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Navigation in Time-Evolving Environments Based
on Compact Internal Representation: Experimental
Model

José Antonio Villacorta-Atienza and Valeri A. Makarov

Abstract—Near-range navigation in time-evolving environ- abilities allowing to cope with spatiotemporal informatio
ments requires anticipation of the possible changes inthexternal ~ Generalizing the static approach, one could generate a se-
world and appropriate adaptation of the agent's behavior. The 4 ,ance of static IRs made for each time instant like frames in

recently introduced concept of Compact Internal Represerdtion . . . )
(CIR) efficiently solves both problems simultaneously. CIR & MOVie. This, however, has a number of internal pitfallsrrfr

offer static maps for description of essentially time-evaling the obviousincrease (virtually infinite) of the memory ceipa
situations. Here we discuss implementation of the concepnia required for description of the situation, to the ambiguous

neural network that enables protocognitive navigation in dfferent  dynamic treatment of essentially static information. Teofee
dynamic situations observed in the external world. Then we this problem a number of different approaches has been

employ this neural network for robot navigation in real time- . ) L
evolving environments. We show how CIRs can be generated, proposed (for review see [12]): self-organizing neuraheks

learned, memorized, and quickly retrieved from the memory br ~ adaptable to dynamic changes in its environment [13], path
fast decision-making and selection of optimal routes to théarget. ~ planning strategies based on changing potential fields, [14]

Experimental results confirm that the CIR-based protocogniive  recurrent neural networks app“ed to manipu|ators []_SH an

network provides the agent with a reliable, fast, and flexibé yig|ogically-inspired neural networks for planning olsa
manner for dealing with dynamic situations. .
avoidance [16], among others.

I. INTRODUCTION R iy § ficient d - ; lex d )
ROTOCOGNITION brings together the primary cognitive . ecently, Tof an eflicien’ description of compiex dynamic
abilities required for an intelligent motor interactionti Situations we introduced the so-called concept of Compact

. qul Intetly o : : lpternal Representation (CIR) [17], [18]. The idea behing& C
the external world [1]. Even simplest animals can exhib)

o . L . .7 77is based on the modeling of the future and extracting, in a
surprisingly efficient behaviors in complex time-evolviegvi- : - )
. . . special way, of events critical for the agent (e.g. poténtia
ronments (see e.g. [2], [3]). There exists growing expenitale . : . .
. o . collisions with obstacles), which are then mapped into a
evidence that such fascinating abilities are based onteffec . ' . . Lo
) static pattern. Thus essentially time-evolving situai®oom-
Internal Representation (IR) of the external world [4]-[Vhe

IR makes possible mental simulations. qoal plannina. rt Stipacted into a static structure, which provides the inforomat
P : - goal p 9.ngs necessary to reach the goal. This process takes place in
of alternative behaviors and, as a consequence, an ietetlig

decision-making [8]. However the mechanisms behind the ItHe agents “mind” and follows tWO. stages |mpIe_mented n
oupled neural networks. The Trajectory Modeling Neural

a.ree bir.ilé L[Jg]d(?;-sot]ood both from theoretical and experlmler"Eletwork (TMNN) predicts the trajectories of the objects in
viewpol ’ ) dtr_1e agent's environment. These trajectories are used by the

Perception of the qr_wwonment '”_‘p"es concurrence of Causal Neural Network (CNN), which simulates all possible
verse sensory modalities that continuously provide corple

information about the external world, which must be pr engem’S movements according to the predicted evolutiohef t
' PIOPeTsituation and generates a static mental map (CIR) of cofisi

