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High-pressure freezing processes are a novel emerging technology in food process-
ing, offering significant improvements to the quality of frozen foods. To be able
to simulate plateau times and thermal history under different conditions, in this
work we present a generalized enthalpy model of the high-pressure shift freezing
process. The model includes the effects of pressure on conservation of enthalpy and
incorporates the freezing point depression of non-dilute food samples. In addition
the significant heat transfer effects of convection in the pressurizing medium are
accounted for by solving the two-dimensional Navier-Stokes equations. We run the
model for several numerical tests where the food sample is agar gel, and find good
agreement with experimental data from the literature.

Keywords: Enthalpy formulation, High-pressure shift freezing, Modelling,
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1. Introduction

(a) Food freezing

Freezing is a widespread food preservation technology, as it ensures high food
quality with long storage duration, and also because it has an extended implemen-
tation area (meat, fish, fruit, vegetables, dairy and egg products, etc.). Despite the
benefits, freezing of foods can also cause undesirable changes in their texture and
organoleptic properties, and its main drawback is the risk of food damage due to
the formation of big ice crystals. Freezing can be defined as the crystallization of
liquid water into its solid form (ice). Nucleation of ice is a stochastic phenomenon.
However, after nucleation, crystallization always initially occurs under a known tem-
perature defined as the initial freezing temperature. Crystal characteristics (size,
location) are dependent on the freezing rate (slow freezing produces large crystals,
whilst rapid freezing produces small ice crystals). The general purpose of food tech-
nologists working on this area has been to develop a freezing process that creates a
homogeneous matrix of small ice crystals (e.g. see Denys et al. 1997). Improvement
of known freezing methods and development of new techniques are important re-
search goals for the food industry at present. With the recent increasing impact of
high-pressure technology on food processing, there has been a lot of research deal-
ing with the potential applications of high-pressure effects on ice-water transitions,
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given that pressure decreases the freezing and melting point of water to a minimum
of −22◦C at 207.5 MPa (Bridgman 1912). Therefore several high-pressure freezing
and thawing processes have been developed (see, e.g., Denys et al. 1997; Otero &
Sanz 2000).

According to the path followed by the process in the phase diagram of water
(Bridgman 1912), three different types of high-pressure freezing processes can be
distinguished in terms of the way in which the phase transition occurs (e.g. see
Fernández et al. 2006): High-Pressure Assisted Freezing (HPAF), High-Pressure
Shift Freezing (HPSF) and High-Pressure Induced Freezing (HPIF). A few studies
on HPIF have been done (see, e.g., Kowalczyk et al. 2004; Urrutia et al. 2004) and
there are numerous papers and reviews dealing with HPAF (see, e.g., Fernández
et al. 2006; Norton et al. 2009; Otero & Sanz 2003) and HPSF (see, e.g., Otero &
Sanz 2000, 2006; Sanz & Otero 2000). It is generally accepted that for the purposes
described above, HPSF processes are the most advantageous (see Fernández et al.
2006). Therefore, in this paper we concentrate only on HPSF processes. In §1 b we
describe the main features of HPSF processes and in §1 c the state-of-the-art is
described. In §2 we present a mathematical model to describe a generic freezing
process, and then couple it with a heat transfer model, to finally give a new model
describing a HPSF process. In §3 we present numerical results using known data
from real experiments. In §4 we outline the final remarks.

(b) Main features of a HPSF process

Figure 1. High-pressure shift freezing processes represented over the phase diagram of
water. Rapid expansion is represented by A-B-C-D-E; (slow expansion is represented by
A-B-C-1-2-E). A-B is compression; B-C is pre-cooling; C-D (or in the case of slow expan-
sion C-1) is pressure release; at D (or at 1 in the case of slow expansion) the sample is
highly supercooled – no latent heat has yet been released; for rapid expansion D-E latent
heat is released and sample temperature increases up to the corresponding freezing point
at atmospheric conditions. In the case of slow expansion 1-2 latent heat is released and
the sample temperature increases up to the corresponding freezing point under pressure,
2-E the remaining pressure is released and the sample temperature stays on the melting
line.

Article submitted to Royal Society



Modelling a High Pressure Shift Freezing process 3

A sample subjected to a HPSF process (figure 1), is cooled under pressure at
less than 0◦C and kept in the non-frozen state according to the corresponding phase
diagram (A-B-C in figure 1). When the desired temperature is reached in the prod-
uct (point C), pressure is released. Two different processes may be distinguished
depending on the pressure release rate: rapid expansion (in seconds) or slow

expansion (in minutes). Phase transition occurs due to the pressure release, that
induces uniform supercooling throughout the whole sample (point D for rapid ex-
pansions, point 1 for slow expansions) due to the isostatic nature of pressure. This
supercooling induces uniform formation of nuclei throughout the sample (regardless
of its shape or size), then latent heat is released, raising the sample temperature to
the corresponding freezing point (point E for rapid expansion, 2 for slow expansion).
Freezing is then completed at constant pressure, usually at atmospheric conditions;
for practical reasons of applicability, expansions are usually made from high to at-
mospheric pressure (i.e. rapid expansion A-B-C-D-E in figure 1) and therefore the
phase transition mainly occurs at atmospheric pressure in this kind of experiment.
As a general rule (but taking into account the phase diagram of water), the higher
the pressure and the lower the temperature before expansion, the more ice nuclei
are formed, and hence the shorter is the phase transition time.

Different authors (see, e.g., Alizadeh et al. 2009; Fernández et al. 2006, 2008;
Otero et al. 2000; Schülter et al. 2004) have proved experimentally that in a HPSF
process ice nucleation occurs homogeneously throughout the whole volume of the
product and not only on the surface, as they have found small granular shape
ice crystals dispersed throughout the resulting sample for several products. When
comparing HPSF to classical freezing processes, important reductions of freezing
times have been reported (see, e.g., Fernández et al. 2006; Otero & Sanz 2006;
Schlüter et al. 2004). Applications of HPSF for food are still under development
and the amount of available data are increasing accordingly. Most of the studies
that are being carried out focus on the advantageous effects that HPSF has on
the texture and structure of various products. Denys et al. (1997) compared the
HPSF process to a conventional (at atmospheric pressure) freezing process, and
concluded that the nucleation is faster and more uniform in the HPSF processes,
producing a homogeneous crystallization and therefore a better product in terms
of texture. Fernández et al. (2006) compared the HPAF and HPSF processes on
gelatin gel samples and concluded that the HPSF was clearly more advantageous:
shorter phase transition times and homogeneous distribution of small ice crystals
throughout the sample. HPSF has been successfully applied in the processing of
fruits, pork, lobster and tofu, among other products.

