = u∗ ≈ −1.12 a.u. is the
down-state.
The fixed point p1 = (s1, s1) is of a saddle type. There

exist variety of orbits homoclinic to p1. Figure 4A shows
stable, W s(p1), and unstable, Wu(p1), manifolds and
their intersections define homoclinic orbits. Several spa-
tial profiles of the homoclinics are shown in Fig. 4B. They
differ by the width of the stationary solution and one of
them (green in Fig. 4B) corresponds to the width of the
wave generator transiently formed during the wave colli-
sion (Fig. 2B, t = t2). Following Ref. [21] we call such
orbit (spatial profile) a nucleating solution (NS).
To describe bifurcations of the homoclinics we intro-

duce the integral characteristics:

S =
N
∑

j=1

(uj − u∗) (5)

Then using one of the orbits provided by the intersec-
tion of manifolds Wu(p1) and W s(p1) as initial point
we continued the homoclinics over the control parame-
ter γ (Fig. 4C). For intermediate values of γ there exist a
number of homoclinic orbits, which appear and disappear
through fold bifurcations. This analysis shows that there
is a critical value of γ below which there is no nucleation
and hence colliding waves annihilate (Fig. 3A).
For nontrivial collisions (Figs. 3B-3H) the existence of

an NS is a prerequisite. Under collision trajectory in
the phase space of the chain (1), (3) passes nearby the
steady state corresponding to NS, which guides the fur-
ther scenarios of the wave behavior. We then linearized
the system (1), (3) in a vicinity of this steady state, which
turned to be a saddle. Indeed, its spectrum has one zero-
eigenvalue, corresponding to the translation symmetry in
the chain, and two pairs of complex eigenvalues with real
positive parts (Fig. 4D). Figure 4E shows the correspond-
ing eigenvectors that describe scenarios of the develop-
ment of instability. Both unstable directions have the
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same exponent, and hence their winner is determined by
how the trajectory enters the saddle region, i.e. by initial
perturbation created at the wave collision.
At symmetric collisions (Figs. 3B-3D) the perturba-

tion is also symmetric going along the symmetric eigen-
vector e2(j) (Fig. 4E). This leads to generation of a
pair of symmetric pulses at the tails of the NS. Asym-
metric collisions brake the symmetry and the NS will be
asymmetrically perturbed, i.e. the initial conditions are
shifted to the asymmetric eigenvector e1(j). Then we
have opposite drive in the tails of the NS, which is the
origin of asymmetry in the forming structure. After the
first local separation over the unstable manifold, the fol-
lowing behavior of the chain is nonlocal and depends on
the controlling parameters.
Figure 5 shows complete bifurcation diagram of the

neuronal chain (for d ≥ 1). It has four domains with
qualitatively different behaviors. In the region of wave
annihilation NS does not exist and independently on the
collision symmetry the initial perturbations go straight to
the down-state, which corresponds to the scenario A in
Fig. 3. In the remaining domains the NS separates trajec-
tory flows, which gives rise to symmetric and asymmetric
scenarios. In the wave crossing domain the unstable man-
ifold of NS pushes the trajectory outside to a big excur-
sion, which results in reemission of two symmetric waves

or one single wave or two asymmetric waves (scenarios
B, E, and F in Fig. 3, respectively). In the pacemaker
domain a limit cycle is born from a saddle-node type
bifurcation, which results in emission of periodic waves
of finite amplitude (scenarios C and G). Finally in the
phase wave domain the trajectories are redirected to the
up-state, and hence the chain is switched dynamically to
the up-state (scenarios D and H).