reduced and structured to create useful IR. IR of statiasitu . . .
. w R with obstacles and targets. By using this map the agent can
tions can be thought about as an abstract “copy” of the eatern . 2 .
. ; : . . successfully avoid obstacles in its environment and reheh t
world built from the sensory information obtained at anydim target
instant. For the purpose of navigation an agent can juseproj get
near-range static objects (obstacles and targets) intorsdame
map and then plan a route to a target. This approach, forn this work we discuss implementation of a protocognitive
example, has been implemented in a neural network witletwork that permits generation, learning, and fast nedtief
reaction-diffusion dynamics [11]. Then the potential fiel€IRs. We also extend the concept by including mobile targets
established in the network under sensory drive is the IR ®hen we present the application of this neural network to
the given situation. robot navigation in real time-evolving environments. Wewh
IR of dynamic situations, i.e. when the environment evolvekat CIRs can be learned and memorized for quick decision-
in time (e.g. objects move in the arena), demands highel lemeaking and selection of optimal routes. Thus we show that
, _ _ the CIR-based protocognitive network provides the agetit wi
J.A. Villacorta-Atienza and V.A. Makarov are with the Dejpaent of . . . . .
Applied Mathematics, Complutense University of Madrid,. Momplutense a. re“"f‘ble* fast, and flexible manner for deallng with dyrram'
s/n, 28040, Madrid, Spain (http://www.mat.ucm-esmakarov/). situations.



age? '\)\ y the state of the environment in the future. In the following
b sections we shall show how the CIR concept can be used for
this purpose.
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Fig. 1: Experimental setup for robot navigation experiments. A) 1

Roving robot equipped with WiFi interface aside of € toin. B)
150 x 150 cm arena with four robots simulating the agent (arrow
shape), the obstacles (circular shapes), and the targeejstC) Top
view of a static situation (captured by a zenithal camerap @gent
has a goal to reach the target. Six consecutive frames ngathim
agent’s positions are shown superimposed. D) Dynamicti&ituaA
collision occurs if the agent makes the decision from théaity
perceived visual information as in the static case (dots amows o
mark positions and velocities, respectively). 95 %5 99.9
learning quality (%)

98

96

94

92

prediction performance (%)

Fig. 2: Prediction of trajectories of moving objects. A) Sketch of a
Il. EXPERIMENTAL SETUP recurrent neural network used for trajectory modeling. Bpatning

. performance. Blue, red, and green triangles mark the trgiguality
In order to study the problem of protocognitive near-randgith ¢ — 959%, 99.5%, and 99.9%. Inset shows the trajectories used

navigation we built a setup (Figs. 1A and 1B) with rovindor training the TMNN. C) Prediction of an experimental &aiory
robots simulating an agent, one target, and two moving ebsg4 different levels of the learning quality, correspondiogtriangles
cles in a white arenal 60 x 150 cm). The programmable robotsi" (B). D) Mean and standard deviation of the performancehef t
(Moway, Minirobots S.L., Fig. 1A) were controlled through q-/ra'\ﬂlj\‘elz (')'; t%f?g:ﬂ?nérzjggﬁ?;es of 100 objects for threefefent
WiFi interface with customary written C# code managed by '
Matlab (R2010b 64-bit, The MathWorks, Inc.) running on a : . - . ,
standard PC. In order to distinguish objects in the arerzkbl Genergtlon of a CIR requires prediction (in the_agen_ts
cardboard figures were stuck over each robot (Fig. 1B): arro ental t'meT? of th? trajectories of near-range objects n
shaped over the agent, circular shapes over the obstad] g arena. This ta;k is performed by the Trajectory. Modeling
and a strip over the target. The visual information in th%Ieural NetworI.<. Figure 2A shows the implementation of t_he
arena were captured by a zenithal camera (Logitech QuickCgMNN' lt_ consists of tr;ree recurrently coupled n;eurons with
Communicate STX). For object recognition we used the ima éternal '”Wtf(’“) €R and_ OUtp.UtSE(k +1) €RY, \_/vhere
analysis routines from the Matlab Image Processing Toolbos denotes discrete mental fume (i= kh, Wh_eref_z is the
The snapshots of the arena were taken at 50 Hz rate. Ther'Si¢ step) [19]. The dynamics of the network is given by
black objects were identified in each frame. The objects were €(k), it |E(k)| > 6
differentiated by the size of black figures stuck over theotsp z(k+1)= { : :

3 f ) Wax(k), otherwise
and the displacement of centroids were used for tracking and
for determining positions, velocities, and acceleratiohthe Whered > 0 is the tolerance constant aftl € Ms.3(R) is
objects. the coupling matrix.

