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1 Introduction

When dealing with partial differential equations, either linear or nonlinear, and mostly
for equations of elliptic or parabolic type, it is often found that the equation can be solved
when the “data” of the problem are not in a single, but in several functions spaces among
which we can chose. In other words, in a natural fashion, we face equations that can be
set in “scales” of spaces. For example, when solving the linear heat equation with, say,
Dirichlet boundary conditions in a bounded smooth domain Ω, the initial data can be
taken in Lq(Ω), for 1 ≤ q ≤ ∞. The solution remains in the same space and enters in fact
in some other Lp(Ω) space with p > q at a precise rate, which are the classical estimates
for the heat equation, see e.g. [8].

Restricting to parabolic equations, in his seminal monograph [11], D.Henry, made
systematic the use of the scale of fractional power spaces associated to the elliptic part of
the equation; see also [10] for early applications of these spaces. This abstract approach
has proven very rich and flexible in dealing with enormous classes of parabolic problems.
Moreover it provided tools for a real geometric theory for the dynamics of parabolic
equations.

Closer to more concrete parabolic problems with elliptic part in divergence form, H.
Amann, using techniques of interpolation and extrapolation spaces worked out a rather
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complete framework for these problems with smooth coefficients, using the Bessel potential
spaces; see [2] for a complete survey.

Similar approach to the ones above can be found in [12] as well. Also, abstract results
in this direction are compiled in [3]; see in particular Chapter 5 in the latter reference.

Although it is very often disregarded, the fact that the same problem can be set in
a family of spaces in a scale, is a valuable property since, among many other questions,
allows to choose the right space of the scale to “fit” to a particular choice of the data.
Another outcome of this approach is, for example, that one finds more precise informa-
tion on the smoothing effect of the equation, since one can perform in a natural way
bootsrapping argument on the scale.

In this context, in this paper we concentrate in some perturbation results for linear
parabolic problems in certain scales of spaces. Hence, at an abstract level, we assume
we have given a linear semigroup on a scale of spaces and seek to add suitable linear
perturbations in such a way that we still obtain a well defined class of solutions of the
perturbed problem, defining a perturbed linear semigroup on the same original scale of
spaces. The parabolic nature of the original problem (and of the perturbed one) is reflected
in the fact that the original semigroup takes elements of one space in the scale into other
spaces in the scale; see Section 3 and more precisely (3.3). The perturbations we consider
are linear and continuous transformation between two spaces of the scale, see (3.8), and
the rule of thumb is that a given perturbation would determine the spaces of initial data
in the scale for which the perturbed problem can be solved, as well as the spaces in the
scale into which the solution smoothes, see Theorem 3.13 and Proposition 3.15. We also
analyze the question of robustness of the estimates and the continuity of the resulting
semigroup with respect of the perturbation, see Theorem 4.1. Observe that our approach
to these perturbations results is based on the variation of constants formula, (3.9), and the
smoothing properties of the original semigroup rather than to “elliptic” properties of the
infinitesimal generator of the semigroup. In fact as it will be shown below the “parabolic”
approach gives sharper results than the “elliptic” one; compare Theorems 3.13 and 3.20.
Note that the basic assumption (3.3) is satisfied for the fractional power spaces associated
to any sectorial operator as in [11]. Hence all the results in Sections 3 and 4 apply in
this setting as well. Note also that we also obtain results on the linear nonhomogenous
problems in Theorem 3.7 and in Remark 3.17.

These abstract results are motivated, with no doubt, for a systematic study and ap-
plications of partial differential equations of parabolic type and more precisely in consid-
ering low regularity perturbations in the coefficients and/or the boundary conditions of
the problems.

Hence, in Section 2 we first review and collect some of the results in [2] for parabolic
problems with smooth coefficients. Note that in this reference, regularity of the coefficients
is used in an essential way. The same happens in [12].

Then, the abstract results in Sections 3 and 4 are applied in Section 5 to the problems
in Section 2 and also to some parabolic problems in unbounded domains in Section 6. In
the latter case we discuss several settings including Lebesgue or Bessel scales and even
uniform spaces. Linear nonhomogeneous problems, using Theorem 3.7, are discussed in
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Remarks 5.8, 6.3, 6.6, 6.11 and 6.16. Also, in Section 7 we show how to obtain results for
the underlying elliptic problems.

Finally in Section 8 we discuss how to apply the results in this paper to semigroups that
are not strongly continuous, that is, not continuous at t = 0 or to nonanalytic semigroups.
Also, we consider the case of semigroups with “defect”, that is, singular semigroups at
t = 0.

Aknowledgement The author wants to thank Professor J.M. Arrieta for many useful
discussions about some technical points of the paper.

2 Parabolic problems with smooth coefficients

Let Ω be an open bounded smooth set in IRN with a C2 boundary ∂Ω. Let Γ ⊂ ∂Ω
be a smooth subset of the boundary, isolated from the rest of the boundary, that is,
dist(Γ, ∂Ω \ Γ) > 0.

Consider the problem


















ut − div(a(x)∇u) + c(x)u = 0 in Ω
a(x)∂u

∂~n
+ b(x)u = 0 on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0 in Ω

(2.1)

where a ∈ C1(Ω) with a(x) ≥ a0 > 0 in Ω, c ∈ C1(Ω) and B denotes the boundary
operator in ∂Ω \ Γ

Bu = u, Dirichlet case, or Bu = a(x)
∂u

∂~n
+ b(x)u, Robin case,

being ~n the outward normal vector-field to ∂Ω \ Γ and b(x) a C1(∂Ω) function.
For this, denote by A0 the operator A0u = −div(a(x)∇u) + c(x)u with boundary

conditions a(x)∂u
∂~n

+ b(x)u = 0 on Γ and Bu = 0 on ∂Ω \ Γ. Note the coefficients a, b, c
are C1–smooth. Also, note that all the analysis below applies in the case the diffusion
coefficient is a positive definite matrix instead of a scalar coefficient. We deal with the
latter case here only because the notations become simpler.

Choosing Lq(Ω), for 1 < q < ∞, as a base space, the unbounded linear operator
−A0 : D(A0) ⊂ Lq(Ω) → Lq(Ω), with domain D(A0) = H2,q

bc (Ω), consisting of all functions
in H2,q(Ω) which satisfy all boundary conditions above, generates an analytic semigroup
in Lq(Ω), see [2]. Here and below Hs,q(Ω) denote the Bessel potentials spaces which
coincide with the usual Sobolev spaces for integer s if 1 < q < ∞ or for all s if q = 2.

Using the complex interpolation–extrapolation procedure, one can construct the scale
of Banach spaces associated to this operator, which will be denoted H2α,q

bc (Ω) for α ∈
[−1, 1], which are closed subspaces of H2α,q(Ω) incorporating some of the boundary con-
ditions. In particular, we have H0,q

bc (Ω) = Lq(Ω), and

H1,q
bc (Ω) =

{

{u ∈ H1,q(Ω) : u = 0 in ∂Ω \ Γ} for B Dirichlet
H1,q(Ω) for B Robin.
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Recall that Bessel spaces have the sharp embeddings

Hs,q(Ω) ⊂















Lr(Ω), s − N
q
≥ −N

r
, 1 ≤ r < ∞, if s − N

q
< 0

Lr(Ω), 1 ≤ r < ∞, if s − N
q

= 0

Cη(Ω̄) if s − N
q

> η > 0

with continuous embeddings, see [1]. This embeddings are known to be optimal.
Also, if γΓ denotes the trace operator on Γ, then for s > 1

q
, γΓ is well defined on

Hs,q(Ω) and

Hs,q(Ω)
γΓ→















Lr(Γ), s − N
q
≥ −N−1

r
, 1 ≤ r < ∞, if s − N

q
< 0

Lr(Γ), 1 ≤ r < ∞, if s − N
q

= 0

Cη(Γ) if s − N
q

> η > 0

see [1].

Note that the scale with negative exponents satisfies H−2α,q
bc (Ω) = (H2α,q′

bc (Ω))′, for
0 < α < 1. Moreover, we have H−2α,q(Ω) = (H2α,q′(Ω))′ and H−2α,q(Ω) →֒ H−2α,q

bc (Ω).
See [2] for details.

Using this it is easy to obtain that for s > 0 we have

H−s,q(Ω) ⊃















Lr(Ω), −s − N
q
≤ −N

r
, 1 < r ≤ ∞, if −s − N

q
> −N

Lr(Ω), 1 < r ≤ ∞, if −s − N
q

= −N

M(Ω) if −s − N
q

< −N .

Then, the operator −A0 or, more precisely, a suitable realization of it, generates an
analytic semigroup, S0(t), in each space of the scale H2α,q

bc (Ω), α ∈ [−1, 1]. This semigroup
is order preserving and satisfies the smoothing estimates

‖S0(t)u0‖H2α,q

bc
(Ω) ≤

Mα,βeµ0t

tα−β
‖u0‖H2β,q

bc
(Ω), t > 0, u0 ∈ H2β,q

bc (Ω) (2.2)

for 1 ≥ α ≥ β ≥ −1 and some µ ∈ IR. In particular, one has

‖S0(t)u0‖Lτ (Ω) ≤
Mτ,ρe

µ0t

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω) (2.3)

for 1 ≤ ρ ≤ τ ≤ ∞. For any u0 in H2β,q
bc (Ω) or Lρ(Ω), the function u(t; u0) := S0(t)u0,

t > 0, is a classical solution of (2.1). The reader is referred to [2] and references therein,
for further properties of these spaces and semigroups.

Note that this construction applies to much more general elliptic operators than above.
Also, in the construction above the regularity of the coefficients, plays a fundamental role;
see [2].
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3 Perturbation of linear analytic semigroups in scales

of Banach spaces

From the example of Section 2, note that (2.2), can be rewritten in an abstract language
as follows. For this we denote

Xα := H2α,q
bc (Ω), α ∈ I := [−1, 1] (3.1)

and write (2.2) as

‖S0(t)‖L(Xβ ,Xα) ≤
Mα,βeµt

tα−β
, α ≥ β.

Analogously, (2.3) can be written in the same way for the scale of Lebesgue spaces Xα =
Lq(Ω) with q = −N

2q
with α ∈ I := [−N/2, 0].

Hence, in this section we consider a linear analytic semigroup S(t) defined on each of
the spaces of the family of Banach spaces (the “scale”) {Xα}α∈I where I is an interval of
real indexes. The norm of the space Xα is denoted by ‖ · ‖α.

Note that no other functional relationship is assumed among the spaces of the scale,
unless otherwise stated. Sometimes we will assume that the spaces are “nested”, that is,
for all α, β ∈ I with α ≥ β we have

Xα ⊂ Xβ (3.2)

with continuous inclusion and the norm of the inclusion will be denoted ‖i‖α,β. In such a
case we will say, for short, that the scale is nested. This situation will be explicitly cited
when needed. Note that for the example above, (3.1), we have ‖i‖α,β ≤ 1 for all α, β.

We also assume the semigroup acting on the scale satisfies, α, β ∈ I with α ≥ β

‖S(t)‖β,α := ‖S(t)‖L(Xβ ,Xα) ≤
M0(β, α)

tα−β
, for all 0 < t ≤ 1 (3.3)

for some constant M0(β, α) > 0.

Remark 3.1

i) Note that the semigroup S0(t) of Section 2 in the scale (3.1) satisfies that for each β,
the domain of the generator −A0 in Xβ is given by D(A0) = Xβ+1 and also the inclusion
(3.2) is dense and compact. These properties will not be used below; see however Theorem
3.20.
ii) The analysis we carry out below is based on (3.3). Note that this condition can be
relaxed assuming that for any given β ∈ I there exist a set R0(β) ⊂ I such that for
any α ∈ R0(β) we have α ≥ β and (3.3). Note that β ∈ R0(β) and R0(β) stands for
the set of spaces for which the evolution operator smoothes, starting from Xβ. Also note
that it is not essential that I is an interval. In fact (3.3) corresponds to the case when
R0(β) = [β,∞) ∩ I for all β ∈ I.

Most of the results below can be easily adapted to this more general situation.
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Observe that from these assumptions we get

Lemma 3.2 Assume (3.3) is satisfied. Then
i) For every α, β ∈ I and α ≥ β and for all T > 0,

‖S(t)‖β,α ≤
M0(β, α, T )

tα−β
, for all 0 < t ≤ T (3.4)

for some constant M0(β, α, T ) > 0.
ii) For each β ∈ I there exists ω(β) ≥ 0 such that

‖S(t)‖β,β ≤ M0(β, β)eω(β)t, for all t > 0

and for every α, β ∈ I and α ≥ β there exists ω = ω(β, α) and M(β, α) such that

‖S(t)‖β,α ≤
M(β, α)eωt

tα−β
, for all 0 < t < ∞.

iii) Assume the scale is nested, that is (3.2). Then, if for some fixed β0 ∈ I, we have

‖S(t)‖β0,β0 ≤ Meω0t, for all t > 0 (3.5)

for some M = M(β0) and ω0 ∈ IR, then for any α ∈ I, there exists a constant M(α) ≥ 1
such that

‖S(t)‖α,α ≤ M(α)eω0t, for all t > 0. (3.6)

Moreover, given t0 > 0, define δ = ‖S(t0)‖β0,β0. Then we have (3.5) with

ω0 =
ln(δ)

t0

and some constant M depending on t0, δ and M0(β0, β0, t0) as in (3.4). In particular if
δ < 1 then ω0 < 0.
iv) In the situation of iii), for every α, β ∈ I and α ≥ β we have

‖S(t)‖β,α ≤

{

M1(β, α)t−(α−β) if 0 < t ≤ 1,
M1(β, α)eω0t if t > 1

for some positive constant M1(β, α).
In particular, for all ε > 0 there exists Mε(β, α) > 0 such that

‖S(t)‖β,α ≤ Mε(β, α)
e(ω0+ε)t

tα−β
, for all t > 0.

Proof.

i) Indeed, given T > 0 define n as the smallest integer such that T ≤ n + 1. Then, for
0 < t ≤ T , define h = t

n+1
≤ 1 and sj = jh, j = 0, . . . , n + 1. Thus sn+1 = t and, since

S(t) = S(sn+1 − sn) · · ·S(s1 − s)
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we get, from (3.3),

‖S(t)‖β,α ≤ M0(α, α)nM0(β, α)(n + 1)α−βt−(α−β) for all 0 < t ≤ T.

Hence we can take

M0(β, α, T ) = M0(α, α)nM0(β, α)(n + 1)α−β.

ii) In particular, with α = β, given t > 0 define n ∈ IN such that n ≤ t < n + 1 and we
get as above,

‖S(t)‖β,β ≤ M0(β, β)n+1 ≤ M0(β, β)t+1 ≤ M0(β, β)eln(M0(β,β))t, for all t > 0

Note that as M0(β, β) ≥ 1 then ω(β) := ln(M0(β, β)) ≥ 0.
Now if α, β ∈ I and α ≥ β and for t > 1 we have

‖S(t)‖β,α ≤ ‖S(t − 1)‖α,α‖S(1)‖β,α ≤ M0(α, α)eω(α)(t−1)M0(β, α),

while for 0 < t < 1 we have estimate (3.3). Then for any ω > ω(α) we get the result.
iii) First notice that from (3.3), for any α ≥ β0, we have ‖S(1)‖β0,α ≤ M0(β0, α). Now, if
t > 1, then

‖S(t)u0‖α ≤ ‖S(1)‖β0,α‖S(t− 1)u0‖β0

≤ M0(β0, α)Me−ω0eω0t‖u0‖β0

≤ M0(β0, α)‖i‖α,β0Me−ω0eω0t‖u0‖α,

where ‖i‖α,β0 denotes the norm of the inclusion Xα →֒ Xβ0. Thus,

‖S(t)‖α,α ≤ Keω0t, for all t > 1

with K = M0(β0, α)‖i‖α,β0Me−ω0 .
On the other hand, if β0 ≥ α, we also have, from (3.3), ‖S(1)‖α,β0 ≤ M0(α, β0) and

for t > 1,

‖S(t)u0‖α ≤ ‖i‖β0,α‖S(t)u0‖β0

≤ ‖i‖β0,α‖S(t − 1)‖β0,β0‖S(1)u0‖β0

≤ ‖i‖β0,αMe−ω0eω0t‖S(1)‖α,β0‖u0‖α

≤ ‖i‖β0,αMe−ω0M0(α, β0)e
ω0t‖u0‖α.