WAVE-PROCESSING OF LONG-SCALE

INFORMATION

As mentioned above, different functional regimes in
neuronal chains can be achieved by proper adjustment
of the coupling strength between neurons and the mem-
brane voltage-gated current (Fig. 5). One of the most
interesting regimes, the wave crossing, occurs for inter-
mediate values of both parameters. In this section we
study what computational abilities such functional state
may offer.
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Concurrence of periodic wave trains: Four types of

wave-processing

The real potential of the wave-processing of neural in-
formation arises in realistic biological contexts. For ex-
ample, interaction of coordinated inputs from the lateral
and medial entorhinal cortex to the laminar structure of
the hippocampus participates in consolidation of mem-
ory. Let us now simulate concurrence of two coordinated
inputs to a spatially extended laminar neuronal struc-
ture. We shall model the information content by two
periodic wave trains injected into a chain of bistable-
excitable neurons from opposite ends (Fig. 6A). After
nonlinear interaction, in general, wave trains change their
internal structure and we get two emergent output trains
carrying out the processed information.
Figure 6B.1 shows spatiotemporal evolution of two col-

liding identical periodic trains. Since the chain is in
the wave crossing regime (Fig. 5) two collision scenar-
ios are possible: transparent wave crossing with phase
shift (Fig. 3B) and annihilation of one of the waves (Fig.
3E). Which of the scenarios is realized in each collision
depends on a number of factors, e.g. on the time passed
from the previous collision. Indeed, when the spatial pe-
riod between waves is small enough the newly created
waves have no room to stabilize and one of them dies.
In contrast, sparse waves (i.e. long time between inter-
actions) cross each other transparently. Thus the proper
combination of symmetric and asymmetric crossings is

behind the generation of new aperiodic wave patterns at
the output. In Fig. 6B.1 every odd wave propagates to
the output. Thus we can speak about a kind of decimat-
ing processing. However, different waves receive different
phase shifts in collisions and consequently the structure
of the output trains is more complex (aperiodic).
To get deeper insight into the wave-processing we in-

jected into the chain two periodic wave trains as above,
but with different inter-wave periods. The train’s asym-
metry leads to different dynamic processing of each train
and generation of new trains with complex inter-wave
structures. Figure 6B.2 shows a representative example
of such experiments. Both trains initially had 10 periodic
waves spaced by 65 (train #1) and 30 (train #2) neurons.
Four waves from the train #1 and three from the train
#2 survived at the output. These were number 1, 5,
7, 9 and 1, 7, 10 for the trains #1 and #2, respectively.
We also notice significantly different phase shift obtained
by each wave, which finally codifies the number of colli-
sions and their frequencies. Thus the neuronal chain can
perform nontrivial information processing beyond deci-
mating. It can dynamically select and precisely position
in time only “desired” waves from a raw message, which
finally convey mutual information in “compressed” form.
In order to quantify the outcome of the wave-

processing we introduced an entropic measure. Wave
trains at the input and output were converted into binary
vectors with ones corresponding to wave crests separated
by blocks of zeros (silences). The bin size was equal to
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arrows indicate direction of propagation). Nonlinear interaction of the trains, i.e. the wave-processing, leads to two emerging
output trains with different aperiodic structure. B) Representative examples of collisions of identical periodic trains (left panel:
10 waves, spatial period 65 neurons) and trains with different spatial periods (right panel: 10 waves, spatial periods 65 and
30 neurons). Evolution of the wave crests shows how the interplay between symmetric and asymmetric wave collisions yields
aperiodic output trains. Waves propagating to the output are drawn by thicker lines. C) Entropy increment provided by the
wave-processing of identical and different periodic trains (means and standard deviations). For identical trains periods from
30 to 100 neurons have been considered. For different trains the period of the input train #1 was kept constant (65 neurons),
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Complexity of the output trains reaches maximum at intermediate spatial periods of input trains (d = 1, γ = 2.7).

the spatial refractory period (20 neurons). Then we eval-
uated the block entropy [33] over a set of words obtained
by sliding a window of 10 symbols over the input and
output vectors:

E = −
∑

pi ln(pi) (6)

where pi is the relative frequency of the ith word. Al-
though this measure for finite trains may underestimate
the real train entropy it suits well for our purpose of
quantification of the observed information compression.
Finally we evaluated the relative variation of the infor-
mation content before and after wave-processing as:

δ =
Eout − Ein

Ein

(7)

As we expected, during the wave-processing the in-

formation contained in wave trains grew significantly
(Fig. 6C). The mean growth was about 75% in exper-
iments with identical trains with spatial period varying
from 30 to 100 neurons. High variability of the informa-
tion increment (std ≈ 55) indicates strong dependence of
the wave-processing on the inter-wave period.
Colliding trains with different periods (Fig. 6B.2) we

observed different entropy increments. The train #1, the
spatial period of which was kept constant, got 100%mean
increment (std ≈ 20), while the train #2, the period of
which was changed in the range [30, 100] neurons, re-
ceived 75% increase with std ≈ 58. Thus overall char-
acteristics of the wave-processing of the 2nd train were
similar to the case of identical trains (Fig. 6C). Surpris-
ing relatively low variability of the train #1 (std ≈ 20)
suggests that the informational outcome of the wave-
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processing of a train depends strongly on its own period
but only slightly on the period of the other colliding train.
Thus the chain can process information in different spa-
tiotemporal domains, effectively reducing the number of
“redundant” waves in one train, while keeping practically
constant the informative structure of the other train.
Finally we spanned periods of both colliding trains in

the range from 30 to 100 neurons, while keeping 10 waves
in each train. As we observed before different number of
waves survived after collision. Depending on the propor-
tion of survived waves, denoted by n = #input

#output
, we clas-

sified four functionally different types of wave-processing
(Fig. 6D):

• Transparent propagation. (n = 100%, all waves
propagate to the output)

• Soft processing. (50% < n < 100%, most waves
propagate to the output)

• Hard processing. (10% < n ≤ 50%, some waves
propagate to the output)

• Dark collision. (n ≤ 10%, few waves propagate to
the output)

For colliding trains with large periods there is room
for symmetric wave crossing and no annihilation occurs.
Then the output trains are identical to the input ones,
i.e. trains transparently cross each other receiving global
phase shift (Fig. 6D, red area: transparent propaga-
tion). For shorter spatial periods some asymmetric wave
crossings appear, which decreases the number of waves
propagating to the output (Fig. 6D, yellow area: soft
processing). In soft processing at least one train con-
serves most of the input waves. For intermediate periods
of both input trains the wave-processing, denominated
as hard processing (Fig. 6D, green area), leads to annihi-
lation of the majority of input waves. Finally for really
short periods (Fig. 6D, blue area: dark collision) an-
nihilation dominates the wave-processing and only few
(usually only the first) waves propagate to the output.
Transparent propagation does not alter the complexity

measure (6) and hence δ = 0. Soft and hard processing
regimes increase significantly the informational content
at the output, i.e. δ is high, whereas dark collision leads
again to δ ≈ 0. Thus we have a kind of band-pass filter-
ing of periodic waves, but instead of simple reduction of
the train period we have changes in the train complexity.
For intermediate spatial periods the information is max-
imal and then decreases for long and short periods. Such
complexity resonance is reminiscent of the rate-temporal
coding problem (see e.g. [34]). Indeed, our neuronal
structure can “ignore” stimuli of too high or too low fre-
quencies, while selectively process those in the “natural”
frequency range. The processed stimuli are compressed
and get higher train complexity at the output.

Context dependent information processing

A remarkable quality of evolved living beings is their
ability to interpret information according to circum-
stances. Response of an organism to the same stimulus
can depend on, for example, its internal state or exter-
nal situation. Then the context acts like a framework
for such high-level functions as learning, memory, under-
standing, etc. [6, 35]. The proposed concept of wave-
processing of information also includes contextualization
as one of its central features.
To illustrate how contextualization of raw long-scale