Figures 1C and 1D show examples of static and dynamic':or the sake of simplicity we assume that trajectories of
situations, respectively. Dots with arrows representiahit all objects in the environment can be described by quadratic
positions and velocities of the objects in the arena: redtfer functions of time. In order to train the TMNN to recognize
agent, blue for the obstacles, and green for the target.dn §Hch routes we generated a set of 50 random trajectories (Fig
static environment (Fig. 1C) the visual information obeadrat 2B, inset) and presented them to the network as external inpu
the initial moment determines the agent's motor decisidre Tin the form (k) = (x(k), v(k),a(k))", i.e. the first three
agent can move along a straight trajectory and easily réweeh gynamic moments of the trajectory. Then the interneuronal
target. In a similar but dynamic situation both obstaclessr couplings are updated according to
the agent’s path (Fig. 1D). The same agent’s behavior would
lead to a collision. Thus this situation requires from therag Wk+1)= W(k)(I—etk—1)ET(k-1)) 5
more sophisticated path planning based on the knowledge of +el(k)ET (k- 1) 2)

(1)



wheree > 0 is the learning rate. Simultaneously in the CNN a circular wavefront is initiated
Under proper learning rate < &*, W converges to a at the agent’s location (Fig. 3B). Propagation of the waweffr

theoretical matrixiv,, [19]. The distance in the lattice mentally simulates all possible positionsttod
agent at each moment in the virtual future. Figures 3B-3G
d(k) = 100 (1 _ M) (3) show sequential snapshots of the CNN state. Fer 7; the
[Wosl first contact of the wavefront and one of the (moving) obstscl

is used to quantify the learning performance (Fig. 2B). kutje occurs (Fig. 3B). This contact marks the place where the
under training the interneuronal couplings quickly comest agent would collide against the obstacle if the correspundi
(in less than 50 cycles) to the theoretically predicted eslu trajectory were performed in the arena. The cells of the CNN
For further analysis we selected the coupling matridgég, {(:*,j*)} corresponding to those locations are frozen, i.e.
Wao.5, and Wyg o corresponding to different learning qualityg:-,;« (1) = 0 for 7 > ;. They constitute an effective obstacle,
to d = 95%, 99.5%, and99.9%, respectively. i.e. a static structure containing the critical spatiotenap

Once the training process is deemed finished, the TMNRformation concerning potential collisions between tigera
can be used to predict the object’s trajectories in the are@@ad the obstacle (Fig. 3D, area filled in black). We note that
The first three instants of the object's movement are cagturi@ general an effective obstacle has a shape different from
and introduced in the TMNN as an internal input consisting ¢fie shape of the corresponding real obstacle. Therefore the
initial position, velocity, and acceleration of the obje€hen problem of avoidance of moving obstacles in the arena is
the TMNN generates the following object’s trajectory. Figu reduced to the avoidance of static effective obstaclesteniea
2C shows a top-view of a robot in the arena following th# the mental map.
black curve and trajectories produced by the TMNN for three In the same fashion interaction between the wavefront and
different values of the learning quality. the (mobile and immobile) targets will produce effective ta

In order to quantify the TMNN prediction performanceyets. Figures 3E-3G show how cells, where the wavefront and
we used the Fréchet distande(c,c*) [22] measuring the the virtual target collide, are frozen by settipg ;- (1) = 1
similarity between the original robot trajectory and the forr > 74 in the network (5) and form an effective target (Fig.
trajectory predicted by the TMNN*. Then the prediction 3G, area filled in red). We note that in general one target can

performance is create several effective targets, which correspond termhifft
strategies for target catching.
P(c,c*) =100 (1 — dF(c, c)/l(c)) () In the region behind the wavefront passive diffusion (con-

wherel(c) denotes the length of the curveFigure 2D shows trolled by the Heaviside term in (5)) creates a static paaént
the statistics of the prediction performance for differemiues fi€ld including the agent position and the effective obstacl
of the learning quality obtained for a sét;}1% of random and targets. Thls_potentlal fleld_, le. a patte(rﬁj}, is the _
trajectories. The learning quality achieved in about 5hiing CIR for the considered dynamic situation (Fig. 3H). This