(c) Modelling of HPSF processes: state-of-the-art and needs

Due to the advantages of this method (mainly, its potential to improve the kinet-
ics of the process and the characteristics of the ice crystals thus formed) compared
to other freezing methods, apart from the published research focused on the impact
of high-pressure on quality aspects of the particular processed food, some modelling
studies considering the temperature evolution during treatment of HPSF processes
have been published to date. This is important in all high-pressure processes, as
pointed out by Otero and Sanz (2003), because some industrial processes have to
occur at a constant temperature or between a minimum-maximum threshold to
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avoid altering some properties of the food (gelification or crystalline state, protein
stability, fat migration, freezing...) or to assure a uniform distribution of the pur-
sued pressure effects (microbial or enzymatic inactivation, uniform nucleation...).
In particular, when studying HPSF processes, since phase changes are driven by
both pressure and temperature, heat transfer effects play a major role in this field.
Therefore the research in this area has been focused on theoretically based heat
transfer models that allow to predict the temperature history within a product
freezing under pressure.

Some notable modelling studies are those of Denys et al. (1997), where the
authors used an explicit two dimensional finite difference scheme to simulate tem-
perature profiles during high-pressure freezing of a food simile (tylose) and got good
agreement with experimental data, but remarked that an improvement needed is
the contribution of convection heat transfer by the high-pressure fluid. Sanz &
Otero (2000) modelled a HPSF process of a finite cylinder using equations based
on the crossed product of infinite slabs and infinite cylinders. The time needed to
complete the precooling and change of phase stages is reproduced satisfactorily by
the model, however there are misalignments in the tempering phase because exper-
imental and theoretical conditions were not the same, due to the thermal gradients.
The authors remark that for this stage a more accurate model (based on finite
elements/differences) would be needed. Kowalczyk & Delgado (2007) performed
dimensional analysis of the governing equations describing high pressure processes
with forced and free convection, giving a general overview of thermo-fluid-dynamical
mechanisms of these kind of processes. Norton et al. (2009) developed a one dimen-
sional finite difference numerical model based on the enthalpy formulation to sim-
ulate high pressure freezing of tylose, agar gel and potatoes. This model by Norton
et al. uses a version of the enthalpy equation derived for constant pressure systems,
adapting it to their system by accounting for pressure effects on the latent heat. In
addition their model of freezing point depression of the food samples relies on the
Schwartzberg equation (Schwartzberg 1976), which was derived for dilute solutions.
At the high ice fractions realized in HPSF systems, the unfrozen gel between ice
crystals is nondilute and a more general model may be required. In this work we
introduce a new enthalpy model by starting from the pressure-dependent conserva-
tion of enthalpy equation and determining the non-dilute freezing point depression
directly from experimental measurements.

2. Building a new model for a HPSF process

We propose a two dimensional axially symmetric mathematical model for a HPSF
process, derived from an enthalpy formulation based on volume fractions depen-
dent on temperature and pressure. This model is valid for solid type foods with a
big and small filling sample vs pressurizing media ratio. Convection effects in the
pressurizing fluid are taken into account when necessary.

In order to simulate a HPSF process, we first present a general heat transfer
model in a high-pressure process, and then we modify it, to take into account the
solidification process, by deriving a model based on the enthalpy formulation at non-
constant pressure. Also, we present the equations we use to calculate the amount of
ice instantaneously produced just after expansion in a HPSF process, the amount
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of ice formed during the rest of the process, and the liquid volume fraction. Finally,
we give the complete models used to simulate a HPSF process.

(a) Modelling heat transfer in a general High-Pressure process

When high-pressure is applied in food technology, it is necessary to take into
account the thermal effects that are produced by variations of temperature due
to the compression/expansion that takes place in the food sample and the pres-
surizing medium. The pressure evolution, P (t), is known as it is imposed by the
user and the limits of the equipment. However for the temperature evolution, T ,
it is necessary to take into account the adiabatic heating effects due to the work
of compression/expansion in the considered high-pressure device. The temperature
of the processed food may change with time and with space, therefore we need a
heat transfer model capable of predicting the temperature for the processed food.
Following Infante et al. (2009), a heat transfer model taking into account only con-
duction effects is presented when we have a solid type food with a large filling ratio.
A model also including convection effects in the pressurizing fluid, for a solid type
food with a small filling ratio is considered too (for a complete model for a liquid
type food, where convection effects have to be included also in the food, see Infante
et al. 2009). As the model is both time and spatially dependent, we introduce a
brief description of the domain describing the high-pressure device considered in
our simulations.

Usually high-pressure experiments on food are carried out in a cylindrical pres-
sure vessel (typically a hollow steel cylinder) that is filled with the food and the
pressurizing fluid. We assume, due to the characteristics of this kind of processes,
axial symmetry, which allows the use of cylindrical coordinates, and consider a two-
dimensional domain given by half a cross section (see figure 2). The following four
sub-domains are specified:

• ΩF: domain that contains the food sample.
• ΩC: cap of the sample holder (typically rubber).
• ΩP: domain occupied by the pressurizing medium.
• ΩS: domain of the steel that surrounds the rest of the domains.

The domain in the (r, z)-coordinates is the rectangle Ω = [0, L] × [0, H] defined
by Ω = ΩF ∪ ΩC ∪ ΩP ∪ ΩS. The boundary of Ω is denoted by Γ, where we can
distinguish:

• Γr ⊂ {L} × [0, H], where the temperature is known.
• Γup = [0, L]×{H}, where heat transfer with the room in which equipment is
located may take place.

• Γ0 = Γ \ {Γr ∪ Γup}, that has zero heat flux, either by axial symmetry or by
isolation of the equipment.

We use star notation ([ ]∗) to denote the 3D domains generated by rotating all the
domains explained above along the axis of symmetry ({0} × (0, H)). These spatial
considerations are typical for experimental HP equipments, like the pilot unit used
for our numerical experiments presented in §3. For the mathematical modelling two
significantly different cases can be studied (see Infante et al. 2009): solid and liquid
type foods. In this paper, we deal only with the case of solid type foods. First we
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Figure 2. Computational domain.

study solid type foods with a large filling ratio, and therefore a model that only
takes into account conduction effects (presented in §2 a (i)) can give quite precise
results (see Infante et al. 2009; Otero et al. 2007). We will also study solid type
foods with a small filling ratio, in which the model includes the convection effects
(presented in §2 a (ii)) in the pressurizing medium.