Thus,
‖S(t)‖α,α ≤ Keω0t, for all t > 1

with K = M0(α, β0)‖i‖β0,αMe−ω0 .
Therefore, for any α ∈ I, we have the estimate

‖S(t)‖α,α ≤ K(α)eω0t, for all t > 1.
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Hence, again from (3.3) with β = α, we get (3.6) with

M(α) =
{

max{K(α), M0(α, α)} if ω0 ≥ 0
max{K(α), M0(α, α)e−ω0} if ω0 ≤ 0.

If moreover for given t0 > 0 we define δ = ‖S(t0)‖β0,β0 then for t > 0 we write
t = nt0 + s, with n ∈ IN and 0 ≤ s < t0. Then

‖S(t)‖β0,β0 ≤ δn‖S(s)‖β0,β0 ≤ e
ln(δ)( t−s

t0
)
M0(β0, β0, t0)

with M0(β0, β0, t0) as in (3.4) and the result follows. In particular if δ < 1 then ω0 < 0.
iv) Now note that if 0 < t ≤ 1, the estimate reduces to (3.3). On the other hand, if t > 1,
then, using (3.3) and part iii), we get

‖S(t)‖β,α ≤ ‖S(t − 1)‖α,α‖S(1)‖β,α

≤ M0(β, α)M(α)e−ω0eω0t = M1(β, α)eω0t.

and the rest follows easily.

Remark 3.3 Observe that if the original constants M0(β, α) in (3.3), do not depend (or
can be taken independent of α, β ∈ I), then the same is true for M0(β, α, T ) and M(α)
in (3.6) depends on the scale only through the norm of the inclusions ‖i‖β0,α or ‖i‖α,β0.

Hereafter we will make use extensively the following spaces.

Definition 3.4

For T > 0, γ ∈ I and ε ≥ 0 we define for functions in L∞
loc((0, T ], Xγ), the quantity

|||u|||γ,ε = sup
t∈(0,T ]

tε‖u(t)‖γ

which becomes a norm on the set of functions where it is finite, that we denote L∞
ε ((0, T ], Xγ).

Note that this set always contains L∞([0, T ], Xγ) and coincides with it when ε = 0. Also,
the spaces are increasing with ε. Then we have

Lemma 3.5 For T > 0, γ ∈ I and ε ≥ 0, L∞
ε ((0, T ], Xγ) with norm |||u|||γ,ε is a Banach

space.

Proof. Note that {uk}k is a Cauchy sequence in L∞
ε ((0, T ], Xγ) iff vk(t) = tεuk(t) is a

Cauchy sequence in L∞([0, T ], Xγ) and also uk(t) converges in Xγ to some u(t) for each
t > 0 and uniformly for δ ≤ t ≤ T . The rest is easy.

Also, part i) in Lemma 3.2 can be stated as
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Lemma 3.6 Assume the semigroup S(t) and the scale of spaces satisfy (3.3).
Then, for any α, β ∈ I with α ≥ β and T > 0,

S(·) : Xβ −→ L∞
α−β((0, T ], Xα), u0 7→ S(·)u0

is linear and continuous.

Now we turn into the linear nonhomogeneous equation associated with a semigroup
and a scale satisfying (3.3). Hence, assume f ∈ L1

loc((0, T ), Xγ). Then we consider
function defined by the variation of constants formula,

u(t; u0) = S(t)u0 +
∫ t

0
S(t − τ)f(τ) dτ. (3.7)

Then we prove the following result.

Theorem 3.7 Assume 1 ≤ σ ≤ ∞, f ∈ Lσ((0, T ), Xγ), with T > 0, u0 ∈ Xγ, and u is
given by (3.7). Assume also

0 ≤ γ′ − γ <
1

σ′
,

(where 1/σ + 1/σ′ = 1), or γ′ = γ if σ = 1.
i) Then, u ∈ L∞

γ′−γ((0, T ), Xγ′
) and

Xγ × Lσ((0, T ), Xγ) ∋ (u0, f) 7−→ u ∈ L∞
γ′−γ((0, T ), Xγ′

)

is (linear and) continuous.
ii) Moreover, u ∈ C((0, T ], Xγ′

) and if u0 ∈ Xγ′
then u ∈ C([0, T ], Xγ′

) and the mapping

Xγ′

× Lσ((0, T ), Xγ) ∋ (u0, f) 7−→ u ∈ C([0, T ], Xγ′

)

is (linear and) continuous.
iii) Finally, if f ∈ L1((0, T ), Xγ) and is locally Lipschitz continuous, then u(t) is a strong
solution of

ut + Au = f(t), 0 < t ≤ T, in Xγ, u(0) = u0.

Proof.

i) Setting u(t) = u(t; u0), from (3.7) and (3.3), then for γ′ = γ if σ = 1 or for 0 ≤ γ′−γ < 1
σ′

if 1 < σ ≤ ∞, we have

‖u(t)‖γ′ ≤ M0(T )
[

t−(γ′−γ)‖u0‖γ +
(
∫ t

0
(t − τ)−σ′(γ′−γ) dτ

)1/σ′
(
∫ t

0
‖f(τ)‖σ

γ dτ
)1/σ

]

which gives

‖u(t)‖γ′ ≤ M1(T )
[

t−(γ′−γ)‖u0‖γ + t
1
σ′−(γ′−γ)

(
∫ t

0
‖f(τ)‖σ

γ dτ
)1/σ

]
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so it is bounded on finite intervals away from t = 0 and in particular u(t) ∈ Xγ′
for t > 0.

In particular
|||u|||γ′,γ′−γ ≤ C(T )(‖u0‖γ + ‖f‖Lσ((0,T ),Xγ ))

which proves i).

ii) To prove continuity, fix t > 0 (or even t = 0 if u0 ∈ Xγ′
), h > 0, and then, from (3.7),

u(t + h) − u(t) = S(h)u(t) +
∫ t+h

t
S(t + h − τ)f(τ) dτ

and (3.3) gives

‖u(t + h) − u(t)‖γ′ ≤ ‖S(h)u(t) − u(t)‖γ′ + M(T )
∫ t+h

t
(t + h − τ)−(γ′−γ)‖f(τ)‖γ dτ.

Now the first term goes to zero as h → 0 while the second term is bounded by

M

(

∫ t+h

t
(t + h − τ)−σ′(γ′−γ) dτ

)1/σ′ (
∫ t+h

t
‖f(τ)‖σ

γ dτ

)1/σ

≤ M0h
1
σ′−γ′−γ

and we have continuity.
Moreover, if u0 ∈ Xγ′

, we have ‖u‖C([0,T ],Xγ′) ≤ C
(

‖u0‖γ′ + ‖f‖Lσ((0,T ),Xγ )

)

and this

proves that the mapping (u0, f) 7→ u is (linear and) continuous.
The proofs for σ = ∞ follows the same lines, with obvious modifications, and are

therefore omitted.
Since the semigroup is analyitc in Xγ, part iii) follows from Lemma 3.2.1 in [11].

Now, assume that for some fixed α ≥ β, with 0 ≤ α − β < 1 we have a linear
perturbation satisfying

P ∈ L(Xα, Xβ). (3.8)

Consider the abstract linear integral problem, with u0 to be chosen below

u(t; u0) = S(t)u0 +
∫ t

0
S(t − τ)Pu(τ ; u0) dτ, t > 0. (3.9)

Definition 3.8 For a given function u defined on (0, T ] and taking values in Xα, we
define

F(u, u0)(t) = S(t)u0 +
∫ t

0
S(t − τ)Pu(τ) dτ, 0 < t ≤ T (3.10)

assumed it is well defined.

Then we have the following Lemma

Lemma 3.9 Assume the semigroup S(t) and the scale of spaces satisfy (3.3) and the
perturbation P satisfies (3.8). Assume ε ≥ 0, δ ≥ 0, γ, γ′ ∈ I, with and γ′ ≥ γ, are such
that

β ≤ γ′ < β + 1 and 0 ≤ ε < 1 (3.11)

10



Then for u ∈ L∞
ε ((0, T ], Xα) and u0 ∈ Xγ, we have

i) For 0 < t ≤ T

tδ‖
∫ t

0
S(t − τ)Pu(τ) dτ‖γ′ ≤ M1(T )tβ+δ+1−γ′−ε‖P‖L(Xα,Xβ)|||u|||α,ε

where M1(T ) = c(β, γ′, ε)M0(β, γ′, T ).
ii) For 0 < t ≤ T

tδ‖F(u, u0)(t)‖γ′ ≤ tδ‖S(t)u0‖γ′ + M1(T )tβ+δ+1−γ′−ε‖P‖L(Xα,Xβ)|||u|||α,ε

with M1(T ) as above.
iii) In particular, if

δ = γ′ − γ ≥ 0 and γ < β + 1 − ε, (3.12)

then
|||F(u, u0)|||γ′,δ ≤ |||S(·)u0|||γ′,δ + C(T )‖P‖L(Xα,Xβ)|||u|||α,ε

with C(T ) = M1(T )T β+1−γ−ε and all terms above are finite. In particular,

(u, u0) ∋ L∞
ε ((0, T ], Xα) × Xγ 7−→ F(u, u0) ∈ L∞

γ′−γ((0, T ], Xγ′

)

is linear and continuous.

Proof. We first prove part i), and then part ii) and iii) are immediate. Using (3.4) we
have for γ′ ≥ β

tδ‖
∫ t

0
S(t − τ)Pu(τ) dτ‖γ′ ≤ M(T )tδ

∫ t

0

1

(t − τ)γ′−β
‖P‖α,β‖u(τ)‖α dτ ≤

≤ M(T )|||u|||α,ε‖P‖α,βt
δ
∫ t

0

1

(t − τ)γ′−βτ ε
dτ,

where we have set M(T ) = M0(β, γ′, T ) as in (3.4). Now the change of variables τ = rt
gives the result with

M1(T ) = M(T )(
∫ 1

0

1

(1 − r)γ′−βrε
dr)

provided γ′ − β < 1 and ε < 1 as in the statement.

Note that when we take γ′ > γ in Lemma 3.9 above, this result can be interpreted as
a smoothing effect of the variation of constants formula (3.10). The same applies to the
next result in which we analyze continuity in time.

Lemma 3.10 With the same notations and assumptions as in Lemma 3.9, for u ∈
L∞

ε ((0, T ], Xα) and u0 ∈ Xγ, if (3.11) holds, that is

β ≤ γ′ < β + 1, 0 ≤ ε < 1

we have
F(u, u0) ∈ C((0, T ], Xγ′

).

Further more F(u, u0) is locally Hölder continuous with values in Xγ′
.
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Proof. Fix 0 < t < T and take h > 0 small, so that t + h ≤ T . Also take 0 < t∗ < t − h
to be chosen below. Then, from (3.10) we have

F(u, u0)(t
∗) = S(t∗)u0 +

∫ t∗

0
S(t∗ − τ)Pu(τ) dτ.

Then we get,

F(u, u0)(t + h) = S(t + h − t∗)F(u, u0)(t
∗) +

∫ t+h

t∗
S(t + h − τ)Pu(τ) dτ,

F(u, u0)(t) = S(t − t∗)F(u, u0)(t
∗) +

∫ t

t∗
S(t − τ)Pu(τ) dτ

The, suppressing temporarily the dependence in u0, we get

F(u)(t + h) −F(u)(t) =
(

S(t + h − t∗) − S(t − t∗)
)

F(u)(t∗)+

+
∫ t+h

t
S(t + h − τ)Pu(τ) dτ +

∫ t

t∗

(

S(h) − I
)

S(t − τ)Pu(τ) dτ. (3.13)

Now we estimate in norm in (3.13) to get

‖F(u)(t + h) − F(u)(t)‖γ′ ≤ ‖
(

S(t + h − t∗) − S(t − t∗)
)

F(u)(t∗)‖γ′+

+M(T )
∫ t+h

t
(t+h− τ)−(γ′−β)‖P‖α,β‖u(τ)‖α dτ +M(T )

∫ t

t∗
(t− τ)−(γ′−β)‖P‖α,β‖u(τ)‖α dτ

where, in the third term, we have used that ‖S(h) − I‖γ′,γ′ is bounded.
Now, since S(t) is an analytic semigroup in Xγ′

, the first term is bounded by a constant
times h, while using that u is bounded in Xα on [t∗, T ], the second and third ones are
bounded, respectively, by

K(T, u)

(

∫ t+h

t
(t + h − τ)−(γ′−β) dτ

)

‖P‖L(Xα,Xβ) = K1(T, u)‖P‖L(Xα,Xβ)h
1−(γ′−β)

K(T, u)
(
∫ t

t∗
(t − τ)−(γ′−β) dτ

)

‖P‖L(Xα,Xβ) = K1(T, u)‖P‖L(Xα,Xβ)(t − t∗)1−(γ′−β)

Now taking t∗ = t − 2h, we get the result.

Now we finally analyze continuity at t = 0.

Lemma 3.11 With the notations of Lemma 3.9, if

β ≤ γ′ < β + 1 − ε, 0 ≤ ε < 1

then for u ∈ L∞
ε ((0, T ], Xα) and u0 ∈ Xγ′

F(u, u0)(t) → u0, in Xγ′

, as t → 0.

Moreover, if the scale is nested and u0 ∈ Xγ, for some γ ≤ γ′,

F(u, u0)(t) → u0, in Xγ, as t → 0.

12



Proof. By part i) in Lemma 3.9, with δ = 0, we have

‖
∫ t

0
S(t − τ)Pu(τ) dτ‖γ′ ≤ M1(T )tβ+1−γ′−ε‖P‖L(Xα,Xβ)|||u|||α,ε

where M1(T ) = c(β, γ′, ε)M0(β, γ′, T ). Clearly the right hand side above goes to zero, as
t → 0.

On the other hand note that, by the choice of u0 we have S(t)u0 → u0 in Xγ′
, or in

Xγ when the spaces satisfy (3.2).

To find solutions of the linear problem (3.9), we start by the following “base” case.

Proposition 3.12 Solutions in Xα.

Assume the semigroup S(t) and the scale of spaces satisfy (3.3) and assume also the
perturbation satisfies (3.8). If

0 ≤ α − β < 1, (3.14)

then for each u0 ∈ Xα there exists a unique solution of (3.9), u(·; u0) ∈ L∞
loc((0,∞), Xα),

which is moreover in C([0,∞), Xα).
Furthermore, for each α ≤ γ′ < β + 1, we have that the solution satisfies

u(·; u0) ∈ C((0,∞), Xγ′

).

Even more, the unique solutions of (3.9) define a linear semigroup in Xα as

SP (t)u0 := u(t; u0), for all t > 0 (3.15)

Proof. We show that there exists T > 0 such that F(·, u0) is a contraction in L∞([0, T ], Xα).
For this take u0 ∈ Xα and u1, u2 in L∞([0, T ], Xα) and note that, the right hand side of
(3.10) is affine in u. Also from (3.14) we can use part iii) of Lemma 3.9 with γ′ = γ = α,
δ = ε = 0, to get F(ui, u0) ∈ L∞([0, T ], Xα) and also

|||F(u1, u0) −F(u2, u0)|||α,0 ≤ C(T )‖P‖L(Xα,Xβ)|||u1 − u2|||α,0

with C(T ) = M1(T )T β+1−α and is a contraction for small enough T .
Since T can be taken independent of u0 ∈ Xα, it is easy to obtain that the solutions are

defined for all t ≥ 0. The continuity in time comes from Lemma 3.10 while the continuity
at t = 0 in Xα comes from Lemma 3.11, with γ′ = α and ε = 0.

