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INFINITELY MANY STABILITY SWITCHES IN A PROBLEM WITH
SUBLINEAR OSCILLATORY BOUNDARY CONDITIONS

ALFONSO CASTRO, ROSA PARDO

Abstract. We consider an elliptic equation −Δu + u = 0 with nonlinear boundary conditions
∂u
∂n

= λu+ g(λ, x, u), where
g(λ,x,s)

s
→ 0, as |s| → ∞ and g is oscillatory. We provide sufficient

conditions on g for the existence of unbounded sequences of stable solutions, unstable solutions,
and turning points.

1. Introduction

In this paper we consider solutions to the elliptic problem with nonlinear boundary conditions

(1.1)
{ −Δu + u = 0, in Ω

∂u
∂n = λu + g(λ, x, u), on ∂Ω

in a bounded and sufficiently smooth domain Ω ⊂ R
N with N ≥ 2. Throughout this paper we

assume:

(H1): g : R × ∂Ω × R → R is a Carathèodory function (i.e. g = g(λ, x, s) is measurable in
x ∈ Ω, and continuous with respect to (λ, s) ∈ R×R). Moreover, there exist G1 ∈ Lr(∂Ω)
with r > N − 1 and continuous functions Λ : R → R

+, and U : R → R
+, satisfying

⎧⎪⎪⎨
⎪⎪⎩

‖g(λ, x, s)| ≤ Λ(λ)G1(x)U(s), ∀(λ, x, s) ∈ R × ∂Ω × R,

lim sup
|s|→∞

U(s)
|s|α < +∞ for some α < 1.

(H2) : The partial derivative gs(λ, ·, ·) ∈ C(∂Ω × R) where gs := ∂g
∂s , and there exist F1 ∈

Lr(∂Ω), with r > N − 1, and ρ < 1 such that

(1.2)
|g(λ, x, s) − sgs(λ, x, s)|

|s|ρ ≤ F1(x), as λ → σ1

for x ∈ ∂Ω and s 
 1 sufficiently large.

(H3) : The second partial derivative gss(λ, ·, ·) ∈ C(∂Ω × R) is such that

(1.3) sup
|s|≥M

∥∥∥∥gss(λ, ·, s)
|s|ρ−α−1

∥∥∥∥
L∞(∂Ω)

→ 0 as M → ∞ and λ → σ1.
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Let {σi}∞i=1 denote the sequence of Steklov eigenvalues of the problem

(1.4)
{ −ΔΦ + Φ = 0, in Ω

∂Φ
∂n = σΦ, on ∂Ω.

The Steklov eigenvalues form an increasing sequence of real numbers, {σi}∞i=1. Each eigenvalue
has finite multiplicity. The first eigenvalue σ1 is simple and, due to Hopf’s Lemma, we may assume
its eigenfunction Φ1 to be strictly positive in Ω. The eigenfunctions are orthogonal in L2(∂Ω) and
we take ‖Φ1‖L∞(∂Ω) = 1.

As stated in [1, Theorem 3.4], due to (H1) there exists a connected set of positive solutions of
(1.1). We denote it by D+ ⊂ R × C(Ω̄), and recall that for (λ, uλ) ∈ D+

u = sΦ1 + w, with w = o (|s|) and |σ1 − λ| = o(1) as |s| → ∞.

The set D+ is known as a branch bifurcating from infinity in the sense of Rabinowitz, see [10, 1].

For (λ, uλ) ∈ D+ we say that uλ is a stable solution if there exists a neighborhood of uλ in
C(Ω̄) such that for initial data in that neighborhood the solution to the parabolic problem

(1.5)

⎧⎨
⎩

ut − Δu + u = 0, in Ω × R
+

∂u
∂n = λu + g(λ, x, u), on ∂Ω × R

+,
u(0, x) = u0(x), in Ω.

converges to uλ as t → +∞. On the other hand we say that uλ is unstable if any neighborhood
of uλ contains initial conditions such the solution to (1.5) leaves that neighborhood in finite time.
That is asymptotic stability in the Lyapunov sense.

Definition 1.1. A solution (λ∗, u∗) of (1.1) in the branch of solutions D+ ⊂ R×C(Ω̄) is called a
turning point if there is a neighborhood W of (λ∗, u∗) in R×C(Ω̄) such that, either W ∩D+ ⊂
[λ∗,∞) × C(Ω̄) or W ∩ D+ ⊂ (−∞, λ∗] × C(Ω̄).

Our goal is to give conditions on the sublinear oscillatory term g that guarantee the existence
of unbounded sequences of stable solutions, unstable solutions and turning points.