information can be implemented in neuronal structure,
we used again the two-inputs paradigm (Fig. 7A). Left
end of the neuronal chain has been designated as an infor-
mative input, i.e. it receives information or stimulus to
be processed by the chain. The purpose of the right end
is dual. It is used: i) as an input for contextual trains
and ii) for readout of the computation results. While
the informative train can have rather complex aperiodic
structure and consequently high entropy, the contextual
train may be quit simple. In all experiments we employed
the same informative train shown in Fig. 7A (raw infor-
mation), whereas for setting different contexts we used
periodic wave trains with different number of waves and
inter-wave periods (Fig. 7B, left trains).
In general, interaction of the informative train with dif-

ferent contextual trains leads to different output trains
(Fig. 7B, red trains). The output trains convey infor-
mation coded in the raw stimulus but modulated by the
context. Thus the output message is a contextualized
variant of the input information. Although different con-
texts usually yield different outputs, we notice that the
same output may also occur (Fig. 7B, black trains). Such
simultaneous divergence/convergence of the contextual
information processing is also known in the Nature. In-
deed, organisms may act differently or identically to the
same stimulus in different circumstances.
In order to illustrate the great potential of the con-

textual wave-processing of information we performed the
following experiments. Using the same input stimulus
with high entropy (Fig. 7A, raw information) we tested
contextual trains of different spatial length with three
different spatial periods: 30, 65, and 100 neurons. To
quantify changes in the output wave train we employed
two measures: i) the spatial length (related to compres-
sion) and ii) the relative entropy (related to complexity).
Figure 7C summarizes our results.
We found that the length of the output train changes

practically linearly with increase of the length of the
contextual train. The slope of the least-squares linear
regression strongly depends on the period of the con-
textual train. Contextual trains with the shortest spa-
tial period of 30 neurons (Fig. 7C, red triangles) exert
strongest impact on the length of the output (processed)
train, whereas trains with longest spatial period of 100
neurons have little effect on the output train (Fig. 7C,
black squares). To confirm this observation we also eval-
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FIG. 7. Contextual processing of information. A) Sketch of numerical experiments. The wave train injected at the left
input of the neuronal chain conveys raw information (stimulus to be processed, the same for all experiments). The informative
train interacts with a periodic train injected at the right input, which sets the context for the wave-processing. The context
features are the spatial period and length of the contextual train. After trains’ interaction the processed information can be
readout from the right end of the chain. B) Four examples of different contexts (trains with 3 and 9 waves spaced by 30 and
100 neurons) and the corresponding outputs (processed trains). Red trains are different, whereas black train are the same,
which suggests divergence/convergence of the contextualization. C) Influence of the context on the information extracted from
the raw message. Main graph: the length of the output train linearly depends on the length of the contextual train and its
period modulates the sensitivity. Inset: relative entropy of the output has higher variability for contextual train with shorter
periods (horizontal displacements of symbols serve for visualization only).

uated the relative entropy (7). Since the input stimulus
(raw information) has high entropy, in this case the wave-
processing led to entropy decrease (Fig. 7C, inset), i.e.
the wave-processing selects only a part of input informa-
tion. In agreement with previous results, we observed
that the variability of the output information is maxi-
mal for contextual trains with short period (30 neurons)
and minimal for trains with long period (100 neurons).
Thus the neuronal chain offers effective mechanism for
contextualization of the input information. We can eas-
ily control characteristics of the processing by changing
the length of the contextual wave-train and tune the sen-
sitivity to the context by changing its period.

DISCUSSION

Questions “How information is represented in the
brain?” and “What are the principles of its processing?”
are the most challenging in contemporary Neuroscience.
It is now well accepted that different brain nuclei use
different strategies for information handling. At the ini-
tial processing levels, primary brain nuclei codify sen-
sory information in the form of spike trains. At this
stage variants of the rate and time coding schemes are

largely employed (see e.g. [34, 36, 37] and references
therein). However, at upper levels the situation becomes
much more complicated. Highly evolved nuclei involve
distributed parallel processing of multimodal and mul-
tiscale information. Then the synchronization concept
standing on correlated firing of multiple spatially dis-
tant neurons (see e.g. [3]) has been widely spread as
a paradigm for computational and cognitive tasks. Al-
though this hypothesis received strong experimental and
theoretical support, not all experimental facts can be eas-
ily fitted in the paradigm.
It seems that besides synergetic cooperation of neu-