Also, from (3.10) it follows that the operators defined in (3.15) are linear. Finally, the
continuity of SP (t) in Xα will be proved in Proposition 3.15 below.

For weaker initial data we have the following result.

Theorem 3.13 Solutions in Xγ.

Assume the scale of spaces satisfy (3.3) and assume also the perturbation satisfies
(3.8). If (3.14) is satisfied, that is

0 ≤ α − β < 1,
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then for each
α − 1 < γ ≤ α, (3.16)

there exists T such that for each u0 ∈ Xγ there exists a unique solution of (3.9) u ∈
L∞

ε ((0, T ], Xα), with 0 ≤ ε = α − γ < 1.
Moreover the solution above is defined for all t > 0 and for each

β ≤ γ′ < β + 1, γ′ ≥ γ, (3.17)

we have that the solution satisfies

u(·; u0) ∈ C((0,∞), Xγ′

).

If, additionally u0 ∈ Xγ′
then

u(·; u0) ∈ C([0,∞), Xγ′

).

Even more, for any γ ∈ [β, α], the unique solutions of (3.9) define a linear semigroup
in Xγ as

SP (t)u0 := u(t; u0), for all t > s. (3.18)

If the scale is nested, the same is true for any γ ∈ (α − 1, α].

Proof. Now we show that F(·, u0) is a contraction in L∞
ε ((0, T ], Xα) with 0 ≤ ε = α−γ <

1. For this take u0 ∈ Xγ and u1, u2 in L∞
ε ((0, T ], Xα) and note that the right hand side

of (3.10) is affine in u. Also, from (3.14) and (3.16) we can use part iii) of Lemma 3.9
with γ′ = α and 0 ≤ ε = δ = α − γ < 1, to get F(ui, u0) ∈ L∞

ε ((0, T ], Xα) and also

|||F(u1, u0) − F(u2, u0)|||α,ε ≤ C(T )‖P‖L(Xα,Xβ)|||u1 − u2|||α,ε

with C(T ) = M1(T )T β+1−α and is a contraction for small enough T .
Since T can be taken independent of u0 ∈ Xγ, then it is easy to obtain that the

solutions are defined for all t ≥ 0.
The continuity in time comes from Lemma 3.10 while the continuity at t = 0 in Xγ′

comes from Lemma 3.11, with ε = α − γ.
Now observe that in particular we have that for t0 > 0 the solution satisfies u(t0) ∈ Xα

and u ∈ L∞
loc([t0,∞), Xα). Hence after time t0, the solution coincides with the unique

solution of Proposition 3.12.
If γ ∈ [β, α] then we can take γ′ = γ. In particular, from this, it is easily seen that

the linear operators SP (t) define a linear semigroup.
As before, the continuity of SP (t) in Xγ will be proved in Proposition 3.15 below.

Remark 3.14 Note that the time T for which F is a contraction in Proposition 3.12 and
in Theorem 3.13 can be taken the same for all perturbations such that

‖P‖L(Xα,Xβ) ≤ R0

for some R0 > 0.
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Now we prove the following estimates on the solutions of (3.9). In particular this
proves that the semigroup SP (t) defined in (3.15) and (3.18) is continuous.

Proposition 3.15 Assume (3.3), (3.8), and (3.14). Then for every R0 > 0 and every

P ∈ L(Xα, Xβ) with ‖P‖L(Xα,Xβ) ≤ R0

and for every γ, γ′ ∈ I such that

γ ∈ E(α) = (α − 1, α], γ′ ∈ R(β) = [β, β + 1), γ′ ≥ γ, (3.19)

there exist constants ω = ω(γ, γ′, R0) ≥ 0 and M0 = M0(γ, γ′, R0) such that, for t > 0,
the unique solution of (3.9) in Theorem 3.13 defines a mapping from Xγ into Xγ′

SP (t)u0 := u(t; u0), for all t > s

such that
‖SP (t)u0‖γ′ ≤ M0e

ωtt−(γ′−γ)‖u0‖γ , γ′ ≥ γ. (3.20)

In particular for any γ ∈ [β, α], SP (t) ∈ L(Xγ) and it is a semigroup of linear contin-
uous operators in Xγ.

The same is true for any γ ∈ E(α), if the scale is nested.

Proof. First, by (3.14) and (3.19), see (3.16), we can use part iii) in Lemma 3.9 for the
fixed point of F , with γ′ = α, 0 ≤ ε = δ = α − γ < 1, to get

|||u(·; u0)|||α,ε ≤ |||S(·)u0|||α,ε + C(T )‖P‖L(Xα,Xβ)|||u(·; u0)|||α,ε

with C(T ) = M1(T )T β+1−α.
Then, note that, by (3.4) and the choice of ε, |||S(·)u0|||α,ε ≤ M0(γ, α, T )‖u0‖γ and by

(3.8), take T such that C(T )‖P‖L(Xα,Xβ) ≤
1
2

for all perturbations P as in the statement.
Thus,

|||u(·; u0)|||α,ε ≤ 2M0(γ, α, T )‖u0‖γ. (3.21)

Now by (3.19), we can use part iii) in Lemma 3.9 for the fixed point of F , with γ′ ≥ γ,
δ = γ′ − γ, 0 ≤ ε = α − γ < 1, to get

|||u(·; u0)|||γ′,δ ≤ |||S(·)u0|||γ′,δ + C(T )‖P‖L(Xα,Xβ)|||u(·; u0)|||α,ε.

again with C(T ) = M1(T )T β+1−α.
Then, note that, by (3.4) and the choice of δ, |||S(·)u0|||γ′,δ ≤ M0(γ, γ′, T )‖u0‖γ and

using (3.21), we have

|||u(·; u0)|||γ′,δ ≤
(

M0(γ, γ′, T ) + C(T )‖P‖L(Xα,Xβ)2M0(γ, α, T )
)

‖u0‖γ.

Hence, by the choice of T above,

|||u(·; u0)|||γ′,δ ≤ M̃0(γ, γ′, T )‖u0‖γ
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with M̃0(γ, γ′, T ) = M0(γ, γ′, T ) + M0(γ, α, T ).
Note that this gives,

‖SP (t)‖γ,γ′ ≤
M̃0(γ, γ′, T )

tγ′−γ
, for all 0 < t ≤ T. (3.22)

Arguing as in part ii) in Lemma 3.2 we conclude (3.20).
In particular, for any γ ∈ [β, α] , we can take γ′ = γ and from (3.20) we get that

SP (t) ∈ L(Xγ) and is a semigroup of linear continuous operators in Xγ. The same
happens, from (3.20), for any γ ∈ (α − 1, α] when the scale is nested.

Remark 3.16

i) Observe that if the original constants M0(β, α) in (3.3), do not depend, or can be
taken independent of α, β ∈ I, then the same is true for M0(γ, γ′, R0) and ω(γ′, R0) in
Proposition 3.15, which become independent of the spaces of the scale.
ii) If the scale is nested, once the perturbation P is fixed, the estimate (3.22) for 0 < t ≤ 1
allows to apply part iii) in Lemma 3.2 to obtain that there exists ω0 = ω0(P ) such that

‖SP (t)u0‖γ ≤ M0(γ)eω0t‖u0‖γ

for all γ ∈ E(α) = (α − 1, α]. In turn, part iv) in Lemma 3.2 implies that (3.20) holds
for some exponent independent of γ, γ′.

Remark 3.17 Note that once the semigroup SP (t) is constructed as above we can use the
results in parts i) and ii) in Theorem 3.7 for f ∈ Lσ((0, T ), Xγ), with 1 ≤ σ ≤ ∞ and
γ ∈ E(α) = (α − 1, α].

Part iii) in Theorem 3.7 requires that the semigroup SP (t) is analytic. This can be
achieved by means of Theorem 3.20 below.

Remark 3.18 Strong solutions

i) Note that for u0 ∈ Xα the solution of (3.9) obtained in Proposition 3.12 satisfies

u(t; u0) = SP (t)u0 = F(u, u0)(t) = S(t)u0 +
∫ t

0
S(t − τ)Pu(τ ; u0) dτ.

Then, by Lemma 3.10, u is locally Hölder with values in Xα and then h(τ) = Pu(τ) is
locally Hölder with values in Xβ (or in Xγ for any γ ≤ β, if the scale is nested). Since
S(t) is analytic in Xβ (or in Xγ for any γ ≤ β, if the scale is nested), then Lemma 3.2.1
in [11] implies that, for t > 0, u(t; u0) is a C1 strong solution of

ut + Au = Pu, in Xβ,

(or in Xγ for any γ ≤ β, if the scale is nested) where −A is the infinitesimal generator
of the semigroup S(t) in Xβ. In particular −A + P is the infinitesimal generator of the
semigroup SP (t).
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For u0 ∈ Xγ, for γ ∈ E(α), the solution of (3.9) obtained in Theorem 3.13 satisfies
u(t0) ∈ Xα, for any t0 > 0 and we can use the argument above for t > t0 as well.

ii) Assume we can prove that the semigroup SP (t) is analytic in some Xγ for γ ∈ E(α).
Then, thanks to Proposition 3.15, we can use the Transfer of Analyticity lemma, proved
in [5]

Lemma 3.19 Transfer of Analyticity

Assume {S(t)}t≥0 is an analytic semigroup in a Banach space X. Assume that for
some Banach space Y and for t > 0,

S(t) ∈ L(X, Y ).

Then for each u0 ∈ X, the curve of the semigroup (0,∞) ∋ t 7→ S(t)u0 is analytic in
Y . Moreover for each t0, the Taylor series in Y has a radius of convergence not smaller
than the one in X.

In particular if Y ⊂ X, with continuous injection, then {S(t)}t≥0 defines an analytic
semigroup in Y .

to conclude that the curves of the semigroup are analytic in Xγ′
for γ′ ∈ R(β), γ′ ≥ γ.

In particular, if the scale is nested, we conclude that SP (t) defines an analytic semigroup
in Xγ′

for γ′ ≥ γ.

Note that part ii) of Remark 3.18 rises the question of proving that the semigroup
SP (t) is analytic in some Xγ for γ ∈ E(α). This can be achieved by some “elliptic”
argument as below. Note that for this the scale and the semigroup S(t) must satisfy a
closer relationship than just (3.3); see part i) of Remark 3.1. Also the spaces in the scale
must have some interpolation properties. This conditions are satisfied in many particular
examples; see Sections 5 and 6.

Theorem 3.20 Assume the scale is nested, that is, (3.2), and that for any γ ∈ I, if −A
denotes the infinitesimal generator of S(t) in Xγ, then its domain is given by D(A) =
Xγ+1.

Also assume the scale satisfies the following interpolation property: if Y is a Banach
space and T ∈ L(Xγ, Y ) and T ∈ L(Xγ′

, Y ) then T ∈ L(Xθγ+(1−θ)γ′
, Y ) for θ ∈ [0, 1] and

‖T‖L(Xθγ+(1−θ)γ′ ,Y ) ≤ ‖T‖θ
L(Xγ ,Y )‖T‖1−θ

L(Xγ′ ,Y )
.

As in Theorem 3.13 and Proposition 3.15, assume that for some fixed α ≥ β, with
0 ≤ α − β < 1 we have a family of linear perturbations satisfying

P ∈ L(Xα, Xβ) with ‖P‖L(Xα,Xβ) ≤ R0.

Then, there exists some 0 < ω0 = ω0(R0) such that for any Re(λ) ≥ ω0 and any
γ ∈ (α − 1, β) the operator A + λI − P , between Xγ+1 and Xγ, is invertible and

‖(A + λI − P )−1‖L(Xγ ,Xγ) ≤
C

|λ|
, Re(λ) ≥ ω0 (3.23)

17



and
‖(A + λI − P )−1‖L(Xγ ,Xγ+1) ≤ C, Re(λ) ≥ ω0 (3.24)

where C is independent of P and λ.
In particular, for every γ ∈ (α− 1, β), the semigroup SP (t) in Xγ in Theorem 3.13 is

analytic.
The same holds for any γ ∈ E(α) = (α − 1, α], by Lemma 3.19.

Proof. Note that for any γ ∈ (α − 1, β) there exists β ≥ γ̃ > γ such that

P : Xγ+1 ⊂ Xα → Xβ ⊂ X γ̃ ⊂ Xγ, (3.25)

is linear and continuous and ‖P‖L(Xγ+1,X γ̃) ≤ R̃0.
Now for given g ∈ Xγ the equation Au + λu − Pu = g can be written as

u = Tλ(u) := (A + λI)−1g + (A + λI)−1Pu.

Observe now that from the resolvent estimates in [3], Chapter I, Section 1.2, we have that
for each 0 ≤ α ≤ 1, for some ω > 0 and C ≥ 1,

‖(A + λ)−1‖L(Xγ ,Xγ) ≤
C

|λ|
, Re(λ) ≥ ω

‖(A + λ)−1‖L(Xγ+1,Xγ+1) ≤
C

|λ|
, Re(λ) ≥ ω

and
‖(A + λ)−1‖L(Xγ ,Xγ+1) ≤ C, Re(λ) ≥ ω.

Interpolating these last two inequalities we get, for any γ < γ̃ < γ + 1

‖(A + λ)−1‖L(X γ̃ ,Xγ+1) ≤
C

|λ|γ̃−γ
.

Therefore, from this and (3.25) we get that the Lipschitz constant of Tλ : Xγ+1 → Xγ+1

is bounded by C
|λ|γ−γ̃ .

Therefore there exists ω0 ≥ ω such that Tλ is a contraction, with Lipschitz constant
θ < 1 uniform for all Re(λ) ≥ ω0 and P . This implies that the unique fixed point of Tλ

satisfies

‖u‖Xγ+1 ≤
1

1 − θ
‖(A + λ)−1g‖Xγ+1 ≤

C

1 − θ
‖g‖Xγ , (3.26)

which proves (3.24). This, in turn, implies

‖u‖Xγ ≤ ‖(A + λ)−1g‖Xγ + ‖(A + λ)−1Pu‖Xγ ≤
C

|λ|
(‖g‖Xγ + ‖Pu‖Xγ)

and, using again (3.25) and (3.26), we get

‖u‖Xγ ≤
C

|λ|
‖g‖Xγ
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which proves (3.23).
Then from e.g. Section 1.2 in Chapter I, in [3] we get that −A + P generates an

analytic semigroup S̃(t) in Xγ and for every u0 ∈ Xγ , the function u(t; u0) := S̃(t)u0

satisfies, for t > 0, ut + Au = Pu in Xγ. Hence, u(t; u0) satisfies (3.9) and then by
uniqueness we have S̃(t)u0 = SP (t)u0.

The rest of the range for γ follows from Lemma 3.19.

Remark 3.21 Note that the “elliptic” approach in the theorem above for the generation
of an analytic semigroup gives worse results than the “parabolic” one used in Theorem
5.6. In fact, besides the extra assumptions on the scale, the semigroup in Theorem 3.20
is defined only in the spaces Xγ for γ ∈ (α − 1, β), while in Theorem 3.13 the semigroup
is defined for γ ∈ (α − 1, α].