(i) Heat transfer by conduction

When solid type foods are considered, the starting point is the heat conduction
equation for temperature T (K):

ρCp

∂T

∂t
−∇ · (k∇T ) = β

dP

dt
T in Ω∗ × (0, tf), (2.1)

where ρ is the density (kg m−3), Cp the specific heat (J kg−1 K−1), k the ther-
mal conductivity (W m−1 K−1) and tf is the final time (s). The right-hand side of
equation (2.1) is the heat production due to the change of pressure P = P (t) (Pa)
applied by the equipment (chosen by the user within the machine limitations) and
β is the thermal expansion coefficient, that is given by:

β =







βF : thermal expansion coefficient (K
−1

) of the food in Ω∗
F,

βP : thermal expansion coefficient (K
−1

) of the pressurizing fluid in Ω∗
P,

0, elsewhere.

This term results from the following relation (for derivation see, e.g. Knoerzer et
al. 2007), which is valid for isentropic processes:

∆T

∆P
=

βTV

MCp

=
βT

ρCp

, (2.2)

where ∆T denotes the temperature change due to the pressure change ∆P , V is
the volume and M the mass.
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Modelling a High Pressure Shift Freezing process 7

Equation (2.1) has to be completed with appropriate boundary and initial con-
ditions depending on the HP machine and the problem we want to solve. We use
the same conditions as in Otero et al. (2007) for a pilot unit (ACB GEC Alsthom,
Nantes, France) located at the Instituto del Fŕıo, CSIC, Spain, that we use in §3
for numerical experiments:







































k
∂T

∂n
= 0 on Γ∗

0 × (0, tf),

k
∂T

∂n
= h(Tenv − T ) on Γ∗

up × (0, tf),

T = Tcool on Γ∗
r × (0, tf),

T = T0 in Ω∗ × {0},

(2.3)

where n is the outward unit normal vector on the boundary of the domain, T0

is the initial temperature, Tcool is the cooling temperature that is constant on Γ∗
r

(cooling the food sample), Tenv is the environment temperature (constant) and h
(W m−2 K−1) is the heat transfer coefficient.

By using cylindrical coordinates and taking into account axial symmetry, system
(2.1), (2.3) may be rewritten as the following 2D problem:























































ρCp

∂T

∂t
−

1

r

∂

∂r

(

rk
∂T

∂r

)

−
∂

∂z

(

k
∂T

∂z

)

= β
dP

dt
T in Ω× (0, tf),

k
∂T

∂n
= 0 on Γ0 × (0, tf),

k
∂T

∂n
= h(Tenv − T ) on Γup × (0, tf),

T = Tcool on Γr × (0, tf),

T = T0 in Ω× {0}.

(2.4)

This model is suitable when the filling ratio of the food sample inside the vessel
is much higher than that in the pressurizing medium, since convection effects due
to the pressurizing fluid can be neglected. This has been confirmed to be true in
Otero et al. (2007), by validation with several comparisons between numerical and
experimental results. In Otero et al. (2007) they show that when the filling ratio of
the food inside the vessel is not much higher than in the pressurizing medium, the
solution of this model differs a lot from the experimental results. Therefore they
improve the model by including convection effects in the pressurizing medium. We
present this model in §2 a (ii).

Another case when (2.4) may be used, even if the filling ratio of the food sample
is not much higher than in the pressurizing medium, is for highly viscous fluids –
which could be the case at low temperatures – where convection effects may be
negligible. This would reduce the computing time without any significant loss in
prediction.

(ii) Heat transfer by conduction and convection

The non-homogeneous temperature distribution induces a non-homogeneous
density distribution in the pressurizing medium and consequently a buoyancy fluid
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motion, i.e. free convection. In order to take into account the fact that the fluid
motion influences the temperature distribution, a non-isothermal flow model is
considered. We assume that the fluid velocity, u (m s−1), satifies the Navier–Stokes
equations for compressible Newtonian fluid under Stokes’ assumption (see, e.g., Aris
1989). The resulting system, with appropriate point, boundary and initial condi-
tions, is (see Infante et al. 2009):



















































































































































ρCp

∂T

∂t
−∇ · (k∇T ) + ρCpu · ∇T = β

dP

dt
T, in Ω∗ × (0, tf),

ρ
∂u

∂t
−∇ · η(∇u+∇ut) + ρ(u · ∇)u

= −∇p−
2

3
∇(η∇ · u) + ρg in Ω∗

P × (0, tf),

∂ρ

∂t
+∇ · (ρu) = 0 in Ω∗

P × (0, tf),

k
∂T

∂n
= 0 on Γ∗

0 × (0, tf),

k
∂T

∂n
= h(Tenv − T ) on Γ∗

up × (0, tf),

T = Tcool on Γ∗
r × (0, tf),

u = 0 on Γ∗
P × (0, tf),

T (0) = T0 in Ω∗,

u(0) = 0 in Ω∗,

p = 105 at A1 × (0, tf),

(2.5)

where g is the gravity vector (m s−2), η is the dynamic viscosity (Pa s), p = p(x, t)
is the pressure generated by the mass transfer inside the fluid, and P +p is the total
pressure (Pa) in the pressurizing medium Ω∗

P. A1 is a corner point of Γ∗
P, which is

the boundary of Ω∗
P (see figure 2).

As in §2 a (i) for the conductive heat transfer model, system (2.5) can also be
rewritten as an equivalent 2D problem by using cylindrical coordinates (system not
shown in this paper). The numerical experiments considered in this paper were
carried out using the 2D version of the corresponding equations.