cycles is enough to obtain practically 100% fidelity in thdield can be used to draw possible trajectories from theainiti
prediction of trajectories by the TMNN. agent’s position to the effective targets by the gradiestded

method. Following such trajectories in the arena ensures
IV. CONCEPT OFCOMPACT INTERNAL REPRESENTATION ~ avoiding obstacles and catching the target.
Let us briefly recall how a CIR of a dynamic situation can

be created and then used for navigation [17], [18]. CIR ig" © - u ¢ b
generated by a reaction-diffusion process taken placeeén th o
CNN, a60 x 60 square lattice, described by: O <

/< 50 cm T1 20 neur TZ ‘c3

Fig = qij (H (ron = i) [f(rig) = vij] + dArij = 7ijpij) e T
Vij = (Tij - 7'Uij - 2)/25 , O ,

®) f‘
where dots represent derivatives in respect to the mental ti
7, A is the discrete Laplaciang is the diffusion constant,
f(r) = (=r® + 4% — 2r — 2)/7, and H is the Heaviside T
function. Functionsg;;(7) and p;;(7) (equal to one and Fig. 3: Generation of Compact Internal Representation of a dynamic

zero, respectively, at the beginning of the simulation) W@ situation. A) Initial configuration of the arena. The ageatget, and
described below obstacles are shown in blue, red, and black, respectivetywa mark

. L . . their velocities. B)-G) S tial hots of the sta@MN (th
Let us now consider a dynamic situation similar to th eir velocities. B)-G) Sequential snapshots of the s (the

A X h : attern {r;; (7)}$%_, is plotted) showing the creation of effective
shown in Fig. 1D. The agent (Fig. 3A, blue circle) shoulghrget and obstacles (red and black filled areas, resplgtivértual
move with constant velocity and reach the mobile target (redsitions of the target and obstacles are shown by contaapesh
area) avoiding the moving obstacles (black areas). ThialinitH) CIR of the considered dynamical situation. The shortegettory
conditions, i.e. objects’ positions, velocities, and deions, t%the egfe%tl've target (and thus to the target moving in tiena) is
are supplied to the TMNN that simulates the obstacles ang " by blue curve.

target’s trajectories (see Sect. ).

Ts Te




V. PROTOCOGNITIVENAVIGATION BASED ON CIR Zenithal camera captures 1 s initial interval of the evolati

As discussed in the previous section, CIR collapses the tifiethe robots representing obstacles and target. Thesal init
dimension of a dynamic situation by mapping only the criticgonditions (sensory vector) are used to mentally simulage t
events (virtual collisions and effective targets) into atist target's and obstacles’ trajectories (Sect. Ill). Thismfation
map. Therefore CIR of a dynamic situation is a static pattef§"ves as basis for generating the CIR as described in Sect.
(i.e. a matrix M, ,,(R)), which can be learned, stored in!V @nd illustrated in Fig. 3 forS,.
memory, retrieved, compared, etc. Thus we can easily manag&gures 5D-5F show the CIRs fdf;, 52, and S, respec-
different realistic experiences in a fast and reliable neann tively. Note the different shapes and locations of effetan-

Figure 4 shows how such protocognitive abilities can Rets and _obstacles reflecting distinct dynamical cwpunmia _
implemented in a neural network. Protocognition beginswit! N€ obtained CIRs were used to trace a set of suitable trajec-
perception of the situation in which the agent is involved®ri€s by means of the standard gradient descend methoel. Blu
For this purpose in our experimental setup we used visthways in Figs. 5D and SF represent the shortest trajestor
information from a zenithal perspective of the arena. TH®IVing the corresponding navigation problem for situasio
perceived situation (a vectare R™ consisting of positions, 1 @nd 53, respectively. The CIR in Fig. 5ESg) admits two

velocities, and accelerations of all objects) is then siepipo  (rajectories of about the same length. The difference batwe
“conscious” and “subconscious” pathways. them is the distinct collision risk to reach the moving targe