Now we consider the case in which several perturbations are considered sequentially.
Assume

P 1, P 2 ∈ L(Xα, Xβ), with 0 ≤ α − β < 1

and consider the mapping SP 1(t) for u0 ∈ Xγ with γ ∈ E(α). Now we repeat the
construction starting out of SP 1(t). Then we would have the new mapping that we
denote S[P 1,P 2](t) which is formally given by

S[P 1,P 2](t)u0 = SP 1(t)u0 +
∫ t

0
SP 1(t − τ)P 2S[P 1,P 2](τ)u0 dτ.

Now we state some properties of the resulting mappings.

Lemma 3.22 i) If P = aI, with a ∈ IR, then

SaI(t) = eatS(t) in Xγ for every γ ∈ I.

ii) If P ∈ L(Xα, Xβ), 0 ≤ α − β < 1, and a ∈ IR then

S[aI,P ](t) = S[P,aI](t) = eatSP (t) in Xγ for every γ ∈ E(α).

If the scale is nested, or at least Xα ⊂ Xβ, then the operator above coincide with SP+aI(t).
iii) If P 1, P 2 ∈ L(Xα, Xβ), 0 ≤ α − β < 1, then

S[P 1,P 2](t) = S[P 2,P 1](t) = SP 1+P 2(t) in Xγ for every γ ∈ [β, α].

Proof.

i) Note that for P = aI we can take α = β = γ for any γ ∈ I. Now for u0 ∈ Xγ we have
that u(t; u0) = SaI(t)u0 is the unique fixed point of (3.9), that is

u(t; u0) = S(t)u0 + a
∫ t

0
S(t − τ)u(τ ; u0) dτ.
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On the other hand, setting v(t) = eatS(t)u0 we have

S(t)u0 + a
∫ t

0
S(t − τ)v(τ) dτ =

(

1 +
∫ t

0
aeaτ dτ

)

S(t)u0 = eatS(t)u0 = v(t).

Hence, v(t) = u(t; u0).
ii) From i), applied to SP (t), we have, for every u0 ∈ Xγ with γ ∈ E(α), S[P,aI](t)u0 =
eatSP (t)u0 which, by (3.9), can be written as

eatSP (t)u0 = eatS(t)u0 +
∫ t

0
ea(t−τ)S(t − τ)P

(

eaτSP (τ)u0

)

dτ.

On the other hand, by the expression for SaI(t) from i), we have that for every u0 ∈ Xγ

with γ ∈ E(α),

S[aI,P ](t)u0 = eatS(t)u0 +
∫ t

0
ea(t−τ)S(t − τ)PS[aI,P ](τ)u0 dτ.

The uniqueness of the fixed point problem gives

S[aI,P ](t)u0 = eatSP (t)u0 = S[P,aI](t)u0.

The last part follows from iii) below.
iii) Note that from Remark 3.18, for every γ ∈ E(α) and u0 ∈ Xγ, u(t; u0) := SP 1+P 2(t)u0

satisfies, for t > 0,
ut + Au = (P 1 + P 2)u, in Xβ,

(or in Xγ for any γ ≤ β, if the scale is nested) which can be written as

ut + (A − P 1)u = P 2u,

or as
ut + (A − P 2)u = P 1u.

In the first case we get,

u(t; u0) = SP 1(t − t0)u(t0; u0) +
∫ t

t0
SP 1(t − τ)P 2u(τ ; u0) dτ

while in the second

u(t; u0) = SP 2(t − t0)u(t0; u0) +
∫ t

t0
SP 2(t − τ)P 1u(τ ; u0) dτ

for t > t0 and any t0 > 0.
Now from Theorem 3.13, if u0 ∈ Xγ′

with γ′ ∈ R(β) then u(t0; u0) → u0 in Xγ′
as

t0 → 0. If γ ∈ [β, α] then we can take γ′ = γ. From this and using again Theorem 3.13
we get that the first terms in the right hand side above converge to SP 1(t)u0 and SP 2(t)u0

in Xγ′
respectively. Hence in the first case we get

u(t; u0) = SP 1(t)u0 +
∫ t

0
SP 1(t − τ)P 2u(τ ; u0) dτ
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while in the second

u(t; u0) = SP 2(t)u0 +
∫ t

0
SP 2(t − τ)P 1u(τ ; u0) dτ.

The uniqueness of solutions of (3.9) implies then that u(t; u0) = S[P 1,P 2](t)u0, in the
first case and u(t; u0) = S[P 2,P 1](t)u0 in the second.

4 Convergence of linear semigroups

With the setting of Section 3, assume that we have two perturbations

P i ∈ L(Xα, Xβ), i = 1, 2, 0 ≤ α − β < 1.

Our goal is then to compare semigroups SP i(t), i = 1, 2. Hence assume

‖P i‖L(Xα,Xβ) ≤ R0 i = 1, 2

for some R0 > 0. Also, consider the existence and regularity intervals as in (3.19)

γ ∈ E(α) = (α − 1, α], γ′ ∈ R(β) = [β, β + 1), γ′ ≥ γ.

Consider then two initial data ui
0 ∈ Xγ, i = 1, 2 and the corresponding solution of

(3.9)

ui(t; ui
0) = SP i(t)ui

0 = S(t)ui
0 +

∫ t

0
S(t − τ)P iui(τ ; ui

0) dτ, t > 0

and denote
z(t, u1

0, u
2
0) = u1(t; u1

0) − u2(t; u2
0).

Theorem 4.1 With the notations above, for any R0 > 0,
i) There exists a sufficiently small T0 such that for all perturbations P i such that ‖P i‖L(Xα,Xβ) ≤
R0,

|||z(·, u1
0, u

2
0)|||γ′,δ ≤ L(T0, R0)

(

‖u1
0 − u2

0‖γ + ‖P 1 − P 2‖L(Xα,Xβ)‖u
2
0‖γ

)

, (4.1)

with δ = γ′ − γ. In particular,

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤
L(T0, R0)

tγ′−γ
‖P 1 − P 2‖L(Xα,Xβ), for all 0 < t ≤ T0 (4.2)

ii) For every T > T0

‖z(t, u1
0, u

2
0)‖γ′ ≤ M2(T, T0, R0)

(

‖u1
0 − u2

0‖γ + ‖P 1 − P 2‖L(Xα,Xβ)‖u
2
0‖γ

)

, T0 ≤ t ≤ T.

(4.3)
In particular,

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤ L(T, T0, R0)‖P
1 − P 2‖L(Xα,Xβ), for all T0 < t ≤ T (4.4)
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Proof.

i) We first show the estimate for short times. Dropping momentarily the dependence in
u1

0, u
2
0, we get

z(t) = S(t)(u1
0 − u2

0) +
∫ t

0
S(t − τ)

(

P 1 − P 2
)

u2(τ) dτ +
∫ t

0
S(t − τ)P 1z(τ) dτ.

First note that by (3.20) in Proposition 3.15 we have, for ε = α−γ and for any T > 0,

|||ui|||α,ε ≤ M0(T, R0)‖u
i
0‖γ. (4.5)

Then, arguing as in Lemma 3.9, we get, with δ = γ′ − γ, ε = α − γ

|||z|||γ′,δ ≤ |||S(·)(u1
0−u2

0)|||γ′,δ+C(T )‖P 1−P 2‖L(Xα,Xβ)|||u
2|||α,ε+C(T )‖P 1‖L(Xα,Xβ)|||z|||α,ε

with C(T ) = M1(T )T β+1−α. Also note that the first term in the right hand side is bounded
by M(T )‖u1

0 − u2
0‖γ.

First, with γ′ = α, δ = α − γ = ε, we get

|||z|||α,ε ≤ M(T )‖u1
0−u2

0‖γ +C(T )‖P 1−P 2‖L(Xα,Xβ)|||u
2|||α,ε+C(T )‖P 1‖L(Xα,Xβ)|||z|||α,ε

with C(T ) = M1(T )T 1+β−α. Then for T0 small such that C(T0)R0 ≤ 1/2 we get

|||z|||α,ε ≤ 2M(T0)‖u
1
0 − u2

0‖γ + 2C(T0)‖P
1 − P 2‖L(Xα,Xβ)|||u

2|||α,ε. (4.6)

Now with γ′ and δ = γ′ − γ and ε = α − γ, we get

|||z|||γ′,δ ≤ M(T0)‖u
1
0−u2

0‖γ+C(T0)‖P
1−P 2‖L(Xα,Xβ)|||u

2|||α,ε+C(T0)‖P
1‖L(Xα,Xβ)|||z|||α,ε

again with C(T0) = M1(T0)T
1+β−α
0 .

Hence, using (4.5) and (4.6), we get (4.1) which is valid for all P i such that ‖P i‖L(Xα,Xβ) ≤
R0.

In particular, if u1
0 = u2

0 = u0 then

|||z|||γ′,δ ≤ L(T0, R0)‖P
1 − P 2‖L(Xα,Xβ)‖u0‖γ

which leads to (4.2).
ii) For T0 < t ≤ T observe that

ui(t; ui
0) = SP i(t)ui

0 = S(t − T0)u
i(T0; u

i
0) +

∫ t

T0

S(t − τ)P iui(τ ; ui
0) dτ.

Dropping momentarily the dependence in u1
0, u

2
0, we get

z(t) = S(t − T0)z(T0) +
∫ t

T0

S(t − τ)
(

P 1 − P 2
)

u2(τ) dτ +
∫ t

T0

S(t − τ)P 1z(τ) dτ.
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and then

‖z(t)‖γ′ ≤ M(T )‖z(T0)‖γ′ + K(T )‖P 1 − P 2‖α,β

∫ t

T0

(t − τ)−(γ′−β)‖u2(τ)‖α dτ+

+K(T )‖P 1‖α,β

∫ t

T0

(t − τ)−(γ′−β)‖z(τ)‖α dτ.

Now, by (4.5), u2 is bounded in Xα on [T0, T ] and then the second term above is
bounded by

K1(T )
(
∫ t

T0

(t − τ)−(γ′−β) dτ
)

‖P 1 − P 2‖L(Xα,Xβ) sup
[T0,T ]

‖u2(t)‖α

which, using (4.5), is bounded by

K2(T, T0)‖P
1 − P 2‖L(Xα,Xβ)‖u

2
0‖γ .

So we end up with

‖z(t)‖γ′ ≤ M(T )‖z(T0)‖γ′+K2‖P
1−P 2‖L(Xα,Xβ)‖u

2
0‖γ+K2‖P

1‖α,β

∫ t

T0

(t−τ)−(γ′−β)‖z(τ)‖α dτ

for all T0 ≤ t ≤ T .
Then using the singular Gronwall lemma, see Lemma 7.1.1, page 188, [11], we conclude

‖z(t)‖γ′ ≤ M2(T )
(

‖z(T0)‖γ′ + ‖P 1 − P 2‖L(Xα,Xβ)‖u
2
0‖γ

)

, T0 ≤ t ≤ T.

Using now the estimate for short times, (4.1), we get (4.3). In particular, if u1
0 = u2

0 =
u0 then we get (4.4).

Remark 4.2 Observe that if both semigroups SP 1(t) and SP 2(t) decay exponentially, we
actually get

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤
L(R0)e

−ωt

tγ′−γ
‖P 1 − P 2‖L(Xα,Xβ), for all 0 < t < ∞

for some ω > 0.
In the general case, if we replace S(t) by S−λI(t) with λ such that both S[P 1,−λI](t) and

S[P 2,−λI](t) decay exponentially we get

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤
L(R0)e

ωt

tγ′−γ
‖P 1 − P 2‖L(Xα,Xβ), for all 0 < t < ∞

for some ω ∈ IR.

From the Theorem we get the following
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Corollary 4.3

i) Given P 1 ∈ L(Xα, Xβ), assume for some γ ∈ [β, α], we have

‖SP 1(t)‖γ,γ ≤ Meω0t, for all t > 0 (4.7)

for some M = M(γ) and ω0 ∈ IR.
Then for any ε > 0, if ‖P 1 − P 2‖L(Xα,Xβ) is sufficiently small we have

‖SP 2(t)‖γ,γ ≤ M ′e(ω0+ε)t, for all t > 0

for some M ′ depending on M, ω0, ε.
In particular, SP 1(t) decays exponentially, that is if ω0 < 0, then so does SP 2(t) if

‖P 1 − P 2‖L(Xα,Xβ) is sufficiently small.

ii) If the scale is nested and (4.7) is satisfied for some γ ∈ E(α) = (α−1, α], then for any
ε > 0, if ‖P 1 − P 2‖L(Xα,Xβ) is sufficiently small we have for any γ′ ∈ E(α) = (α − 1, α]

‖SP 2(t)‖γ′,γ′ ≤ M ′e(ω0+ε)t, for all t > 0

for some M ′ depending on M, ω0, γ
′, ε. Finally SP 1(t) and SP 2(t) satisfy the estimates

(3.20) with ω = ω0 + ε.

Proof.

i) Note that for ε > 0, e−(ω0+ε)tSP 1(t) = S[P 1,−(ω0+ε)I](t) decays exponentially in Xγ. In
particular there exists t0 such that δ := ‖S[P 1,−(ω0+ε)I](t0)‖γ,γ < 1. Then, from Theorem
4.1, if ‖P 1 − P 2‖L(Xα,Xβ) is sufficiently small we have δ′ := ‖S[P 2,−(ω0+ε)I](t0)‖γ,γ < 1.

Then the last part of part iii) in Lemma 3.2 implies that e−(ω0+ε)tSP 2(t) = S[P 2,−(ω0+ε)I](t)
decays exponentially in Xγ too and the result follows.
ii) When the scale is nested, observe that from part iii) in Lemma 3.2 we have that
the exponential bounds for SP 1(t) and SP 2(t) are independent of γ; see (3.5) and (3.6).
Therefore it is enough to have (4.7) for some γ ∈ E(α) = (α − 1, α].

The estimates (3.20) with ω = ω0 + ε follows from part iv) in Lemma 3.2.

5 Linear parabolic equations with nonsmooth coeffi-

cients

In this section we apply the abstract results in Sections 3 and 4 to the linear parabolic
equations in Section 2 by considering perturbations with nonsmooth coefficients. For this
recall that from (2.2) parabolic equations with smooth coefficients can be set in the Bessel
potential scale

H2γ,q
B (Ω) := Xγ, γ ∈ I := [−1, 1]

with 1 < q < ∞ fixed, which is a nested scale.
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We now introduce some of the nonsmooth perturbations that we will consider for (2.1).
Note that on the boundary we will perturb only the boundary condition on Γ.

Hence we define, for given functions m and m0, the interior and boundary potential
operators

< Q0u, ϕ >:=
∫

Ω
muϕ, < R0u, ϕ >:=

∫

Γ
m0uϕ (5.1)

for suitable u and ϕ. Then we have

Lemma 5.1 i) Assume that m ∈ Lp(Ω). Then for s, σ ≥ 0 and

s + σ ≥
N

p
(5.2)

we have

Q0 ∈ L(Hs,q(Ω), H−σ,q(Ω)), ‖Q0‖L(Hs,q(Ω),H−σ,q(Ω)) ≤ C‖m‖Lp(Ω).

ii) Assume m0 ∈ Lr(Γ). Then for s > 1/q, σ > 1/q′ and

s + σ ≥ 1 +
N − 1

r
(5.3)

we have

R0 ∈ L(Hs,q(Ω), H−σ,q(Ω)), ‖R0‖L(Hs,q(Ω),H−σ,q(Ω)) ≤ C‖m0‖Lr(Γ).