(b) Modelling a solidification process using the enthalpy formulation

In general, the difficulties of any solidification process are to control the position
of the solid/liquid interface and to deal with the release of latent heat, which evolves
over a very small temperature range. Crank (1987) classifies the numerical methods
for solving the ‘moving-boundary’ problem into front-tracking methods and fixed-
grid methods. The former methods may be used when there is a distinct phase
change and a smooth continuous front (see Voller et al. 1990). However, as the
solid/liquid interface becomes less distinct (e.g. if it does not move smoothly or
monotonically with time), it may sometimes be difficult or even impossible to track
the moving boundary directly. It may have sharp peaks, or it may even disappear.
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Modelling a High Pressure Shift Freezing process 9

Therefore, the possibility of reformulating the problem in such a way that there is
no need to track the position of the solid/liquid interface, but instead it is bound up
in a new form of the equations, which applies over the whole of a fixed domain, is
an attractive one. These are the so called fixed-grid methods in which the position
of the moving boundary appears, a posteriori, as a part of the solution.

The essential feature of the fixed-grid methods is that the latent heat evolu-
tion is accounted for in the governing energy equation by defining either a total
enthalpy, an apparent specific heat or a heat source term (see Voller et al. 1990).
Consequently, the numerical solution can be carried out on a space grid that re-
mains fixed throughout the calculations. Another advantage of these methods is
that the numerical treatment of the phase change can be achieved through sim-
ple modifications of existing heat transfer numerical methods and/or software. To
model HPSF processes we use a combination of such methods, adapted to the case
of non-constant pressure.

For a pure non-convecting material obeying Fourier’s law of heat conduction,
conservation of enthalpy can be written as (see, e.g., Bird et al. 1960):

∂e

∂t
= ∇ · (k∇T ) +

∂P

∂t
, (2.6)

where e is the enthalpy per unit volume (J m−3). If the pressure is constant equation
(2.6) reduces to the enthalpy equation used in Voller et al. (1990). In the enthalpy
model of a HPSF process developed by Norton et al. (2009) the pressure term on
the right-hand side of (2.6) was neglected.

In the general case of non-constant pressure the enthalpy is a function of both
temperature and pressure, and from thermodynamics we may derive the relation
(see, e.g., Elliott & Lira 2005):

de = ρCpdT + (1− βT )dP. (2.7)

Integrating (2.7) from some reference temperature Tref and reference pressure Pref

to the current temperature and pressure yields an expression for the enthalpy:

e(T, P ) = e(Tref , Pref) +

∫ T

Tref

ρCpdθ +

∫ P

Pref

(1− βT )dΠ. (2.8)

In the case of a mixed-phase region composed of ice crystals (that we will refer
to here as the solid part) and the solid and liquid part of the food that has not
frozen yet (that we will refer to here as the liquid part), we may extend previous
enthalpy models based on phase fractions (see Voller et al. 1990) by defining a
‘mixture enthalpy’ as:

e(T, P, gl) = e(Tref , Pref , gl,ref) + (1− gl)

∫ T

Tref

ρsCps
dθ + gl

∫ T

Tref

ρlCpl
dθ

+ (gl − gb)ρlλ+ (1− gl)

∫ P

Pref

(1− βsT )dΠ + gl

∫ P

Pref

(1− βlT )dΠ,

(2.9)

where gl is the volume fraction of the liquid part, gb is the volume fraction of solids
in the food (therefore gl − gb is the volume fraction of water in the food) and λ
is the latent heat of freezing of water (J kg−1). We consider that gl,ref = gb, that
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10 N. A. S. Smith, S. S. L. Peppin, Á. M. Ramos

Tref is the temperature (K) at which all the latent heat has been released (typically
Tref = −40◦ C= 233.15 K, see Schwartzberg 1976), and that Pref = Patm (Pa), the
atmospheric pressure. Similarly, a ‘mixture conductivity’ is defined as:

k = (1− gl)ks + glkl. (2.10)

In the previous equations subscripts [ ]s and [ ]l refer to the solid and liquid phases
respectively. Taking the total derivative of (2.9) gives:

de = Cvol dT + (1− βvolT ) dP + δe dgl, (2.11)

where Cvol = (1 − gl)ρsCps
+ glρlCpl

, δe =
∫ T

Tref

(ρlCpl
− ρsCps

)dθ +
∫ P

Pref

T (βs −

βl)dΠ+ρlλ and βvol = (1−gl)βs+glβl. Inserting (2.11) into the enthalpy equation
(2.6) leads to:

Cvol
∂T

∂t
−∇ · (k∇T ) = βvolT

∂P

∂t
− δe

∂gl
∂t

. (2.12)

For a HPSF process with rapid expansion (see ABCDE in figure 1), typically
the pressure profile is as follows:

P (t) =







































Pmax − Patm

tp1

t+ Patm t ≤ tp1
,

Pmax tp1
< t ≤ tp2

,

−
Pmax − Patm

tp3
− tp2

(t− tp2
) + Pmax tp2

< t < tp3
,

Patm elsewhere,

(2.13)

where tp1
is the time at which the maximum pressure, Pmax, has been reached; tp2

is the time at which we start releasing pressure; and tp3
is the time at which all the

pressure has been released down to atmospheric pressure, Patm ≈ 0.1 MPa.
Experiments suggest (see Otero & Sanz 2006) that as the pressure is rapidly

released (t ∈ (tp2
, tp3

)), nucleation is at first delayed (leaving the system in a
metastable state with respect to the formation of ice) until the pressure nears
atmospheric when ice suddenly nucleates and forms in some small time interval.
Therefore we assume there is no ice while the pressure is changing (until t = tp3

),
so during this stage equation (2.12) becomes:

ρlCpl

∂T

∂t
−∇ · (k∇T ) = βlT

∂P

∂t
, t ≤ tp3

. (2.14)

Once the pressure has been released, ice suddenly nucleates and forms in some small
time interval (ε), where we assume that the change in ice fraction owing to the drop
in pressure is some known function of time, hence now (2.12) becomes:

Cvol
∂T

∂t
−∇ · (k∇T ) = −δe

∂gl
∂t

, t ∈ (tp3
, tp3

+ ε), (2.15)

where now δe =
∫ T

Tref

(ρlCpl
− ρsCps

)dθ+ ρlλ, since P = Patm. After this point and
until the end of the process, we assume that the rest of the ice is computed as a
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function of temperature (an explicit formula for gl is given in §2 c (iv)), which leads
to:

[

Cvol + δe

(

∂gl
∂T

)]

∂T

∂t
−∇ · (k∇T ) = 0, t ≥ tp3

+ ε. (2.16)

As will be shown in §3 the model given by (2.12) (equivalent, under the previous
assumptions, to (2.14), (2.15) and (2.16)) yields satisfactory agreement between
theory and experiment. All the parameters involved in the model can be easily
found in the literature for many food similes, except for the liquid fraction, gl. In
§2 c we explain different characteristics of a HPSF that will enable us to derive a
formula for gl for a gel food simile as a function of time and temperature. We note,
though, that a more rigorous approach would be to combine with equation (2.12)
a stochastic nucleation law for gl(T, P ) quantifying the ice formed at each instant
as the pressure is released. As no such expression for gl(T, P ) is currently available
we leave this to future work.