The output of both pathways is the CIR (i.e. anx n Nevertheless both trajectories in men_tal maps §h_own in. F_igs
matrix), which contains the required information to solae t 5D-5F lead the agent to the target with no collisions against
navigation problem. The standard gradient descent mettjestacles.
provides a trajectory that, transformed in motor ordersnits A B c
the agent to reach the target safely (Fig. 4, red curve i Q — ® q — ® v —&®
the arena). The conscious pathway directly produces CIR fq
a given sensory vectos. This CIR is also fed back into
the subconscious pathway where a recurrent neural netwo v/
establishes associations betweeand the CIR. Then if the ' ¢ \/ 4 R
agent faces one of the learned experiences it could recov..
the corresponding CIR in a fast and reliable way. In generdp
subconscious pathway works much faster than the conscio
one but requires previous learning. Thus the protocognitiv
agent requires training for optimal operations in complex
environments.

/|

conscious pathway

Trajectory Causal Neural Fig. 5: Navigation based on CIR in three different time-evolving
Sensory systom RNN Network situations S1, S2, and S3. A)-C) Initial configurations for each
dynamic situation. Arrows indicate the initial velocitiasd directions
1 e of the objects in the arena. D)-F) The corresponding CIRatetk
|| subconscious pathway sl - by thg “conscious” pathway. Blue curves show trajectorieshe
7 CIR-memory RNN l execution effective target.
L4 : qQ
oy 2 9 9 % -
H g . L 3 = y 4
ol I ) B. Subconscious Pathway
L4 g . .
7y \ = When the agent faces a familiar, i.e. previously learned,

situation the visual informations, is processed by the sub-
Fig. 4: Block-scheme of CIR-based protocognitive network.  conscious pathway (Fig. 4, blue box). The neural network
implementing the subconscious pathway retrieves from the
associative memory the CIR corresponding to the sensory
information. The general RNN introduced in Sect. Il (Fig\)2
can also learn static patterns [19]-[21]. Since CIRs aftier a
Be static patterns linked to specific initial sensory infation
és € R™) the same RNN but with higher number of neurons
an implement a suitable associative memory.

. o We shall call an experience the union of the initial sensory
In order to illustrate the capability of CIR to represent . . on about a dynamic situation € R™ and the

dynamic S|_tc;Jat|c()jnsFt_hreesilf;eéen_}_[t_:me-evol\_/mg envlr)n?[ln'n_ts hrespective CIR. We ordered each 2CIR, i.e. a static 2D pattern
were considered (Figs. 5A-5C). The target is immobile in the.. y» into a 1D vectorc € R™ . Then each experience

i ituati in situati i ij i j=1"
§|mplest S|tua_t|orS_1, whereas in 5|tuat|_0n52_ andSs it moves is a composite vector
in different directions. In all three situations two obdtsc )

cross the agent’s path to the target. a=(c,s)T eR"T™

A. Conscious Pathway

The perception of a new situation forces the agent
understand it by “consciously” creating the corresponditig
(Fig. 4, red box). This process, detailed in Sect. IV, hasibe
implemented for robot navigation.



simultaneously describing the situation and the corredipon insufficient for navigation, no trajectory to the target dam
CIR. Finally the associative memory is a recurrent neurahced. CIRs retrieved after 6 training cycles reveal mipsu
network shown in Fig. 2A with(n? + m) neurons. This of the original CIRs and also cannot be used for tracing
network first goes through the learning and then can be usmmstrect trajectories to the target. Thus at the beginning of
for retrieval of previously learned CIRs. the training the agent tends to mess different experienegs a

1) Learning Phaselearning phase is implemented thougtas a consequence it cannot successfully solve the nawigatio
sequential presentations to the RNN of a sep @xperiences problem. Keeping training, the quality of CIRs is refined
{a;}!_,. At each learning stepy the network is exposed to (Fig. 6, N, = 70 cycles) and after 220 training cycles the
one of the composite vectors and the coupling matrix is CIRs retrieved from the memory are practically identical to
updated according to the original CIRs (compare Fig. 6, bottom row vs Figs. 5D-

5F). Thus the memorization of different experiences cayeer
quite rapidly and the subconscious pathway can finally pl@vi