Proof. i) Note that for every u ∈ Hs,q(Ω) and ϕ ∈ Hσ,q′(Ω) we have

|
∫

Ω
muϕ| ≤ (

∫

Ω
|m|p)

1
p (
∫

Ω
|u|n)

1
n (
∫

Ω
|ϕ|τ )

1
τ

where 1
p

+ 1
n

+ 1
τ

= 1. Using the sharp embedding of the Bessel spaces, we have

|
∫

Ω
muϕ| ≤ C‖m‖Lp(Ω)‖u‖Hs,q(Ω)‖ϕ‖Hσ,q′(Ω)

provided n, τ are such that s− N
q
≥ −N

n
, and σ− N

q′
≥ −N

τ
. These conditions can be met

because of (5.2).
ii) Now note that for every u ∈ Hs,q(Ω) and ϕ ∈ Hσ,q′(Ω) we have

|
∫

Γ
m0uϕ| ≤ (

∫

Γ
|m0|

r)
1
r (
∫

Γ
|u|n)

1
n (
∫

Γ
|ϕ|τ)

1
τ

where 1
r

+ 1
n

+ 1
τ

= 1. Using the trace properties of Bessel spaces we have

|
∫

Γ
m0uϕ| ≤ C‖m0‖Lr(Γ)‖u‖Hs,q(Ω)‖ϕ‖Hσ,q′(Ω)

provided n, τ are such that s− N
q
≥ −N−1

n
, with s > 1

q
, and σ − N

q′
≥ −N−1

τ
, with σ > 1

q′
.

These conditions can be met because of (5.3).
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Now we define the first order perturbations. First the drift operator

< S0u, ϕ >:=
∫

Ω

~d∇uϕ, (5.4)

and second, the divergence–0 operator

< T0u, ϕ >=< Div0(~du), ϕ >:= −
∫

Ω
u~d∇ϕ, (5.5)

for a given vector field ~d.

Lemma 5.2 Assume ~d ∈ Lρ(Ω)N .
i) For s ≥ 1, σ ≥ 0 and

s + σ ≥ 1 +
N

ρ
(5.6)

the drift operator satisfies

S0 ∈ L(Hs,q(Ω), H−σ,q(Ω)), ‖S0‖L(Hs,q(Ω),H−σ,q(Ω)) ≤ C‖~d‖Lρ(Ω)N .

ii) For s ≥ 0, σ ≥ 1 and

s + σ ≥ 1 +
N

ρ
(5.7)

the divergence-0 operator satisfies

T0 ∈ L(Hs,q(Ω), H−σ,q(Ω)), ‖T0‖L(Hs,q(Ω),H−σ,q(Ω)) ≤ C‖~d‖Lρ(Ω)N .

Proof. i) Note that for every u ∈ Hs,q(Ω) and ϕ ∈ Hσ,q′(Ω) we have

|
∫

Ω

~d∇uϕ| ≤ (
∫

Ω
|~d|ρ)

1
ρ (
∫

Ω
|∇u|n)

1
n (
∫

Ω
|ϕ|τ)

1
τ

where 1
ρ

+ 1
n

+ 1
τ

= 1. Using the sharp embedding of the Bessel spaces, we have

|
∫

Ω

~d∇uϕ| ≤ C‖~d‖Lρ(Ω)N‖u‖Hs,q(Ω)‖ϕ‖Hσ,q′(Ω)

provided n, τ are such that s − N
q
≥ 1 − N

n
, and σ − N

q′
≥ −N

τ
. These conditions can be

met because of (5.6).
ii) Now for every u ∈ Hs,q(Ω) and ϕ ∈ Hσ,q′(Ω) we have

|
∫

Ω
u~d∇ϕ| ≤ (

∫

Ω
|~d|ρ)

1
ρ (
∫

Ω
|u|n)

1
n (
∫

Ω
|∇ϕ|τ)

1
τ

where 1
ρ

+ 1
n

+ 1
τ

= 1. Using the sharp embedding of the Bessel spaces, we have

|
∫

Ω

~d∇uϕ| ≤ C‖~d‖Lρ(Ω)N‖u‖Hs,q(Ω)‖ϕ‖Hσ,q′(Ω)

provided n, τ are such that s− N
q
≥ 1− N

n
, and σ − N

q′
≥ 1− N

τ
. These conditions can be

met because of (5.7).

Using the embeddings of Bessel spaces in Section 2, we have
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Corollary 5.3 i) Assume that m ∈ Lp(Ω) for p > N/2. Then for s, σ ≥ 0 and

2 > s + σ ≥
N

p

we have

Q0 ∈ L(Hs,q
bc (Ω), H−σ,q

bc (Ω)), ‖Q0‖L(Hs,q

bc
(Ω),H−σ,q

bc
(Ω)) ≤ C‖m‖Lp(Ω).

ii) Assume m0 ∈ Lr(Γ) for r > N − 1. Then for s > 1/q, σ > 1/q′ and

2 > s + σ ≥ 1 +
N − 1

r

we have

R0 ∈ L(Hs,q
bc (Ω), H−σ,q

bc (Ω)), ‖R0‖L(Hs,q
bc

(Ω),H−σ,q
bc

(Ω)) ≤ C‖m0‖Lr(Γ).

iii) Assume ~d ∈ Lρ(Ω)N , for ρ > N . Then for s ≥ 1, σ ≥ 0 and

2 > s + σ ≥ 1 +
N

ρ

the drift operator satisfies

S0 ∈ L(Hs,q
bc (Ω), H−σ,q

bc (Ω)), , ‖S0‖L(Hs,q
bc

(Ω),H−σ,q
bc

(Ω)) ≤ C‖~d‖Lρ(Ω)N .

iv) Assume ~d ∈ Lρ(Ω)N , for ρ > N . Then for s ≥ 0, σ ≥ 1 and

2 > s + σ ≥ 1 +
N

ρ

the divergence-0 operator satisfies

T0 ∈ L(Hs,q
bc (Ω), H−σ,q

bc (Ω)), ‖T0‖L(Hs,q

bc
(Ω),H−σ,q

bc
(Ω)) ≤ C‖~d‖Lρ(Ω)N .

Remark 5.4 Observe that to define divergence operators, we have that, assuming regu-
larity

< Div(~du), ϕ >:=
∫

Ω
u~d∇ϕ +

∫

∂Ω
uϕ~d~n.

If now u and ϕ are subjected to the boundary conditions of Section 2, we have that the
boundary term above reduces to

∫

Γ
uϕ~d~n

for the case of Dirichlet boundary conditions. The case of Robin conditions corresponds
to Γ = ∂Ω.

In any case we have that, with the notations above

Div(~du) = T0(u) + R0(u)

for some choice of boundary potential on ∂Ω.
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s + σ = 1

s + σ = K

Figure 1: Regions for s and σ

Remark 5.5 Observe that now we can consider perturbations P which are combinations
of Q0, R0, S0 and T0, for which we have to restrict the ranges of s, σ in Corollary 5.3
depending on the combinations considered. Since the perturbation must satisfy (3.8) which
translates here into s + σ < 2, S0 and T0 can not be combined together.

Now we are ready to give the main results on the perturbed problems






















ut − div(a(x)∇u) + c(x)u = m(x)u + ~d(x)∇u in Ω
a(x)∂u

∂~n
+ b(x)u = m0(x)u on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0 in Ω

(5.8)

or






















ut − div(a(x)∇u) + c(x)u = m(x)u + Div(~d(x)u) in Ω
a(x)∂u

∂~n
+ b(x)u = m0(x)u on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0 in Ω

(5.9)

with m in a bounded set in Lp(Ω), for p > N/2, m0 in a bounded set in Lr(Γ), for

r > N − 1 and ~d in a bounded set in Lρ(Ω)N , for ρ > N .
Note that according to the remark above there are eleven kinds of perturbations that

we will consider below, namely, four single perturbations:

P equals Q0, R0, S0 or T0; (5.10)

five binary combinations:

P = Q0 + R0, P = Q0 + S0, P = Q0 + T0, P = R0 + S0, P = R0 + T0, (5.11)
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and two ternary combinations:

P = Q0 + R0 + T0, P = Q0 + R0 + S0. (5.12)

With this notations problems (5.8) or (5.9) can be all summarized in the weak formu-
lation

∫

Ω
utϕ +

∫

Ω
a(x)∇u∇ϕ +

∫

Ω
c(x)uϕ +

∫

∂Ω
b(x)(x)uϕ =< Pu, ϕ > (5.13)

for all sufficiently smooth ϕ and where in the definition of P one must take into account
(5.1), (5.4) and (5.5).

Therefore, applying the results in Section 3 we get

Theorem 5.6 Assume that m is in a bounded set in Lp(Ω), with p > N/2, m0 is in a

bounded set in Lr(Γ) and also ~d is in a bounded set in Lρ(Ω)N , for ρ > N .
Then, for any 1 < q < ∞, and any P as in (5.10), (5.11) or (5.12) there exists and

interval I(q) (which depends on P too) containing (−1
2
, 1

2
), such that we have a strongly

continuous, order preserving, analytic semigroup, SP (t) in the space H2γ,q
bc (Ω) for any

γ ∈ I(q).
Moreover the semigroup satisfies the smoothing estimates

‖SP (t)u0‖H2γ′,q
bc

(Ω)
≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω) (5.14)

for every γ, γ′ ∈ I(q), with γ′ ≥ γ, for some Mγ′,γ and µ ∈ IR independent of P and
γ, γ′ ∈ I(q). In particular, one has

‖SP (t)u0‖Lτ (Ω) ≤
Mσ,τe

µt

t
N
2

( 1
σ
− 1

τ
)
‖u0‖Lσ(Ω), t > 0, u0 ∈ Lσ(Ω) (5.15)

for 1 ≤ σ ≤ τ ≤ ∞ with Mσ,τ and µ independent of P .
Also, for every u0 ∈ H2γ,q

bc (Ω), with γ ∈ I(q), the function u(t; u0) := SP (t)u0 is Cν(Ω)
for any 0 < ν < 1 and satisfies (5.13) for t > 0.

For each of the possible choices of P , the intervals I(q) are given as follows
i) Single perturbations.

If P equals Q0, then I(q) = (−1, 1).
If P equals R0, then I(q) = (−1 + 1

2q
, 1 − 1

2q′
).

If P equals S0, then I(q) = (−1
2
, 1).

If P equals T0, then I(q) = (−1, 1
2
).

ii) Binary perturbations.
If P = Q0 + R0 then I(q) = (−1 + 1

2q
, 1 − 1

2q′
).

If P = Q0 + S0 then I(q) = (−1
2
, 1).

If P = Q0 + T0 then I(q) = (−1, 1
2
).

If P = R0 + S0 then I(q) = (−1
2
, 1 − 1

2q′
).

If P = R0 + T0 then I(q) = (−1 + 1
2q

, 1
2
).
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iii) Ternary perturbations.
If P = Q0 + R0 + T0 then I(q) = (−1 + 1

2q
, 1

2
).

If P = Q0 + R0 + S0 then I(q) = (−1
2
, 1 − 1

2q′
).

Proof. For any such perturbation P , by restricting s and σ according to Corollary 5.3
we get that

P ∈ L(Hs,q
bc (Ω), H−σ,q

bc (Ω)).

and is a bounded family in that space.
Then we can apply Theorem 3.13 and Proposition 3.15 with α = s

2
and β = −σ

2
and

we get the results in the statement for indexes

γ ∈ (
s

2
− 1,

s

2
], γ′ ∈ [−

σ

2
, 1 −

σ

2
), γ′ ≥ γ.

Now note that as s, σ range over the set defined by the restrictions in Corollary 5.3,
then the intervals for γ and γ′ above fill some intervals which depended on the particular
perturbation considered.

Note that all possible combinations, their restrictions, the ranges of s, σ and the re-
sulting intervals for γ, γ′ are as follows; see Figure 1. Note that all intervals above include
(−1

2
, 1

2
).

i) If P equals Q0, the ranges for s, σ are s ∈ [0, 2), σ ∈ [0, 2) and then γ, γ′ ∈ (−1, 1).
If P equals R0, the ranges for s, σ are s ∈ (1

q
, 2 − 1

q′
), σ ∈ ( 1

q′
, 2 − 1

q
) and then

γ, γ′ ∈ (−1 + 1
2q

, 1 − 1
2q′

).

If P equals S0, the ranges for s, σ are s ∈ [1, 2), σ ∈ (0, 1) and then γ, γ′ ∈ (−1
2
, 1).

If P equals T0, the ranges for s, σ are s ∈ (0, 1), σ ∈ [1, 2) and then γ, γ′ ∈ (−1, 1
2
).

ii) Binary combinations. If P = Q0+R0 the ranges for s, σ are s ∈ (1
q
, 2− 1

q′
), σ ∈ ( 1

q′
, 2− 1

q
)

and then γ, γ′ ∈ (−1 + 1
2q

, 1 − 1
2q′

).

If P = Q0 + S0 the ranges for s, σ are s ∈ [1, 2), σ ∈ (0, 1) and then γ, γ′ ∈ (−1
2
, 1).

If P = Q0 + T0 the ranges for s, σ are s ∈ (0, 1), σ ∈ [1, 2) and then γ, γ′ ∈ (−1, 1
2
).

If P = R0 + S0 the ranges for s, σ are s ∈ [1, 2 − 1
q′

), σ ∈ ( 1
q′
, 1) and then γ, γ′ ∈

(−1
2
, 1 − 1

2q′
).

If P = R0 + T0 the ranges for s, σ are s ∈ (1
q
, 1), σ ∈ [1, 2 − 1

q
) and then γ, γ′ ∈

(−1 + 1
2q

, 1
2
) .

iii) Ternary combinations. If P = Q0 + R0 + T0 the ranges for s, σ are s ∈ (1
q
, 1),

σ ∈ [1, 2 − 1
q
) and then γ, γ′ ∈ (−1 + 1

2q
, 1

2
).

If P = Q0 + R0 + S0 the ranges for s, σ are s ∈ [1, 2 − 1
q′

), σ ∈ ( 1
q′
, 1) and then

γ, γ′ ∈ (−1
2
, 1 − 1

2q′
).

With all these, we get (5.14). That µ in the exponential bound of the semigroup is
independent of γ, γ′ follows from Lemma 3.2.

Now we prove (5.15). Note that starting with out of 1 < q < ∞ and γ = 0, taking
γ′ ∈ (0, 1

2
) and using the sharp embeddings of Bessel spaces in Section 2 we get (5.15)
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with σ = q and q < τ < Nq
N−q

. Iterating this argument, starting out of τ and γ = 0 we get

(5.15).
That u(t; u0) := SP (t)u0 satisfies (5.13) follows from part i) in Remark 3.18 while the

analyticity of the semigroup is a consequence of Theorem 3.20.
The Hölder regularity of u(t; u0) := SP (t)u0 follows by observing that by (5.14) and

(5.15) the solution enters H2γ′,σ
bc (Ω) for all 1 < σ < ∞ and any γ′ ∈ I(σ). Since this

interval is at least (−1
2
, 1

2
), again the embeddings of Bessel potential spaces gives that the

solution is Cν(Ω) for any 0 < ν < 1.
Finally, that the semigroup SP (t) is order preserving follows from Theorem 5.9 below.

In fact for C1 smooth m, m0 and ~d the results in [2] imply that the semigroups are order
preserving. Then the convergence in Theorem 5.9 below shows the same property for the
non smooth case.

Remark 5.7 Note that in fact we can get that for any q̃ > q > 1

‖SP (t)u0‖H2γ′ ,q̃
bc

(Ω)
≤

Meµt

tγ
′−γ+ N

2
( 1

q
− 1

q̃
)
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

and for any γ, γ′ ∈ (−1
2
, 1

2
), γ′ > γ.

Remark 5.8 After Theorem 5.6 we can apply the results in Theorem 3.7 for the linear
nonhomogeneous problem with f ∈ Lσ((0, T ), H2γ,q

bc (Ω)) with 1 ≤ σ ≤ ∞ and γ ∈ I(q).