(c) Deriving an expression for the volume fraction gl for a gel food simile

(i) Supercooling reached after expansion

Otero & Sanz (2006) define the extent of supercooling, ∆Tsc (
◦C), as the differ-

ence between the lowest temperature at the sample centre just before nucleation,
Tmin, and the sample freezing temperature, TF, at pressure PN, where the nucle-
ation takes place. The extent of supercooling is a crucial factor in the dynamics of
a freezing process. In conventional freezing at atmospheric pressure, it is generally
admitted that supercooling and nucleation only occurs at the surface of the sample.
In Otero & Sanz (2006) they show that in HPSF experiments, upon pressure release,
a metastable state was reached throughout the sample before nucleation. As can
be seen in figure 1, after expansion from (Pmax, Tprev), the pressure/temperature
coordinates of the sample move to (PN, Tmin), indicating extensive supercooling.
Therefore, the extent of supercooling only depends on the minimum temperature
reached after expansion and on the pressure at which nucleation occurs. The mini-
mum temperature, Tmin, reached at nucleation pressure, PN, after a rapid pressure
release can be estimated according to (2.2), and is accounted for in our heat trans-
fer model. However, the prediction of Tmin using (2.2) implies foreknowledge of the
nucleation pressure PN, and this is, in general, very difficult due to the stochas-
tic nature of the nucleation phenomenon. In §2 c (ii) we explain how to avoid this
problem.

(ii) Modelling the amount of ice formed instantaneously after expansion

Otero & Sanz (2006) explain that the pressure release in HPSF processes can be
divided, ideally, in two different phases (see figure 1). In the first phase, expansion
takes place under metastable conditions. A percentage of water is instantaneously
frozen when PN is reached. The latent heat raises the sample temperature to the
corresponding freezing point. The amount of ice formed at PN can be calculated
from the following equation (other equations are given in Otero & Sanz 2006):

miλ(PN) = (miCpi
+ (1−mi)Cpw

)∆Tsc, (2.17)
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where mi is the mass fraction of ice (defined as mass of ice divided by initial mass
of water) formed after expansion, Cpi

(J kg−1 ◦C−1) is the specific heat capacity
of ice at the nucleation pressure (taken as the mean value of the specific heat
capacity at the minimum temperature reached after expansion and the specific
heat capacity at the corresponding melting point), Cpw

(J kg−1 ◦C−1) is the specific
heat capacity of water at the nucleation pressure (taken as the mean value of the
specific heat capacity at the minimum temperature reached after expansion and the
specific heat capacity at the corresponding melting point), ∆Tsc (◦C) is the extent
of supercooling, and λ(PN) (J kg−1) is the latent heat at nucleation pressure PN.

Latent heat of freezing of water (J kg−1) as a function of pressure P (MPa) can
be estimated by the following equation (for more details, see Otero & Sanz 2006):

λ(P ) = 3.114× 10−3P 3 − 1.292P 2 − 3.379× 102P + 3.335× 105. (2.18)

Therefore, we can calculate the percentage of instantaneously frozen water, mi, by
using equations (2.17) and (2.18), taking into account the extent of supercooling
attained and the latent heat released at nucleation pressure. However, this is just
a theoretical evaluation and it is not useful for modelling purposes because experi-
mental data of nucleation pressure and temperature during expansion (PN, Tmin) are
needed and, as was pointed out in §2 c (i), it is in general very difficult to predict the
nucleation pressure. To overcome this problem, in Otero & Sanz (2006) the authors
proposed a simplified method for HPSF processes with rapid expansions: to assume
that nucleation occurs at atmospheric pressure. On this basis, by using experimen-
tal pressure and temperature values immediately prior to expansion (Pmax, Tprev),
instead of (PN, Tmin), the amount of ice formed after expansion can be determined.
They do as follows: the minimum temperature after expansion, Tmin, is calculated
using (2.2); the corresponding supercooling is attained as ∆Tsc = TF − Tmin; equa-
tion (2.18) is used to calculated the latent heat released at atmospheric pressure,
and finally we introduced these values in (2.17) to determine the percentage of ice
instantaneously formed in HPSF experiments with rapid expansions. We use this
simplification in our simulations.

(iii) Modelling the mass fraction of ice of the rest of the process

Once we have calculated the amount of ice formed instantaneously after ex-
pansion, we need an expression to calculate how the rest of the ice is formed as
a function of temperature. As it occurs at atmospheric pressure, we do not have
to worry about taking into account pressure effects this time. After expansion, an
amount mi of ice is instantaneously formed, which can be calculated, as we ex-
plained in §2 c (ii). The temperature is raised to the corresponding freezing point
at atmospheric pressure due to the release of latent heat.
Remark 2.1. The mass fraction of ice fs as a function of temperature can be
calculated with the following expression:

fs(T ) = 1− x0/x(T ), (2.19)

where x0 is the initial mass fraction of solids in the food and x(T ) is the mass
fraction of solids in the food (without including the ice generated after the initial
reference instant) at temperature T .
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This can be easily seen by taking m as the initial mass of solids, mw0
the initial

mass of water and mw(T ) be the mass of water in the food at temperature T , then:

x0 =
m

m+mw0

, x(T ) =
m

m+mw(T )

and therefore:

1− x0/x(T ) = 1−
m+mw(T )

m+mw0

=
mw0

−mw(T )

m+mw0

=
mass of ice

total mass
= fs(T )

Next we derive an equation for x(T ). In Rahman et al. (2010), the following
extended Clausius-Clapeyron equation is presented to calculate the freezing point
depression (Tw − T ) of gel, as a function of mass fraction of solids (x):

Tw − T = −
αw

γw
ln

(

1− x−Bx

1− x−Bx+ Ex

)

. (2.20)

In (2.20) Tw is the freezing point of water at atmospheric pressure (i.e. 0◦C), T
is the freezing point of the food (◦C), αw is the molar freezing point constant of
water (1860 kg K mol−1), γw is the molecular weight of water (18 kg mol−1), E is
the molecular weight ratio of water and solids (γw/γs) and B is the ratio of unfrozen
water to total solids. E and B are model parameters that the authors of Rahman
et al. (2010) estimate using SAS non-linear regression.