Wk +1) = W(k) (I - Eg(k)gT(k)) +e€(k)Eh (k) (6) real benefit. Indeed, the “conscious” processing of a dynami
wheres > 0 is again the learning rate ag¢k) € {a;}?_, isan situation in a standard PC lasts around 250 s, while the
element from the set of experiences. We note that although gubconscious pathway provides the same CIR in less than
memory RNN and TMNN have the same structure the learnidgd S. These numbers can be significantly reduced by using
rule (6) differs from (2). Earlier we have shown that thigarallel multicore calculations or hardware implemeotati
learning process converges [19]. Theoretically the astigei [23], however their ratio (50 folds) will keep constant.
memory can store up te? + m experiences.

2) Retrieval Phase:Once the learning phase has been retriev. S, retriev. S, retriev. S,
finished the RNN can be used to associate new sensory .
information s with one of the previously learned experiences r )
{a;} to extract the corresponding CIR This is achieved by ‘o~ T o=
presenting to the RNN (and maintaining during the retrieval', : - ;
process) the sensory part of one of the learned experiencgs,
say(-th. Then the network activation is given by

(k) =(0,0,...,0,s)" k>0
~——
n2
Consequently the last neurons in the RNN have no dynam- ?Ii

iCS: 211, . p24m(k) = s, k > 0, while the others follow z
the linear map:

ylk+1)=W*y(k) + B,

whereW™ = (w;*j)?j.:l is a part of the coupling matrix after

! o
learning andB = E;’iﬂ’jﬂ wy;si;; (heres;; means thej-th 7
element of thd-th vector). It has been proven that following ="
this scheme the memory completes the missing pad @ihd

hence retrieves the stored CIR [18].

C. Numerical Simulations of the Associative Learning

o

Success of the navigation in dynamic situations depends 0?1
the velocity of retrieval and quality of CIRs, and hence oa th =
performance of the associative memory.

To simulate the process of learning and retrieval we used the
three dynamic situationS;, Sz, and.Ss shown in Figs. 5A-5C Fig. 6: Associative learning of experiences. Each experiencethiee
and the corresponding CIRs (Figs. 5D-5F) generated by thensory informatiors; » 3 and the CIRs:; 2,3 corresponding to the
conscious pathway. Then we composed the experience vectyramic situations 2 5 (Fig. 5), has been learned and then retrieved
a1, as, andas and presented them several times in arbitrirgOlrn the memory. Rows correspond to retrieval after. = 2, 6, 70
order to the agent for learning, i.e. for making association nd 220 learning cycles.
in the RNN modeling the memory (Fig. 4). After learning
we examined how the agent solves the navigation problem
by presenting each one of the three dynamic situations aBd
studying the retrieved CIRs. '

Figure 6 illustrates the results of CIR retrieval for each Let us now present experimental results for the situations
dynamic situation (columns) after 2, 6, 70, and 220 trainirghown in Figs. 5A-5C. Once the sensory information of a spe-
cycles (rows). Having passed only two learning cycles ufic situation has been processed and the corresponding CIR

Experimental Verification of Protocognitive Navigation



has been obtained (either by the conscious or by the subcon2) Subconscious PathwayThe subconscious processing

scious pathway), the obtained trajectories are transfdime requires a proper learning of the experiences. Figure 8A

motor commands for the agent. Then all robots simulating tlsbows the CIR for the situatiofi; retrieved from the memory

agent, the target, and obstacles (Fig. 1B) are simultahegouafter 6 training cycles. Above we showed (Fig. 6) that the

activated. For each situation the zenithal camera capthees CIR obtained at earlier stages of the learning provides fake

trajectory executed by the agent to compare it with the pagyhweffective obstacles and targets. Indeed two trajectob¢asioed

obtained from the CIR (Figs. 5D-5F). from this CIR (Fig. 8A, blue lines) lead the agent to such a
1) Conscious PathwayFigures 7A-7C show navigation in fictitious target, i.e. the agent fails to catch the targéufe

the dynamic situationss;, S, and Ss, respectively. In all 8B shows experimental trajectories performed by the rabot i

situations the agent successfully caught the target andedo these conditions. In both cases the robot avoids the obstacl

obstaclek The reliability of this experimental procedure ispresented in the arena, however, it does not reach the target

quantified by comparing theoreticfl’;}1_, and experimental staying in the right bottom corner. In accordance with our