Now applying the results in Section 4 we have

Theorem 5.9 With the notations in Theorem 5.6, assume

mε → m in Lp(Ω), p >
N

2
,

m0,ε → m0 in Lr(Γ), r > N − 1,

~dε → ~d in Lρ(Ω)N , ρ > N.

and for any 1 < q < ∞, consider the corresponding semigroups SPε
(t) and SP0(t).

Then for every
γ, γ′ ∈ I(q), γ′ ≥ γ,

and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε
(t) − SP0(t)‖L(H2γ,q

bc
(Ω),H2γ′ ,q

bc
(Ω))

≤
C(ε)

tγ′−γ
, for all 0 < t ≤ T. (5.16)

In particular, for any 0 < ν < 1 the solutions uε(t; u0) := SPε
(t)u0 converge to solu-

tions u(t; u0) := SP (t)u0 in Cν(Ω) uniformly in bounded time intervals away from t = 0.

Proof. Most of the statement is a direct application of Theorem 4.1, using that the
perturbation Pε → P0 in L(Xα, Xβ).

The Hölder convergence of solutions follows by a bootstrap argument, based on (5.14),

(5.15) and (5.16) which proves convergence in H2γ′,σ
bc (Ω) for any 1 < σ < ∞ and γ′ ∈ (0, 1

2
)

on bounded time intervals away from t = 0.
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6 Parabolic equations in unbounded domains

We consider now the heat equation

{

ut − ∆u = 0 in IRN , t > 0
u(0) = u0

(6.1)

whose solution is given by

u(t, x) = S0(t)u0 = (4πt)−N/2
∫

IRN
e−

|x−y|2

4t u0(y) dy (6.2)

in different settings as explained below. Observe that all the results below hold for more
general operators in divergence form and with bounded coefficients that have Gaussian
bounds on the fundamental kernel, see [9].

6.1 Lebesgue scale

By elementary properties of convolution it is known that the heat equation in IRN satisfies

‖S0(t)u0‖Lr(IRN ) ≤
Mr,qe

µ0t

t
N
2

( 1
q
− 1

r
)
‖u0‖Lq(IRN ), t > 0, u0 ∈ Lq(IRN)

for 1 ≤ q ≤ r ≤ ∞ and µ0 > 0 arbitrary. This holds for more general operators
in divergence form and with bounded coefficients that have Gaussian bounds on the
fundamental kernel, see [9].

Then for 1 ≤ q ≤ ∞, we denote

Lq(IRN) := Xγ(q), γ =
−N

2q
∈ I := [−N/2, 0], (6.3)

(which is not a nested scale) and we have again (3.3).
Then as a consequence of Hölder’s inequality we have,

Lemma 6.1 Assume that m ∈ Lp(IRN), with p > N/2 then the multiplication operator

Q0u(x) = m(x)u(x),

satisfies for r ≥ p′ and 1
s

= 1
r

+ 1
p

Q0 ∈ L(Lr(IRN ), Ls(IRN )), ‖Q0‖L(Lr(IRN ),Ls(IRN )) ≤ C‖m‖Lp(IRN ).

Then, using Theorem 3.13, Proposition 3.15 and Theorem 4.1 we get

Theorem 6.2
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i) Assume that m is in a bounded set in Lp(IRN), with p > N/2. Then for any 1 ≤ q < ∞
the Schrödinger equation

{

ut − ∆u = m(x)u in IRN , t > 0
u(0) = u0 in IRN

defines an order preserving, analytic semigroup Sm(t) in Lq(IRN ) that satisfies

‖Sm(t)u0‖Lr(IRN ) ≤
Mr,qe

µt

t
N
2

( 1
q
− 1

r
)
‖u0‖Lq(IRN ), t > 0, u0 ∈ Lq(IRN )

for 1 ≤ q ≤ r ≤ ∞, with Mq,r and µ independent of m.
ii) If

mε → m in Lp(IRN), p >
N

2
,

then for every 1 ≤ q ≤ r ≤ ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖Smε
(t) − Sm(t)‖L(Lq(IRN ),Lr(IRN )) ≤

C(ε)

t
N
2

( 1
q
− 1

r
)
, for all 0 < t ≤ T.

Proof. With the notations in Lemma 6.1 and according to (6.3) we have for each α0 :=
−N
2p′

≤ α ≤ 0

Q0 ∈ L(Xα, Xβ), ‖Q0‖L(Xα,Xβ) ≤ C‖m‖Lp(IRN )

with α = −N
2r

, β = −N
2s

and 0 ≤ α − β = −N
2r

+ N
2s

= N
2p

< 1.
Hence, we can apply Theorem 3.13 and Proposition 3.15 and we get a semigroup in

Xγ for γ ∈ [β, α] and the smoothing estimates for for indexes

γ ∈ (α − 1, α], γ′ ∈ [β, β + 1), γ′ ≥ γ.

As α runs the interval α0 := −N
2p′

≤ α ≤ 0, and noting that for α = α0 we have

β = −N/2 it is clear that γ and γ′ fill the interval I.
The second part is a direct consequence of Theorem 4.1. Also this proves that the

semigroup is order preserving.
Note that the analyticity of the semigroup above will result from the result in the next

subsection.

Remark 6.3 After the theorem above, we can apply the results in Theorem 3.7 for f ∈
Lσ((0, T ), Lq(IRN)) with 1 ≤ σ ≤ ∞ and 1 ≤ q < ∞.
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6.2 Bessel scale

Sharper results on nonsmooth perturbations of the heat equation (6.1) can be obtained
using a setting in the nested Bessel scale H2α,q(IRN) for fixed 1 < q < ∞ and α ∈ [−1, 1];
see [2]. Note that now the embeddings in Section 2, H2α,q(IRN) ⊂ Lr(IRN) hold only for
r ≥ q. Just as for the case of a bounded domain in Section 2, the results in [2] imply (6.1)
defines an analytic semigroup in th nested scale Xα = H2α,q(IRN), α ∈ I := [−1, 1] and
satisfies the smoothing estimates

‖S0(t)u0‖H2α,q(IRN ) ≤
Mα,βeµ0t

tα−β
‖u0‖H2β,q(IRN ), t > 0, u0 ∈ H2β,q(IRN)

with µ0 > 0 arbitrary.
In order to introduce the class of perturbations we will consider below, we define, for

1 ≤ p < ∞, the uniform space Lp
U(IRN) as the set of functions φ ∈ Lp

loc(IR
N) such that

sup
x∈IRN

∫

B(x,1)
|φ(y)|p dy < ∞ (6.4)

with norm
‖φ‖Lp

U
(IRN ) = sup

x∈IRN

‖φ‖Lp(B(x,1)).

Observe that for p = ∞, using the analogous definition, we have L∞
U (IRN) = L∞(IRN)

with norm ‖φ‖L∞
U

(IRN ) = supx∈IRN ‖φ‖L∞(B(x,1)) = ‖φ‖L∞(IRN ). Observe that Lp
U(IRN)

contains L∞(IRN), Lr(IRN) and Lr
U(IRN) for any r ≥ p.

Then we have

Lemma 6.4 i) Assume that m ∈ Lp
U(IRN), with p > N/2 then for s ≥ 0, σ ≥ 0 and

2 > s + σ ≥
N

p

the multiplication operator
Q0u(x) = m(x)u(x),

satisfies

Q0 ∈ L(Hs,q(IRN), H−σ,q(IRN)), ‖Q0‖L(Hs,q(IRN ),H−σ,q(IRN )) ≤ C‖m‖Lp(IRN ).

ii) Assume ~d ∈ Lρ
U(IRN)N with ρ > N . Then for s ≥ 1, σ ≥ 0 and

2 > s + σ ≥ 1 +
N

ρ

the drift operator defined as

< S0u, ϕ >:=
∫

IRN

~d∇uϕ,
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satisfies

S0 ∈ L(Hs,q(IRN), H−σ,q(IRN )), ‖S0‖L(Hs,q(IRN ),H−σ,q(IRN )) ≤ C‖~d‖Lρ(IRN )N .

iii) Assume ~d ∈ Lρ
U (IRN)N with ρ > N . Then for s ≥ 0, σ ≥ 1 and

2 > s + σ ≥ 1 +
N

ρ

the divergence-0 operator defined as

< T0u, ϕ >=< Div0(~du), ϕ >:= −
∫

IRN
u~d∇ϕ,

satisfies

T0 ∈ L(Hs,q(IRN), H−σ,q(IRN )), ‖T0‖L(Hs,q(IRN ),H−σ,q(IRN )) ≤ C‖~d‖Lρ(IRN )N .

Proof.

i) Denote by {Qi} the family of cubes centered at points of integer coordinates in IRN

and with edges of length 1 parallel to the axes. Thus since m ∈ Lp
U (IRN), for every

u ∈ Hs,q(IRN) and ϕ ∈ Hσ,q′(IRN) we have

|
∫

IRN
muϕ| ≤

∑

i

|
∫

Qi

muϕ| ≤
∑

i

(
∫

Qi

|m|p)
1
p (
∫

Qi

|u|n)
1
n (
∫

Qi

|ϕ|τ)
1
τ

where 1
p

+ 1
n

+ 1
τ

= 1. Using the sharp embedding of the Bessel spaces in Qi, we have

|
∫

IRN
muϕ| ≤ C‖m‖Lp

U
(IRN )

∑

i

‖u‖Hs,q(Qi)‖ϕ‖Hσ,q′(Qi)

with constants independent of i, provided n, τ are such that s−N
q
≥ −N

n
, and σ−N

q′
≥ −N

τ

and n ≥ q, τ ≥ q′.
These conditions can be met because of the restrictions in the statement.
To conclude the proof note that in Lemma 2.4 in [6] it was proved that for any

1 < q < ∞ and 0 ≤ α ≤ 1

∑

i

‖φ‖q
H2α,q(Qi)

≤ C‖φ‖q
H2α,q(IRN ) for all φ ∈ H2α,q(IRN).

Hence Hölder’s inequality for sequences, gives

|
∫

IRN
muϕ| ≤ C‖m‖Lp

U
(IRN )‖u‖Hs,q(IRN )‖ϕ‖Hσ,q′(IRN ).

ii) Note that for every u ∈ Hs,q(IRN) and ϕ ∈ Hσ,q′(IRN) we have

|
∫

IRN

~d∇uϕ| ≤
∑

i

(
∫

Qi

|~d|ρ)
1
ρ (
∫

Qi

|∇u|n)
1
n (
∫

Qi

|ϕ|τ)
1
τ
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where 1
ρ

+ 1
n

+ 1
τ

= 1. Using the sharp embedding of the Bessel spaces in Qi, we have

|
∫

IRN

~d∇uϕ| ≤ C‖~d‖Lρ
U

(IRN )N

∑

i

‖u‖Hs,q(Qi)‖ϕ‖Hσ,q′(Qi)

with constants independent of i, provided n, τ are such that s−N
q
≥ 1−N

n
, and σ−N

q′
≥ −N

τ

and n ≥ q, τ ≥ q′.
These conditions can be met because of the restrictions in the statement. As before

we get

|
∫

IRN

~d∇uϕ| ≤ C‖~d‖Lρ
U

(IRN )N‖u‖Hs,q(IRN )‖ϕ‖Hσ,q′(IRN ).

iii) Now for every u ∈ Hs,q(Ω) and ϕ ∈ Hσ,q′(Ω) we have

|
∫

IRN
u~d∇ϕ| ≤

∑

i

(
∫

Qi

|~d|ρ)
1
ρ (
∫

Qi

|u|n)
1
n (
∫

Qi

|∇ϕ|τ)
1
τ

where 1
ρ

+ 1
n

+ 1
τ

= 1. Using the sharp embedding of the Bessel spaces in Qi, we have

|
∫

IRN
u~d∇ϕ| ≤ C‖~d‖Lρ

U
(IRN )N

∑

i

‖u‖Hs,q(Qi)‖ϕ‖Hσ,q′(Qi)

with constants independent of i, provided n, τ are such that s− N
q
≥ 1− N

n
, and σ− N

q′
≥

1 − N
τ

and n ≥ q, τ ≥ q′.
These conditions can be met because of the restrictions in the statement. As before

we get

|
∫

IRN
u~d∇ϕ| ≤ C‖~d‖Lρ

U
(IRN )N‖u‖Hs,q(IRN )‖ϕ‖Hσ,q′(IRN ).

Observe that as in Section 5, S0 and T0 can not be combined together. Hence, with
the notations of previous subsections, we now can consider the perturbations:

P equals Q0, S0 or T0 (6.5)

or the binary perturbations

P = Q0 + S0, P = Q0 + T0. (6.6)

In a completely analogous way to Theorem 5.6 we get

Theorem 6.5 Assume that m is in a bounded set in Lp
U(IRN), with p > N/2, and ~d is

in a bounded set in Lρ
U(IRN)N , for ρ > N .

Then, for any 1 < q < ∞, and any P as in (6.5), (6.6) there exists and interval I(q)
(which depends on P too) that contains (−1

2
, 1

2
), such that we have a strongly continuous,

order preserving, analytic semigroup, SP (t) in the space H2γ,q(IRN ) for any γ ∈ I(q).
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Moreover the semigroup satisfies the smoothing estimates

‖SP (t)u0‖H2γ′,q(IRN ) ≤
Mγ′,γe

µt

tγ′−γ
‖u0‖H2γ,q(IRN ), t > 0, u0 ∈ H2γ,q(IRN)

for every γ, γ′ ∈ I(q), with γ′ ≥ γ, for some Mγ′,γ and µ ∈ IR independent of P and
γ, γ′ ∈ I(q). In particular, one has

‖SP (t)u0‖Lτ (IRN ) ≤
Mσ,τe

µt

t
N
2

( 1
σ
− 1

τ
)
‖u0‖Lσ(IRN ), t > 0, u0 ∈ Lσ(IRN )

for 1 ≤ σ ≤ τ ≤ ∞ with Mσ,τ and µ independent of P .
Also, for every u0 ∈ H2γ,q(IRN), with γ ∈ I(q), the function u(t; u0) := SP (t)u0 is

Cν
b (IRN) for any 0 < ν < 1 and satisfies

∫

IRN
utϕ +

∫

IRN
∇u∇ϕ =< Pu, ϕ >

for sufficiently smooth ϕ and t > 0.
For each of the possible choices of P , the intervals I(q) are given as follows.

i) Single perturbations.
If P equals Q0, then I(q) = (−1, 1).
If P equals S0, then I(q) = (−1

2
, 1).

If P equals T0, then I(q) = (−1, 1
2
).

ii) Binary perturbations.
If P = Q0 + S0 then I(q) = (−1

2
, 1). If P = Q0 + T0 then I(q) = (−1, 1

2
).

Note that the analyticity of the semigroup is obtained from Theorem 3.20 while the
order preserving property follows from the order preserving from Proposition 5.3 in [5].

Remark 6.6 After the theorem above we can apply the results in Theorem 3.7 for f ∈
Lσ((0, T ), H2γ,q(IRN )) with 1 ≤ σ ≤ ∞ and γ ∈ I(q).

Now applying the results in Section 4 and in an analogous way to Theorem 5.9 we
have

Theorem 6.7 With the notations above assume

mε → m in Lp
U(IRN), p >

N

2
,

~dε → ~d in Lρ
U (IRN)N , ρ > N.

and for any 1 < q < ∞, consider the corresponding semigroups SPε
(t) and SP0(t).

Then for every
γ, γ′ ∈ I(q), γ′ ≥ γ,

and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε
(t) − SP0(t)‖L(H2γ,q(IRN ),H2γ′,q(IRN )) ≤

C(ε)

tγ′−γ
, for all 0 < t ≤ T.