From (2.20) we can calculate the freezing point depression depending on the
mass fraction of solids, but we want to calculate the inverse, i.e., given a certain
freezing point temperature T , what is the mass fraction of solids at that tempera-
ture. From (2.20) it is easy to find an expression for x as a function of T :

x(T ) =
exp

γw
αw

(T−Tw) −1

exp
γw
αw

(T−Tw)(1 +B − E)− 1−B
. (2.21)

Substituting (2.21) into (2.19) we finally get the equation for the mass fraction of
ice as a function of temperature:

fs(T ) =
exp

γw
αw

(T−Tw) −1− x0(exp
γw
αw

(T−Tw)(1 +B − E)− 1−B)

exp
γw
αw

(T−Tw) −1
. (2.22)

(iv) Expression for the volume fractions

In our model we work with volume fractions instead of mass fractions. The
relation between them is given in the following remark.
Remark 2.2. In a mixture of two phases the volume fractions (gl, gs) as functions
of the mass fractions (fl, fs) are:

gl =
flρs

flρs + fsρl
, gs =

fsρl
fsρl + flρs

. (2.23)

The density of the mixture can be written as ρ = ρlgl + ρsgs and the relationships
between the mass and volume fractions in liquid and solid phases are:

fl =
ρlgl
ρ

, fs =
ρsgs
ρ

.
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As ρ = ρlgl
fl

and also ρ = ρlgl + ρsgs = gl(ρl − ρs) + ρs, after some straight forward
calculations we have that:

gl =
flρs

fsρl + flρs
and gs = 1− gl = 1−

flρs
fsρl + flρs

=
fsρl

fsρl + flρs
.

As we said in §2 b , the liquid and solid volume fractions for our model depend
on temperature and time. For a classical freezing process they are considered to be
only dependent on temperature, but in a HPSF process we have information a priori
about when the sample starts to freeze. We know that the sample remains unfrozen
(even at subzero temperatures) until the pressure has been completely released (i.e.
at t = tp3

), and at that point there is a percentage of ice instantaneously formed,
mi, the mass of which we calculate using (2.17) and (2.18). After this point, the
rest of the ice, fs(T ), is computed as a function of temperature following (2.22). We
consider that the initial mass of solids in the food is the one before the expansion
plus the mass of ice instantaneously formed after releasing pressure. Therefore, we
take x0 = fb + (fl − fb)mi, where fb is the mass fraction of solids in the food and
fl is the mass fraction of liquid in the food. Finally, we have that:

gl(t, T ) =































1 t ≤ tp3
,

1−

(

miρl
miρl + (1−mi)ρs

)

t− tp3

ε
tp3

< t < tp3
+ ε,

1−
fs(T )ρl

fs(T )ρl + (1− fs(T ))ρs
t ≥ tp3

+ ε,

(2.24)

where ε is the small time interval in which the mass fraction mi of ice is instanta-
neously formed after the pressure release.

(d) Resulting full model for a HPSF process

We focus on two different situations: HPSF of a big solid type food (i.e. when
the filling ratio of the food sample inside the vessel is much higher than the one of
the pressurizing medium) and a small solid type food (i.e. when the filling ratio of
the food is not much higher than the one of the medium).

(i) For a big solid type food

We use system (2.4), but we replace the first equation with (2.12), resulting in:























































Cvol
∂T

∂t
−

1

r

∂

∂r

(

rk
∂T

∂r

)

−
∂

∂z

(

k
∂T

∂z

)

= βvol
dP

dt
T − δe

∂gl
∂t

in Ω× (0, tf),

k
∂T

∂n
= 0 on Γ0 × (0, tf),

k
∂T

∂n
= h(Tenv − T ) on Γup × (0, tf),

T = Tcool on Γr × (0, tf),

T = T0 in Ω× {0},
(2.25)
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where gl is given by (2.24), P is given by (2.13), and Cvol, δe, k, βvol are defined
in §2 b .

(ii) For a small solid type food

We use system (2.5), but we change the first equation for (2.12) plus the con-
vective term of (2.5), resulting in:



















































































































































Cvol
∂T

∂t
−∇ · (k∇T ) + ρCpu · ∇T = βvol

dP

dt
T − δe

∂gl
∂t

in Ω∗ × (0, tf),

ρ
∂u

∂t
−∇ · η(∇u+∇ut) + ρ(u · ∇)u

= −∇p−
2

3
∇(η∇ · u) + ρg in Ω∗

P × (0, tf),

∂ρ

∂t
+∇ · (ρu) = 0 in Ω∗

P × (0, tf),

k
∂T

∂n
= 0 on Γ∗

0 × (0, tf),

k
∂T

∂n
= h(Tenv − T ) on Γ∗

up × (0, tf),

T = Tcool on Γ∗
r × (0, tf),

u = 0 on Γ∗
P × (0, tf),

T (0) = T0 in Ω∗,

u(0) = 0 in Ω∗,

p = 105 at A1 × (0, tf).
(2.26)

We point out that in the cases considered in §2 d (i) and §2 d (ii) the pressurizing
medium used in HPSF processes does not freeze (therefore gl = 1 in ΩP). For both
cases, in order to reduce computational complexity, following the work done in
Infante et al. (2009) for non-freezing processes, we assume that the thermophysical
properties of the food sample are constant (we set them to their mean value in the
range of temperature and pressure considered in the process, as done in Infante et al.
2009) but different in the unfrozen and frozen states. The thermophysical properties
of the steel and the rubber cap remain constant during the whole process (gl = 1 in
those domains). The thermophysical properties of the pressurizing fluid are assumed
to be constant for the big sample case, and for the small sample case, where the
convection effects are taken into account, we base the model on the Boussinesq
approximation. This is, we assume that the coefficients Cp, k, α and η are constant,
and ρ is also chosen as a constant value everywhere except in the gravitational force
ρg that appears in the second equation of system (2.26).