{C;}4_, trajectories using the measure (4). We obtainatmerical results, at advanced learning stages (i.e. aG6r

(P(T;, C;)) = 2.6% with standard deviation 0.18%. training cycles) the robot retrieves from the memory high
Figures 7D shows statistical data for twelve experimentguality CIR and hence follows correct trajectory leading to

We quantified the minimal experimental distance from thie target (Fig. 8C).

agent to the obstacles related to the agent’s size. Thisureas

describes the safeness of the agent's movements. In averg B ®

the agent passes no closer than 1.5 agent’s size to the lelsstac \ .

which is sufficient for most applications. The achievemen k ,‘

of the goal is quantified by the minimum distance betweer 2

this case is equal to zero by construction. The most impbrtat R \

source of experimental variability in this measure is therer _ o . .

in robots’ initial positions, orientations, and veloctitn each F19- 8: Robot navigation using subconscious pathway. A) CIR

S . . corresponding to the situatiofi, (Fig. 5) retrieved from memory

navigation experiment. I\!E.zverthel_ess. we observe high Ie\é er 6 training cycles. The obtained trajectories (blueves) go to

of success of protocognitive navigation. The average agehd fake target, i.e. the agent does not catch the target.cRed

proximity to the target is below 30% of the robot'’s size, whicshows the correct trajectory corresponding to a CIR retdesfter

the agent and the target. Note that the theoretical distamce

N

is again acceptable for most of applications. 200 training cycles. B) Two trajectories (red curves) perfed by the
robot to the fake target after 6 training cycles. C) The rdbajectory
b B catching the target after 200 training cycles.
‘ ﬁ
® ,
¢ N VI. DISCUSSION

Near-range navigation in time-evolving environments re-
quires anticipation of possible changes in the externaldvor
N and appropriate adaptation of the agent's behavior. In this
paper we theoretically developed and experimentally \egtifi
D the concept of Compact Internal Representation that offers
efficient solution to the navigation problem. We have shown
that CIR-based neural network consisting of “consciousd an
“subconscious” pathways provides the agent with protocog-
nitive abilities and allows reliable and flexible navigatio
realistic time-evolving environments.

CIRs are static mental maps containing critical spatiotem-
T poral information about both static and dynamic environteen
Sl Avoiding effective obstacles and catching effective tésga
Fig. 7: Robot navigation in dynamic situations based on CIRsuch a map ensure avoidance of real obstacles and reaching
A)-C) Superimposed sequence of snapshots (last frame wnshaeal targets in the arena. Thus CIRs provides simple (btatic
darker) for situations shown in Fig. 5. Blue curves show ta#cal fovible solutions for the navigation problem in time-eviaty

trajectories and red curves mark the robot pathways. D)sHtat . .
measures of the navigation performance. Left bars represeans environments. We have extended the earlier proposed CIR

and standard deviations for the minimal distance betweeragent concept by including mobile targets.
and the obstacles (trajectory safeness). Right bars gamesto the When the agent is involved in a situation never experienced

final distance to the target (goal achievement). The distamgiven pefore the conscious pathway made of two coupled Trajectory
in relative units in respect to the agent's size. Modeling and Causal Neural Networks generates the CIR of
the situation. We have shown that TMNN can quickly learn

lvideos with robot experiments and numerical simulations foa found at (inlless .than 50 training.cydes in _Our experiments) diffiere
http://www.mat.ucm.es/vmakarov/research.php. trajectories and then reliably predict them. In turn the CNN
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indeed guarantees that the obtained CIRs allow the agenfity G. K. Schmidt and K. Azarm, "Mobile robot navigation indynamic

avoid obstacles and catch the target. In experiments with a world using an unsteady diffusion equation strategytpceedings of
. . International Conference on Intelligent Robots and SystéBEEE/RS,)
robot platform we obtained the mean shortest distance t0 g45.647 1992