In particular, for any 0 < ν < 1 the solutions uε(t; u0) := SPε
(t)u0 converge to so-

lutions u(t; u0) := SP (t)u0 in Cν
b (IRN) uniformly in bounded time intervals away from

t = 0.
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6.3 Locally uniform spaces

The heat equation (6.1) and its perturbations can also be considered in much larger spaces,
by taking initial data in locally uniform spaces.

For this consider the locally uniform space Lq
U(IRN) for 1 ≤ q ≤ ∞ as in (6.4) and

denote by L̇q
U(IRN) the closed subspace of Lq

U(IRN) consisting of all elements which are
translation continuous with respect to ‖ · ‖Lq

U
(IRN ), that is

‖τyφ − φ‖Lq
U

(IRN ) → 0 as |y| → 0

where {τy, y ∈ IRN} denotes the group of translations. Note that Lq(IRN) ⊂ L̇q
U(IRN) for

1 ≤ q < ∞ and for q = ∞ we get L̇∞
U (IRN) = BUC(IRN).

Using these spaces and (6.2) it was proved in Proposition 2.1 and Theorem 2.1 in [5]
that the heat equation defines an order preserving analytic semigroup in Lq

U(IRN), for
1 ≤ q < ∞, which is strongly continuous in L̇q

U(IRN) and satisfies

‖S0(t)u0‖Lr
U

(IRN ) ≤
Mr,qe

µ0t

t
N
2

( 1
q
− 1

r
)
‖u0‖Lq

U
(IRN ), t > 0, u0 ∈ Lq

U(IRN)

and

‖S0(t)u0‖L̇r
U

(IRN ) ≤
Mr,qe

µ0t

t
N
2

( 1
q
− 1

r
)
‖u0‖L̇q

U
(IRN ), t > 0, u0 ∈ L̇q

U(IRN)

for 1 ≤ q ≤ r ≤ ∞ for µ0 > 0 arbitrary. This holds for more general operators in diver-
gence form and with bounded coefficients that have Gaussian bounds on the fundamental
kernel, see [9] and Theorem 2.3 in [5].

Then for 1 ≤ q ≤ ∞, we denote

L̇q
U (IRN) := Xγ(q), γ =

−N

2q
∈ I := [−N/2, 0], (6.7)

which is a nested scale and we have again (3.3).

Then we have

Lemma 6.8 i) Assume that m ∈ Lp
U(IRN), with p > N/2 then the multiplication operator

Q0u(x) = m(x)u(x),

satisfies for r ≥ p′ and 1
s

= 1
r

+ 1
p

Q0 ∈ L(Lr
U(IRN), Ls

U(IRN)), ‖Q0‖L(Lr
U

(IRN ),Ls
U

(IRN )) ≤ ‖m‖Lp
U

(IRN )

ii) If moreover m ∈ L̇p
U(IRN), with p > N/2 we have for r ≥ p′ and 1

s
= 1

r
+ 1

p

Q0 ∈ L(L̇r
U(IRN ), L̇s

U(IRN)), ‖Q0‖L(L̇r
U

(IRN ),L̇s
U

(IRN )) ≤ ‖m‖Lp
U

(IRN ).

38



Proof. For any x0 ∈ IRN , from Hölder’s inequality we have, for any r ≥ p′,

‖Q0u‖Ls(B(x0,1)) ≤ ‖m‖Lp(B(x0,1))‖u‖Lr(B(x0,1)), for
1

s
=

1

r
+

1

p

which gives part i).
Now for every y ∈ IRN we have

‖τy(Q0u) − Q0u‖Ls(B(x0,1)) ≤ ‖τym‖Lp(B(x0,1))‖τyu − u‖Lr(B(x0,1))+

+‖τym − m‖Lp(B(x0,1))‖u‖Lr(B(x0,1)).

Hence, we get part ii).

Then, using Theorem 3.13, Proposition 3.15 and Theorem 4.1 we get

Theorem 6.9

i) Assume that m is in a bounded set in L̇p
U(IRN ), with p > N/2. Then for any 1 ≤ q < ∞

the Schrödinger equation
{

ut − ∆u = m(x)u in IRN , t > 0
u(0) = u0 in IRN

defines an order preserving analytic semigroup Sm(t) in L̇q
U(IRN ) that satisfies

‖Sm(t)u0‖L̇r
U

(IRN ) ≤
Mr,qe

µt

t
N
2

( 1
q
− 1

r
)
‖u0‖L̇q

U
(IRN ), t > 0, u0 ∈ L̇q

U (IRN)

for 1 ≤ q ≤ r ≤ ∞, with Mq,r and µ independent of m.
ii) If

mε → m in L̇p
U(IRN), p >

N

2
,

then for every
1 ≤ q ≤ r ≤ ∞

and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖Smε
(t) − Sm(t)‖L(L̇q

U
(IRN ),L̇r

U
(IRN )) ≤

C(ε)

t
N
2

( 1
q
− 1

r
)
, for all 0 < t ≤ T.

Proof. Just note that according to (6.7) we read Lemma 6.8 as Q0 ∈ L(Xα, Xβ), α = −N
2r

,
β = −N

2s
, for any 0 ≥ α ≥ α0, with 0 ≤ α − β = −N

2r
+ N

2s
= N

2p
< 1 and ‖Q0‖L(Xα,Xβ) ≤

C‖m‖L̇p
U

(IRN ).

Remark 6.10 Observe that part i) of this result recovers the estimates in Proposition 3.2
in [5].

Analyticity follows from Theorem 6.12 below, and the order preserving from Proposi-
tion 5.3 in [5].
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Remark 6.11 After the theorem above we can apply the results in Theorem 3.7 for f ∈
Lσ((0, T ), L̇q

U(IRN)) with 1 ≤ σ ≤ ∞ and 1 ≤ q < ∞.

In order to obtain sharper results and to consider drift perturbations to the heat
equation we introduce the uniform Bessel-Sobolev spaces Hk,q

U (IRN), with k ∈ IN , as the
set of functions φ ∈ Hk,q

loc (IRN) such that

‖φ‖Hk,q
U

(IRN ) = sup
x∈IRN

‖φ‖Hk,q(B(x,1)) < ∞

for k ∈ IN . Then denote by Ḣk,q
U (IRN) a subspace of Hk,q

U (IRN) consisting of all elements
which are translation continuous with respect to ‖ · ‖Hk,q

U
(IRN ), that is

‖τyφ − φ‖Hk,q
U

(IRN ) → 0 as |y| → 0

where {τy, y ∈ IRN} denotes the group of translations.
Consider the complex interpolation functor denoted by [ , ]θ, for θ ∈ (0, 1), [7, 14].

Then for 1 ≤ q < ∞, k ∈ IN ∪ {0} and s ∈ (k, k + 1) we define θ ∈ (0, 1) such that
s = θ(1 + k) + (1− θ)k, that is θ = s− k. Then one can define the intermediate spaces as

Hs,q
U (IRN) = [Hk+1,q

U (IRN), Hk,q
U (IRN)]θ,

and
Ḣs,q

U (IRN) = [Ḣk+1,q
U (IRN), Ḣk,q

U (IRN)]θ.

The following results is a simplified version of Theorem 5.3 in [5], which applies to
more general operators. It was proved using purely elliptic arguments.

Theorem 6.12 Assume 1 < q < ∞, m ∈ L̇p
U (IRN) and ~d ∈ L̇ρ

U (IRN)N satisfy that ρ = q
if q > N or ρ > N otherwise, and p = q if q > N/2 or p > N/2 otherwise.

Define the elliptic operator L̇q
U(IRN),

Au = −∆u + ~d(x)∇u + m(x)u

with domain D(A) = Ḣ2,q
U (IRN).

Then, −A, generates a strongly continuous analytic semigroup on L̇q
U(IRN) and the

associated fractional power spaces are given by

Ḣ2α,q
U (IRN ) = [Ḣ2,q

U (IRN ), L̇q
U(IRN)]α, α ∈ [0, 1].

In particular, Theorem 6.12 implies that for every 1 < q < ∞, the heat equation (6.1)
defines and order preserving analytic semigroup in the nested scale Xα = Ḣ2α,q

U (IRN),
0 ≤ α < 1 with

‖S0(t)u0‖Ḣ2α,q
U

(IRN ) ≤
Mα,βeµ0t

tα−β
‖u0‖Ḣ2β,q

U
(IRN ), t > 0, u0 ∈ Ḣ2β,q(IRN)

with µ0 > 0 arbitrary, for any 0 ≤ α ≤ β < 1.
Then we have

40



Lemma 6.13 i) Assume that m ∈ L̇p
U (IRN), with p > N/2 and let 1 < q ≤ p. Then the

multiplication operator
Q0u(x) = m(x)u(x),

satisfies

Q0 ∈ L(Ḣ2α,q
U (IRN), L̇q

U(IRN)), ‖Q0‖L(Ḣα,q
U

(IRN ),L̇q
U

(IRN )) ≤ C‖m‖L̇p
U

(IRN )

for α0 := N
2p

≤ α < 1.

ii) Assume ~d ∈ L̇ρ
U(IRN)N , for ρ > N and let 1 < q ≤ ρ. Then the drift operator

S0u(x) = ~d(x)∇u(x)

satisfies

S0 ∈ L(Ḣ2γ,q
U (IRN ), L̇q

U(IRN)), ‖S0‖L(Ḣ2γ,q
U

(IRN ),L̇q
U

(IRN )) ≤ C‖~d‖L̇ρ
U

(IRN )N

for γ0 := 1
2

+ N
2ρ

≤ γ < 1.

Proof. Note that, as in [5], but with a different notation, we can also define W s,q
U (IRN)

as the space of functions such that

sup
y∈IRN

‖φ‖Hs,q(B(y,1)) < ∞

with norm
‖φ‖W s,q

U
(IRN ) = sup

y∈IRN

‖φ‖Hs,q(B(y,1))

and consider the subset of elements which are translational continuous, Ẇ s,q
U (IRN). With

this definition, we have Hs,q
U (IRN) ⊂ W s,q

U (IRN) and Ḣs,q
U (IRN) ⊂ Ẇ s,q

U (IRN); see Proposi-
tion 4.2 in [5].

With this it is easy to see that the sharp embeddings of Bessel spaces in Section 2
translate into

Ḣs,q
U (IRN) ⊂















L̇r
U(IRN), s − N

q
≥ −N

r
, 1 ≤ r < ∞, if s − N

q
< 0

L̇r
U(IRN), 1 ≤ r < ∞, if s − N

q
= 0

Cη
b (IRN) if s − N

q
> η > 0.

Arguing as in Lemma 6.8 we get that

Q0 ∈ L(L̇r
U(IRN), L̇q

U(IRN)), for
1

q
=

1

r
+

1

p

and now chose α such that Ḣ2α,q
U (IRN) ⊂ L̇r

U(IRN) which leads to 2α ≥ N
p
.

On the other hand, from the argument above its clear that for q ≤ ρ and 2α ≥ N
ρ

we
have

S0 ∈ L(Ḣ2α+1,q
U (IRN), L̇q

U(IRN)),
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and setting 2γ = 2α + 1 we get the result.

Note that since we have no results on the negative part of the scale of uniform Bessel
spaces, we can not handle the divergence operator. Hence, we now can consider the
perturbations:

P equals Q0 or S0 (6.8)

or the binary perturbation
P = Q0 + S0. (6.9)

Hence using the previous results we get

Theorem 6.14 Assume that m is in a bounded set in L̇p
U(IRN ), with p > N/2, and ~d is

in a bounded set in L̇ρ
U(IRN)N , for ρ > N and define q0 = min{p, ρ} > N/2.

i) Then, for any 1 < q ≤ q0, and any P as in (6.8), (6.9) we have a strongly continuous,
order preserving, analytic semigroup, SP (t) in the space Ḣ2γ,q

U (IRN ) for any γ ∈ [0, 1).
Moreover the semigroup satisfies the smoothing estimates

‖SP (t)u0‖Ḣ2γ′,q
U

(IRN )
≤

Mγ′,γe
µt

tγ′−γ
‖u0‖Ḣ2γ,q

U
(IRN ), t > 0, u0 ∈ Ḣ2γ,q

U (IRN)

for every γ, γ′ ∈ [0, 1), with γ′ ≥ γ, for some Mγ′,γ and µ ∈ IR independent of P and
γ, γ′ ∈ [0, 1). In particular, one has

‖SP (t)u0‖L̇τ
U

(IRN ) ≤
Mσ,τe

µt

t
N
2

( 1
σ
− 1

τ
)
‖u0‖L̇σ

U
(IRN ), t > 0, u0 ∈ L̇σ

U(IRN )

for 1 ≤ σ ≤ τ ≤ ∞ with Mσ,τ and µ independent of P .
Also, for every u0 ∈ Ḣ2γ,q

U (IRN), with γ ∈ [0, 1), the function u(t; u0) := SP (t)u0 is
Cν

b (IRN) for some 0 < ν < 1 (or any 0 < ν < 1 if q0 > N) and satisfies

ut − ∆u = Pu in IRN for t > 0.

ii) Assume

mε → m in L̇p
U(IRN), p >

N

2
,

~dε → ~d in L̇ρ
U (IRN)N , ρ > N.

and for any 1 < q ≤ q0, consider the corresponding semigroups SPε
(t) and SP0(t).

Then for every γ, γ′ ∈ [0, 1), γ′ ≥ γ, and T > 0 there exists C(ε) → 0 as ε → 0, such
that

‖SPε
(t) − SP0(t)‖L(Ḣ2γ,q

U
(IRN ),Ḣ2γ′,q

U
(IRN ))

≤
C(ε)

tγ′−γ
, for all 0 < t ≤ T.

In particular, for some 0 < ν < 1 (or any 0 < ν < 1 if q0 > N), the solutions
uε(t; u0) := SPε

(t)u0 converge to solutions u(t; u0) := SP (t)u0 in Cν
b (IRN) uniformly in

bounded time intervals away from t = 0.
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Proof. From Lemma 6.13, taking α = N
2p

< 1 for P = Q0, α = 1
2

+ N
2ρ

< 1 for P = S0 or

α = max{N
2p

, 1
2

+ N
2ρ
} < 1 for P = Q0 + S0, and β = 0, we have that for any 1 < q ≤ q0

and any perturbation as in (6.8) or (6.9) we have

P ∈ L(Xα, Xβ)

and is a bounded family.
Then part i) follows by Theorem 3.13, Proposition 3.15. The analyticity of the semi-

group follows from Theorem 6.12 while the order preserving from Proposition 5.3 in [5].
The estimates between uniform Lebesgue spaces follows from the sharp embeddings

of the uniform Bessel spaces as in Lemma 6.13, some reiteration and observing that as
soon as q > N/2 these spaces are included in L̇∞

U (IRN) = BUC(IRN ).
The Hölder regularity of the solution follows by observing that the solution enters

Ḣ2γ,q0

U (IRN)) for γ very close to 1 and 2γ − N
q0

> 0 (or 2γ − N
q0

> 1 if q0 > N) and using
the embeddings again.

Part ii) is consequence of Theorem 4.1 and the Hölder convergence follows as above.

Remark 6.15 Note that if Theorem 6.12 was only proved for the Laplacian, then Theo-
rem 3.20 would give Theorem 6.12 as stated.

Remark 6.16 After the theorem above we can apply the results in Theorem 3.7 for f ∈
Lσ((0, T ), Ḣ2γ,q

U (IRN )) with 1 ≤ σ ≤ ∞, 1 < q ≤ q0 and γ ∈ [0, 1).

7 Elliptic regularity and convergence

Although the approach carried in this paper is of a “parabolic” nature rather than an
“elliptic one”, with the exception of Theorem 3.20, we show now that we can also derive
some results on the undelying elliptic problems.