3. Numerical tests

We consider for the numerical tests the size of the pilot unit (ACB GEC Alsthom,
Nantes, France) that was used in Infante et al. (2009) and Otero et al. (2007).
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The dimensions of the machine are L = 0.09 m, H = 0.654 m, L2 = 0.05 m,
H1 = 0.222 m and H5 = 0.472 m (see figure 2). We simulate in this section the
two cases described in §2 d . The size and location of the sample and the rubber
cap are given by H3 = 0.404 m and H4 = 0.439 m in both cases; L1 = 0.045 m and
H2 = H1 in the big sample case, and L1 = 0.02 m and H2 = 0.294 m in the small
sample case (see figure 2). The numerical tests we present are computed in cylin-
drical coordinates assuming axial symmetry. We use the Finite Element Method
(FEM) solver COMSOL Multiphysics 3.5a. Velocity and pressure spatial discretiza-
tion is based on P2-P1 Lagrange Finite Elements satisfying the Ladyzhenskaya,
Babuska and Brezzi (LBB) stability condition. The time integration is performed
using the Variable-Step-Variable-Order (VSVO) BDF-based strategy implemented
in the platform. The nonlinear systems are solved using UMFPACK (Unsymmet-
ric MultiFrontal method for sparse linear systems) combined with the stabilization
technique GLS (Galerkin Least Squares).

For both cases, we consider agar gel as the solid type food sample (this gel
is a solid food simile that contains 99% water and therefore its properties are
taken as those of water). The thermophysical properties for the agar gel, in both
unfrozen and frozen state, are respectively, ρFl

= 997 kg m−3, ρFs
= 918 kg m−3,

CpFl
= 4179 J kg−1 K−1, CpFs

= 2052 J kg−1 K−1, kFl
= 0.613 W m−1 K−1, kFs

=

2.31 W m−1 K−1, βFl
= 3.351 · 10−4 K−1, βFs

= 7.97 · 10−4 K−1. The parameters
for equation (2.22) are taken from Rahman et al. (2010) to be E = 0.026, B =
0.050, αw = 1860 kg K mol−1 and γw = 18 kg mol−1. Parameters B and E given
in Rahman et al. (2010) were estimated for bovine gel, and we are simulating the
freezing of agar gel. We did not find in the literature any fitting parameters for agar
gel, and this is why we used the ones for bovine gel, as they give good results. For
x0 in (2.22), we need the mass fraction of bounded solids in the food fb, which we
can calculate using (2.23) with gb = 0.01, as agar gel contains 99% of water.

The thermophysical properties of the steel and rubber cap are ρS = 7833 kg m−3,
CpS = 465 J kg−1 K−1 and kS = 55 W m−1 K−1 for steel, and ρC = 1110 kg m−3,
CpC = 1884 J kg−1 K−1 and kC = 0.173 W m−1 K−1 for rubber are taken. The
environment temperature and the heat transfer coefficient used in all the tests are
Tenv = 19.3 ◦C and h = 28 W m−2 K−1, respectively. All of these data have been
obtained from Fernández et al. (2006) and Otero & Sanz (2003). For the two cases,
different pressurizing fluids are considered, and for each case different temperature
and pressure conditions are considered. We have considered these exact conditions
and pressurizing mediums in order to be able to compare our results with experi-
mental published data (see Fernández et al. 2006; Otero & Sanz 2003).

For the big sample, following the experiments described in Otero & Sanz (2000)
and Sanz & Otero (2000), the pressurizing fluid is considered to be a mixture of
ethylene glycol and water (75/25, v/v), that has a very low freezing point and
therefore does not freeze during the process (see Otero & Sanz 2003). The thermo-
physical properties of this fluid are taken to be constant (as explained in §2 d (ii)
we take their mean values in the range of pressure and temperatures of the exper-
iments) and using data from Guignon et al. (2010) we get ρP = 1127.91 kg m−3,
CpP = 2972.6 J kg−1 K−1, kP = 0.345 W m−1 K−1 and βP = 5.655 · 10−4 K−1.
As explained in Otero & Sanz (2000) and Sanz & Otero (2000), before the ex-
periment started, the high-pressure pilot unit was tempered to the final subzero
freezing temperature (Tprev) in order to avoid heat loss during freezing of the agar
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gel. The pressurizing fluid was also kept at the final freezing temperature, i.e.,
T0S = T0P = Tprev. The initial temperature of the food sample and the rubber
cap are T0F = T0C = 2 ◦C. Several HPSF processes were carried out at different
final subzero temperatures and maximum pressures, from which we have chosen
Tprev = −18 ◦C/Pmax = 180 MPa and Tprev = −21 ◦C/Pmax = 210 MPa to simu-
late. Pressure was applied at a rate of 2.5 MPa s−1. The temperature of the cooling
medium, Tcool, was 0.5

◦C lower than the subzero final freezing temperature, Tprev,
for each experiment. In Sanz & Otero (2000) the authors determine the initial
freezing temperature of agar gel from the freezing plateaus of all the experimental
processes and on the basis of the recorded data, TF = −0.3 ◦C was considered.

For the small sample, following the experiments described in Otero & Sanz
(2006), we consider a mixture of ethylene glycol, water and ethanol (40/40/20,
v/v/v), as the pressurizing medium. This also has a very low freezing point and
therefore does not freeze during the process (see Fernández et al. 2006). As we
explained in §2 d , all the thermophysical properties are considered to be constants,
except for ρ in the gravitational force term. The constant values have been taken
from Guignon et al. (2006) as ρP = 1011.77 kg m−3, CpP = 3042.3 J kg−1 K−1,
kP = 0.381 W m−1 K−1 and βP = 6.219 · 10−4 K−1. The viscosity has be taken as
ηP = 0.02 Pa s. For the density of the fluid as a function of temperature and pressure
we follow Guignon et al. (2010), where the volumetric properties for binary mixtures
of Pressure-Transmitting Fluids are given, and also equations for calculating these
properties for other mixtures from those of their pure components. In this case,
as explained in Otero & Sanz (2006), again before the experiment started, the
high-pressure pilot unit was tempered to the final subzero freezing temperature
(Tprev) in order to avoid heat loss during freezing of the agar gel. The pressurizing
fluid was also kept at the final freezing temperature, i.e., T0S = T0P = Tprev. The
initial temperature of the food sample and the rubber cap are T0F = T0C = 5 ◦C.
Several HPSF experiments were performed at different final subzero temperatures
and at various pressures, from which we have chosen to simulate the following:
Tprev = −8 ◦ C/Pmax = 120 MPa and Tprev = −20 ◦ C/Pmax = 210 MPa. The
temperature of the cooling medium, Tcool, was 0.5

◦C lower than the subzero final
freezing temperature, Tprev, for each experiment. Pressure was also applied at a rate
of 2.5 MPa s−1. In Otero & Sanz (2006) the authors determine the initial freezing
temperature of agar gel from the freezing plateaus of all the experimental processes
and on the basis of the recorded data, in this case, TF = −0.1 ◦C was considered.