rons in time domain, e.g. through synchronization of
spikes in different time windows, the brain may also em-
ploy information coding and processing in spatial dimen-
sion. In this work we proposed and theoretically illus-
trated a novel concept of significantly spatiotemporal
representation and processing of long-scale information
in laminar neuronal structures. We argued that relevant
long-scale information may be hidden in spatiotemporal
waves, abundant in different brain structures, and then
nonlinear interaction of such waves yields efficient infor-
mation processing, which we called wave-processing. We
note that the discussed wave-processing cannot be re-
duced to the synchronization paradigm since it occurs in
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two dimensions: space and time, i.e. the result of com-
putation depends significantly on the spatial distribution
of information.
To implement wave-processing in a mathematical

model we proposed a mechanism that relays on local sin-
gle neuron dynamics. We incorporated into the classi-
cal FitzHugh-Nagumo neuron an additional membrane
current accounting for the dynamics of voltage gated
high threshold ionic channels. Then a chain of such
neurons acquires new emergent properties. Namely, we
have shown that nonlinear self-sustained waves can ex-
hibit a variety of functionally different regimes of inter-
actions from complete or partial annihilation to trans-
parent crossing. We provided a rigorous description of
the bifurcations in the phase space of the correspond-
ing dynamical system leading to different collision sce-
narios. We have shown that multistability of the wave
interaction, as basic computational requisite at the net-
work level, is governed by a special nucleating solution of
a saddle type with two generic routs leading to different
scenarios of wave interaction. Thus besides symmetric
transparent wave crossing the neuronal chain simultane-
ously admits asymmetric wave interaction, an asset for
wave-processing. This regime of wave interaction occurs
for intermediate (biologically plausible) values of the cou-
pling strength between neurons and the amount of the
additional membrane current.
We have shown that neuronal chains can exhibit non-

trivial computational abilities mimicking different physi-
ological processes in the brain. In particular we described
the phenomenon of complexity resonance and classified
four available types of processing of wave information:
Transparent propagation, Soft and Hard processing, and
Dark collision. Using these “computational tools” a lami-
nar neuronal structure can “ignore” stimuli of too high or
too low frequencies (or spatial scales), while selectively
process those in the “natural” frequency range. Input
stimuli are compressed and receive higher complexity at
the output thus effectively codifying raw information.
We have also shown that the concept of wave-

processing naturally offers an effective mechanism for

contextual computations, i.e for interpretation of raw
information according to circumstances or context that
acts like a framework for high-level functions. We il-
lustrated contextualization of raw long-scale information
using a complex stimulus as input information and pe-
riodic wave trains modeling different contexts. We have
shown that the content of the output wave train linearly
depends on the length of the contextual train and the
sensitivity to the context is controlled by the context fre-
quency. As it happens in the Nature contextualization
of information obeys divergence/convergence properties.
The neuronal chain can process stimulus differently or
identically in different circumstances.
Thus neuronal chains can work as computational units

performing different operations over spatiotemporal in-
formation. Both the biophysical basis of the model and
its revealed computational features make it suitable for
functional description of global and sparse information
processing in real neural networks. We expect that the
concept of wave-processing could be involved in such
high-level brain functions as path-planning and decision
making. Indeed, to behave efficiently and actively in
complex environments, evolved organisms create in the
brain a model of the external world. Then this model is
used to perform mental “computations” and test in par-
allel different decision alternatives (see e.g. [6] and ref-
erences therein). To perform this task the brain should
be able to map 4-dimensional space-time structure of the
external world into the internal neuronal space. Then
it seems reasonable to hypothesize that laminar brain
structures (like e.g. cerebral cortex) may naturally serve
as a container for the information mapping, while neu-
ral waves may perform parallel computations over such
space-time information.
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