For this note that given the solutions operators SP (t), as in Theorem 3.13, and satis-
fying the estimates in Proposition 3.15, for any γ ∈ E(α) = (α − 1, α] (or any γ ∈ I if
P = 0), we can take any fix element f ∈ Xγ and consider the corresponding solution of
the nonhomogeneous problem

u(t; u0) = SP (t)u0 +
∫ t

0
SP (t − τ)f dτ (7.1)

as in Theorem 3.7.
Assume moreover that SP (t) decays exponentially in the sense that

‖SP (t)u0‖γ′ ≤ M0e
−ωtt−(γ′−γ)‖u0‖γ, γ′ ≥ γ. (7.2)

for some ω > 0. Note that we may let ω depend on γ, γ′, but if the scale is nested we
know from Lemma 3.2 that the exponent can be taken independent of the space in the
scale.

Then we have
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Proposition 7.1 With the notations above
i) The expression

Φ =
∫ ∞

0
SP (τ)f dτ

defines and element in Xγ′
for any γ′ < γ + 1 with

‖Φ‖γ′ ≤ C‖f‖γ

and such that for any u0 ∈ Xγ we have the function in (7.1) satisfies u(t; u0) → Φ
exponentially in Xγ′

as t → ∞.
If the semigroup SP (t) is analytic, see Theorem 3.20, we have that Φ is the solution

of the elliptic problem
AΦ = PΦ + f.

ii) If P 1, P 2 ∈ L(Xα, Xβ), with ‖P i‖L(Xα,Xβ) ≤ R0 are such that both semigroups SP i(t)
satisfy (7.2), and f1, f2 ∈ Xγ, we define

ΦP i =
∫ ∞

0
SP i(τ)fi dτ, i = 1, 2

and we have

‖ΦP 1 − ΦP 2‖γ′ ≤ C(‖f1 − f2‖γ + ‖P 1 − P 2‖L(Xα,Xβ)‖f2‖γ).

Proof.

i) Observe that in (7.1) we have

∫ t

0
SP (t − τ)f dτ =

∫ t

0
SP (τ)f dτ

and the exponential decay (7.2) gives the result.
ii) Now from Remark 4.2 the result is easy.

Remark 7.2 Observe that if the scale is nested, SP 1(t) satisfies (7.2) and ‖P 1−P 2‖L(Xα,Xβ)

is sufficiently small then by Corollary 4.3, SP 2(t) also satisfies (7.2).

We now particularize to the problems in Sections 5 and 6. Note that we have chose
some particular but illustrative cases to show the scope of the results that Proposition
7.1 can give. First, using Theorem 5.6 and 5.9 we get

Theorem 7.3 Assume that m is in Lp(Ω), with p > N/2, m0 is in Lr(Γ) and also ~d is in
Lρ(Ω)N , for ρ > N . Then, for any 1 < q < ∞, and any P as in (5.10), (5.11) or (5.12)
consider the semigroup, SP (t) in the space H2γ,q

bc (Ω) for any γ ∈ I(q), as in Theorem 5.6.
Also denote

s(q) = sup I(q) =











1 if P equals Q0, S0 or Q0 + S0

1 − 1
2q′

if P equals R0, Q0 + R0, R0 + S0 or Q0 + R0 + S0
1
2

if P equals T0, Q0 + T0, R0 + T0 or Q0 + R0 + T0.
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Then there exists µ0 = µ0(‖m‖Lp(Ω), ‖m0‖Lr(Γ), ‖~d‖Lρ(Ω)N ) such that for all µ > µ0 we
have:
i) For any f ∈ Lq(Ω), 1 < q < ∞, there exists a unique solution Φ of

∫

Ω
a(x)∇Φ∇ϕ +

∫

Ω
(c(x) + µ)Φϕ +

∫

∂Ω
b(x)(x)Φϕ =< PΦ, ϕ > +

∫

Ω
fϕ

for all sufficiently smooth ϕ and where in the definition of P one must take into account
(5.1), (5.4) and (5.5). Moreover

Φ ∈ H2γ′,q
bc (Ω), for all γ′ < s(q), ‖Φ‖

H2γ′ ,q
bc

(Ω)
≤ C(µ)‖f‖Lq(Ω)

and if f ≥ 0 then Φ ≥ 0.
ii) For any g ∈ Ls(Γ) with 1 ≤ s ≤ ∞, there exists q0 such that for any 1 < q < q0 there
exists some 0 < γ′

0 < min{1
2

+ 1
2q

, s(q)} such that there exists a unique solution Φ of

∫

Ω
a(x)∇Φ∇ϕ +

∫

Ω
(c(x) + µ)Φϕ +

∫

∂Ω
b(x)(x)Φϕ =< PΦ, ϕ > +

∫

Γ
gϕ

for all sufficiently smooth ϕ, where in the definition of P one must take into account (5.1),
(5.4) and (5.5), with

Φ ∈ H2γ′,q
bc (Ω), for all γ′ < γ′

0, ‖Φ‖
H2γ′ ,q

bc
(Ω)

≤ C(µ)‖g‖Ls(Γ)

and if g ≥ 0 then Φ ≥ 0.
iii) Finaly, if mε → m in Lp(Ω), p > N

2
, m0,ε → m0 in Lr(Γ), r > N − 1 and ~dε → ~d in

Lρ(Ω)N , ρ > N , then the corresponding solutions Φε satisfy

Φε → Φ0 in H2γ′,q
bc (Ω), for all γ′ <

{

s(q) in case i)
γ′

0 in case ii).

Proof. From Theorem 5.6, denoting µ0 the exponent in (5.14) and taking the semigroup
SP−µI(t), which decays exponentially for µ > µ0 we can use Proposition 7.1.
i) In this case we have γ = 0 in Proposition 7.1 and from the expression of I(q) in Theorem
5.6, we get the result since s(q) < 1 for all q.
ii) In this case take 1 < q < ∞ and γ > 1

2q′
such that γ ≥ 1

2
+ N−1

2s
− N

2q
. With this the

embeddings of Bessel spaces in Section 2 imply that Ls(Γ) ⊂ H−2γ,q
bc (Ω) = X−γ.

Now observe that

i(q) = inf I(q) =











−1 if P equals Q0, T0 or Q0 + T0

−1 + 1
2q

if P equals R0, Q0 + R0, R0 + T0 or Q0 + R0 + T0

−1
2

if P equals S0, Q0 + S0, R0 + S0 or Q0 + R0 + S0 .

and then we can take any γ such that

γ0 := max{
1

2q′
,
1

2
+

N − 1

2s
−

N

2q
} < γ < −i(q).
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Note that 1
2q′

< −i(q) for all q and the second condition 1
2
+ N−1

2s
− N

2q
< −i(q) is satisfied

for 1 < q < q0.
Then we get the result in Proposition 7.1, for any γ′ such that

0 < 1 + i(q) < γ′ < min{1 − γ0, s(q)} := γ′
0

and since 1 + i(q) < s(q) for all q this condition is nonvoid. Also, since γ0 > 1
2q′

thenγ′
0 <

1
2

+ 1
2q

.

In both cases the sign of Φ follows from the order preserving property of SP (t) and
the expression for Φ in Proposition 7.1.

Part iii) follows from the secong part in Proposition 7.1.

Remark 7.4 Note that q0 in the Theorem above can be computed explicitly as follows:
a) If i(q) = −1. Then if s ≥ N − 1 we have q0 = ∞, while if s < N − 1 we have

q0 = Ns
N−1−s

.

b) If i(q) = −1 + 1
2q

. Then if s ≥ N − 1 we have q0 = ∞, while if s < N − 1 we have

q0 = (N−1)s
N−1−s

.

c) If i(q) = −1
2
. Then q0 = Ns

N−1
.

Also note that if 1 < q < Ns
N−1

then γ′
0 ≥

1
2
.

Remark 7.5 Note that the optimal value of the quantity µ0 in the theorem is given by
the principal eigenvalue of the following eigenvalue problem

∫

Ω
a(x)∇u∇ϕ +

∫

Ω
c(x)uϕ +

∫

∂Ω
b(x)(x)Φϕ =< Pu, ϕ > +λ

∫

Ω
uϕ

for all sufficiently smooth ϕ, which is characterized by the fact that it is the unique eigen-
value with a positive associated eigenfunction.

Now, for problems in IRN , in an analogous way as before, from Theorems 6.5 and 6.7
and Proposition 7.1, we have

Theorem 7.6 Assume that m is in Lp
U (IRN), with p > N/2, and ~d is in Lρ

U (IRN)N , for
ρ > N . For any 1 < q < ∞, and any P as in (6.5), (6.6) consider the semigroup SP (t)
in the space H2γ,q(IRN) for any γ ∈ I(q) as in Theorem 6.5. Also denote

s(q) = sup I(q) =

{

1 if P equals Q0, S0 or Q0 + S0
1
2

if P equals T0, Q0 + T0.

Then there exists µ0 = µ0(‖m‖Lp
U

(IRN ), ‖~d‖Lρ
U

(IRN )N ) such that for all µ > µ0 we have:

i) For any f ∈ Lq(IRN), 1 < q < ∞, there exists a unique solution Φ of

∫

IRN
∇Φ∇ϕ + µ

∫

IRN
Φϕ =< PΦ, ϕ > +

∫

IRN
fϕ
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for all sufficiently smooth ϕ, and

Φ ∈ H2γ′,q(IRN ), for all γ′ < s(q), ‖Φ‖H2γ′,q(IRN ) ≤ C(µ)‖f‖Lq(IRN )

and if f ≥ 0 then Φ ≥ 0.
ii) If mε → m in Lp

U(IRN ), p > N
2

and ~dε → ~d in Lρ
U(IRN)N , ρ > N then the corresponding

solutions Φε satisfy

Φε → Φ0 in H2γ′,q(IRN), for all γ′ < s(q).

Finally, for problems in uniform spaces, from Theorem 6.14 we get

Theorem 7.7 Assume that m is in L̇p
U (IRN), with p > N/2, and ~d is in L̇ρ

U (IRN)N , for
ρ > N and define q0 = min{p, ρ} > N/2.

Then there exists µ0 = µ0(‖m‖L̇p
U

(IRN ), ‖
~d‖L̇ρ

U
(IRN )N ) such that for all µ > µ0 we have:

i) For any f ∈ L̇q
U(IRN), 1 < q ≤ q0, there exists a unique solution Φ of

−∆Φ + µΦ = PΦ + f

and
Φ ∈ Ḣ2γ′,q

U (IRN), for all γ′ < 1, ‖Φ‖
Ḣ2γ′ ,q

U
(IRN )

≤ C(µ)‖f‖L̇q
U

(IRN )

and if f ≥ 0 then Φ ≥ 0.
ii) If mε → m in L̇p

U(IRN ), p > N
2

and ~dε → ~d in L̇ρ
U(IRN)N , ρ > N then the corresponding

solutions Φε satisfy

Φε → Φ0 in Ḣ2γ′,q
U (IRN), for all γ′ < 1.

8 Final remarks

It should be noted that on most of the results in Sections 3 and 4 the fact that the
semigroup is strongly continuous, that is continuous at t = 0, is used in a very few steps.

For example, it is first used in the proof of Lemma 3.10 and then in Lemma 3.11.
These results are later used in Proposition 3.12 and in Theorem 3.13. Continuity at t = 0
is finally used in the last part of the proof of Lemma 3.22.

Certainly in many applications the underlying semigroups are strongly continuous, as
we saw on Sections 2, 5 or 6 although there are other important case in which it is not. For
example in Section 6 we found that the heat equation generates non strongly continuous,
analytic semigroups in uniform spaces. The same situation occurs if one takes the heat
equation in L∞(Ω) due to the smoothing effect on the solutions. In all these cases the
semigroup is strongly continuous for large (but not dense) classes of initial data, namely
on “dotted” uniform spaces of BUC(Ω) respectively.

The results in Section 3 and 4 mentioned above could be adapted to that situation by
assuming some restrictions on the initial data like in the examples we just mentioned.
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In this way the first part of Lemma 6.8 can be used to prove a similar result to Theorem
6.9 in undotted space, which would give analogous results to Proposition 3.1 and 3.2 in
[5].

Also Proposition 5.1 in [5] is the analogous result to Theorem 6.12 in undotted spaces
and could be used to obtain an analogous result to Theorem 6.14 in those spaces. As there
would be some minor differences in the statements, due to subtle technical conditions we
have not pursued this line on the main part of this paper.

On the other hand, note that also the fact that the original semigroup S(t) is analytic
has been used scarcely. Indeed it is used for the first time in Remark 3.18. It is later used
in Theorem 3.20 and in the proof of part iii) of Lemma 3.22. Certainly the semigroups
in Sections 2, 5 and 6 are analytic but most of the results in Sections 3 and 4 go along
without this assumption.

Another situation that can be handled with the techniques in Sections 3 and 4 is the
case of semigroups with “defects”. By this we mean semigroups that instead of satisfying
(3.3) have a defect of the type

‖S(t)‖β,α := ‖S(t)‖L(Xβ ,Xα) ≤
M0(β, α, T )

tα−β+µ
, for all 0 < t ≤ T

for some constant M0(β, α, T ) > 0 and 0 < µ < 1. Note that in particular, the semigroup
is singular at t = 0 even for β = α. One can find this type of semigroups with deffects,
for example, in parabolic problems in “dumbbell” domains, see [4]; see also [13]. Hence,
as in theses references, we assume that, for each α, the semigroup is continuous for t > 0
and continuous at t = 0 for a dense set of intial data in Xα.

In such a case, note that the first part of Theorem 3.7 holds under the assumption
that

0 ≤ γ′ − γ <
1

σ′
− µ,

and u ∈ L∞
γ′−γ+µ((0, T ), Xγ′

).
In Lemma 3.9, (3.11) must be replaced by

β ≤ γ′ < β + 1 − µ and 0 ≤ ε < 1

and the right hand side in parts i) and ii) have a term tβ+δ+1−γ′−ε−µ. Also, (3.12) now
reads

δ = γ′ − γ + µ ≥ 0 and γ < β + 1 − ε.

Note that the proof of Lemma 3.10 breaks down in several places, while in Lemma
3.11 we require now

β ≤ γ′ < β + 1 − ε − µ, 0 ≤ ε < 1.

and we do not prove now continuity at t = 0 of the integral term in (3.10), (which would
require the stronger conditon ε < 1− µ) but we prove that F(u, u0)(t) behaves, as t → 0
as t−µ.

In Proposition 3.12 we replace (3.14) by

0 ≤ α − β < 1 − µ
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and prove that (3.10) is a contraction in L∞
µ ((0, T ], Xα). In the proof of the Proposition

we don’t use now Lemma 3.10 and use Lemma 3.11 with γ′ = α and ε = µ.
Then in Theorem 3.13 we use again 0 ≤ α − β < 1 − µ while (3.16) and (3.17) are

replaced respectively by
α − 1 + µ < γ ≤ α,

and
β ≤ γ′ < β + 1 − µ, γ′ ≥ γ.

In the proof of the theorem we prove that (3.10) is a contraction in L∞
ε ((0, T ], Xα) with

ε = α − γ + µ and we don’t use now Lemma 3.10. Note that the ranges above define the
new sets

E(α) = (α − 1 + µ, α], R(β) = [β, β + 1 − µ)

and solutions (3.18) define the semigroup SP (t) for γ ∈ [β, α] as before.
Finally Proposition 3.15 holds with the sets E(α) and R(β) just mentioned and in

(3.20) we have now

‖SP (t)u0‖γ′ ≤ M0e
ωtt−(γ′−γ)−µ‖u0‖γ, γ′ ≥ γ.

Finally note that the abstract results in Sections 3 and 4 are potentially applicable to
many different perturbation problems. We have focused here, in Section 2, 5 and 6, into
some particular examples of practical interest in many applications of partial differential
equations, although the application of the theoretical results are not limited to such
examples.
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