For both cases, as we know the rate at which pressure is applied and the maxi-
mum pressure we have to reach, tp1

, i.e. the time in which we are increasing pressure,
is calculated as Pmax/Prate. For the sake of simplicity (we could have also used mod-
els (2.4) or (2.5) to compute it), we have obtained time tp2

(the time when pressure
is at its maximum and the temperature of the sample has reached the desired freez-
ing temperature, Tprev from the experimental data (see Otero & Sanz 2000, 2006;
Sanz & Otero 2000). Finally, tp3

= tp2
+ 2, as we are considering the case of rapid

pressure release, that is considered to be in 1-2 seconds.

(a) Results

We have simulated the experiments described in §3 using the models explained
in §2. The results of solving (2.25) for a HPSF process of a big sample of agar gel are
shown in figure 3. These experiments with agar gel and the different temperature
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Table 1. Experimental and simulated time needed to complete freezing plateau in different
HPSF experiments

Tprev Pmax Experimental Model Other

(◦C) (MPa) time (s) prediction models

Big sample [Otero & Sanz (2000)] [Otero & Sanz (2000)]

-18 180 5611± 493 5195 5957

-21 210 4817± 385 4586 4830

Small sample [Otero & Sanz (2006)] [Norton et al. (2009)]

-8 120 3850± 61 3760 3797

-20 210 1038± 120 970 1134

and pressure profiles are described in Otero & Sanz (2000) and Sanz & Otero (2000).
We do not have the experimental data to compare our simulations to (graphically),
so instead we compared the phase transition times of our simulations to the ones
published in Otero & Sanz (2000) and Sanz & Otero (2000). Following Otero &
Sanz (2006), we have calculated the phase transition times (plateau times shown in
table 1) as the time span between nucleation and reaching a temperature 5◦ C below
the corresponding initial freezing point at the centre of the sample. We compare
the predicted plateau times of our model to the experimental data, and also to the
plateau times predicted by other HPSF models (see table 1). For the big sample,
we compare them to the theoretical times calculated by Otero & Sanz (2000); for
the small sample , we compare them to those predicted in Norton et al. (2009).
The times in table 1 are not given as such in Norton et al. (2009), where instead a
“reduction in plateau time” (%) was given; this refers to how long the plateau time
has reduced when compared to atmospheric pressure freezing (APF) process. The
APF times are given in Otero & Sanz (2006).

In figure 4 the results of solving equation (2.26) for a HPSF process of a small
sample of agar gel are shown compared to experimental data, and agree very well.
These experiments with agar gel and the different temperature and pressure profiles
are described in Otero & Sanz (2006). In that paper the authors remark that the
free convection in the pressure fluid can acquire relative importance, as the pressure
medium occupies 88.7% of the total vessel volume. In our model we include the
convective effects, and we simulated exactly the same experiments without including
convection effects, i.e. with only conduction effects, and the results (not shown here)
were very different and did not agree with the experimental data. Without including
convection effects, the small sample takes much longer to cool.

Our model predictions capture the trend in measured plateau times with applied
temperature and pressure, and tend to underpredict the data slightly (see figures
3–4 and table 1), although in only one case of the four, the simulated time is not
within experimental uncertainty but the remaining difference is on the order of
half a minute, thus it should be considered acceptable for a process that takes
about one hour. In any case, we discuss possible reasons for this underprediction
in the conclusions. The other published models tend to overpredict the plateau
times slightly, but also give quite satisfactory results. However, we remark that
Otero & Sanz (2000) calculated the plateau times taking into account the amount
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Figure 3. Temperature evolution at different radial locations of a big agar sample during a
HPSF process for different temperature and pressure conditions. All results are predicted
values from model (2.25).

of ice instantaneously produced after expansion, and the time required to freeze
the sample at atmospheric pressure, but did not obtain them as a result from a
heat transfer model. Norton et al. (2009), for the small sample case, proposed a one
dimensional heat transfer model for the food sample, but they did not model the
heat transfer in the pressurizing medium. They assumed a boundary condition of
the third class at the surface between the food and the pressurizing fluid, and had
to choose the surface heat transfer coefficient to best fit the experimental curve,
i.e. they had a fitting parameter. Also, they did not validate the precooling stage,
so their model is validated only from the temperature at which the pressure was
released.
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Figure 4. Temperature evolution at the centre and surface of a small agar sample during
a HPSF process for different temperature and pressure conditions. (–) predicted values
from model (2.26); (∗) experimental data.

4. Conclusions

The models described in this paper provide a useful tool to simulate the temperature
profile at all points inside both big and small solid food samples going through a
HPSF process. The model for solidification is based on the enthalpy formulation at
non-constant pressure and volume phase fractions. The models are two dimensional
axisymmetric, and can therefore predict the temperature distribution at any point
inside the food sample, not just at any radial component, which happens with one
dimensional models, but also at any height. Convection effects in the pressurizing
fluid are considered for the small sample case (and shown to be important).

For the small sample case, the numerical tests agree with the experimental data
very well, especially at the centre of the sample. We emphasize that no fitting pa-
rameters were used in the simulations. At the surface there is not an accurate match
between the data and the model. However we consider that the modelling efforts
are good enough, given the relatively large experimental errors. It is important to
point out, that locating a thermocouple exactly at the surface is very difficult, and
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often generates significant measurement errors coming from the neighbouring ma-
terial temperature, which is colder than the food sample. For the big sample case,
there is no experimental data to plot against the simulated temperature profile, but
the results look very similar to the temperature profiles plotted in Sanz & Otero
(2000). When comparing the model plateau times to the published experimental
ones, we find that they are in general shorter, but in the range of the latter. In all
cases, the prediction errors are on the order of minutes, which is not too bad given
that the processing time is on the order of hours.

Future improvements, in case experimental measurements become more precise,
could potentially be obtained by including temperature and pressure dependence
of material properties, anisotropy effects in the frozen region, and extending our
2D convection simulations to 3D.
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