the obstacles and to the target about 150% and 30% of th# V. Kunchev, L. Jain, V. Ivancevic, and A. Finn, "Path Rféng and
agent’s size, respectively. These values are acceptatrbdst Obstac_le Avoidance for Autonomous Mobile Robots: A Revielécture
licati Notes in Computer Scienc®ol. 4252/2006, 537-544, 2006.
applica IOI‘.]S. ) [13] R. Aradjo, "Prune-Able Fuzzy ART Neural Architectufer Robot Map
We notice that our experimental setup reproduces the Learning and Navigation in Dynamic Environment#ZEE Transactions

essence of prototypic situations observed in the natuietas on Neural NetworksVol. 17(S), 1235-1249, 2006.

d id d h ival i . lJ|].4] F. Arambula and M. A. Padilla, "Autonomous Robot Natiga using
capture preys and avoid predators. Then survival in quickly” agaptive Potential Fields"Mathematical and Computer Modellinyol.

changing external world critically depends on fast decisio 40, 1141-1156, 2005.

making. To fulfill this requirement we included the subcorfdd] U. Steinkihler and H. Cruse, "A holistic model for ariémal represen-
tation to control the movement of a manipulator with redumiddegrees

SCiOUS_ pathwa}’ t_hat allows learning eXp.erienC_e_S and gforin freedom”, Biological CyberneticsVol. 79, 457-466, 1998.
them in associative memory. The latter is facilitated by th@6] S. X. Yang and M. Q.-H. Meng, "Real-Time Collision-Freédotion

fact that CIRs are static 2D patterns, i.e. constant matrice Planning of a Mobile Robot Using a Neural Dynamics-Basedrapgh”,
. IEEE Transactions on Neural Networkgol 14(6), 1541-1552, 2003.
or vectors. We described a Recurrent Neural Network th[g_lﬂ J. A. Villacorta-Atienza, M. G. Velarde, and V. A. Malax, "Compact

implements the associative memory and we have shown thatinternal representation of dynamic situations: Neuraioek implement-
such memory can effectively store the agent's experiences ing the causality principle”Biological CyberneticsVol. 103, 285-297,

(|'e" sensory information and the CorreSpond'ng CIR)- krﬂS] V. A. Makarov and J. A. Villacorta-Atienza, "Compactt@mnal repre-

experiments about 200 training cycles were necessary to lea sentation as a functional basis for protocognitive exionaof dynamic

three similar but different dynamic situations. Then if the environments”Recurrent Neural Networks for Temporal Data Process-
. . . ing. Ed. InTech. 81102, 2011.

agent faces a previously learned situation, the percepﬁon[lg] V. A. Makarov, Y. Song, M. G. Velarde, D. Hubner, and H.uSe,

the familiar experience triggers the subconscious fastveny "Elements for a general memory structure: properties ofiment neural

of the learned CIR. We have shown that a robot supplied networks used to form situation model8iological CyberneticsVol. 98,

. . . . 371-395, 2008.
with the subconscious pathway can quickly retrieve CIRs a'f*[{‘)] S. Kithn, W. J. Beyn, and H. Crus, "Modelling memory ftinns with

generate trajectories avoiding moving obstacles and negch  recurrent neural networks consisting of input compensatiaits: |. Static

mobile targets. Thus the constructed protocognitive agept Situations’,Biological CyberneticsVol. 96, 455-470, 2007. .
1] S. Kuhn, W. J. Beyn, and H. Crus, "Modelling memory ftinos

with acquired experience, is able to navigate in compleX " recurrent neural networks consisting of input compeios units:
situations adapting itself even to non-predictable charige 1. Dynamic situations” Biological CyberneticsVol. 96, 471-486, 2007.
; [22] T. Eiter and H. Mannila, "Computing discrete Fréchétance”, Tech.
the environment. Report CD-TR 94/64Christian Doppler Laboratory for Expert Systems,
TU Vienna, Austria, 1994.
[23] L. Salas, L. Alba, and J. A. Villacorta-Atienza. "FPGAplementation
of a modified FitzHugh-Nagumo neuron-based causal neurabonie

; ; Fi for compact internal representation of dynamic environtsierProceed-
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