Our main result, Theorem 1.3 below, is exemplified by the case in which

(1.6) g(x, s) := sα

[
sin

(∣∣∣∣ s

Φ1(x)

∣∣∣∣
β
)

+ C

]
with α < 1,

In fact we have:

Theorem 1.2. Assume that g is given by (1.6). If

β > 0 and α + β < 1,

then the unbounded branch of positive solutions of (1.1) contains a sequence of stable solutions, a
sequence of unstable solutions and a sequence of turning points.

The proof of this Theorem follows directly from Theorem 1.3.

In Figures 1 and 2 we plot the bifurcation diagram in the one dimensional case for g as above.
Figure 3 sketches the changes of stability of solutions.

Our main result is the following.
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Figure 1. Bifurcation diagram having infinitely many sub-critical solutions (λ <
σ1), super-critical solutions (λ > σ1), stable solutions, unstable solutions, turning
points and resonant solutions (λ = σ1).

Theorem 1.3. Assume the nonlinearity g satisfies hypothesis (H1), (H2) and (H3).
Assume also that

(1.7) sup
|s|≥M

∣∣∣∣g(λ, x, s) − sgs(λ, x, s)
|s|ρ − g(σ1, x, s) − sgs(σ1, x, s)

|s|ρ
∣∣∣∣→ 0 as s → ∞,

pointwise in x, for M 
 1.
Let F : R × C(Ω̄) → R be defined by

(1.8) F (λ, u) :=
∫

∂Ω

ug(λ, ·, u) − u2gs(λ, ·, u)
|u|1+ρ

Φ1+ρ
1 .

If there exist sequences {sn}, {s′n} converging to +∞, such that

(1.9) lim
n→+∞F (σ1, s

′
nΦ1) < 0 < lim

n→+∞F (σ1, snΦ1),

then
(i) There exists a sequence {(λn, un)} ∈ D+ of stable solutions to (1.1) and a sequence

{(λ′
n, u′

n)} ∈ D+ of unstable solutions such that (λn, ‖un‖L∞(∂Ω)) → (σ1,∞) and (λ′
n, ‖u′

n‖L∞(∂Ω)) →
(σ1,∞) as n → ∞.

(ii) There exists a sequence {(λ∗
n, u∗

n)} ∈ D+ of turning points such that (λ∗
n, ‖u∗

n‖L∞(∂Ω)) →
(σ1,∞)as n → ∞.

Our result is sharp in that if condition (1.9) fails, all solutions in D+ may be either stable or
unstable for s big enough, see [2, Theorem 3.4]. Our result proves the existence of infinitely many
turning points, even in the absence of resonant solutions, see Figure 2. There it can be seen that
the unbounded sequence of turning points given by Theorem 1.3 can be either subcritical (i.e. for
values of the parameter λ < σ1), , see Figure 2 left, or supercritical (i.e. for λ > σ1), see Figure 2
right, or may have a sequence of subcritical solutions as well a sequence of supercritical solutions.
Hence, by connectedness of D+, the branch contains infinitely many resonant solutions (i.e. for
λ = σ1), see Figure 1.
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Figure 2. A bifurcation diagram of stable and unstable solutions, on the left all
of them are subcritical, on the right all of them are supercritical, and none is
resonant.

Related results for the case of a nonlinear reaction in Ω and homogeneous Dirichlet boundary
conditions were established in [4, 5, 6, 9]. In [6] the authors work in the unit ball B ⊂ R

N with
N ≥ 1 and the nonlinear term is λu + sin(u). They proved that when λ = λ1, the first eigenvalue
with Dirichlet boundary conditions, the problem has infinitely many solutions for 1 ≤ N ≤ 5 and
at most finitely many solutions for N ≥ 6. We refer the reader to [7, 8] for problems related with
nonlinear boundary conditions.

This paper is organized as follows. In Section 2 we collect some essentially known results on
Lyapunov stability. Section 3 contains the proof of our main result, giving sufficient conditions
for having stable and unstable solutions. Finally Section 4 presents two examples, the typical
oscillatory nonlinearity (1.6) and the one dimensional case.

2. Lyapunov function and stability

For λ fixed we consider

I(u) =
1
2

∫
Ω

(|∇u|2 + u2
)− λ

2

∫
∂Ω

u2 −
∫

∂Ω

G(λ, ·, u)

where G(λ, x, s) :=
∫ s

s0
g(λ, x, t) dt for some s0 
 1 fixed. An elementary calculation shows that if

u is a solution to the parabolic equation (1.5) then d
dtI(u(t)) = I ′(u(t))ut ≤ 0, i.e., I is Lyapunov

function for the parabolic problem (1.5).
Moreover, if uλ is a solution to (1.1), then it is a critical point for I. Furthermore, uλ is stable

if the quadratic form

Quλ
(v, w) :=

∫
Ω

∇v · ∇w + vw −
∫

∂Ω

λvw + gs(λ, ·, uλ)vw.

is positive definite. On the other hand if Quλ
is negative definite in one direction then uλ is

unstable. Thus we have

Lemma 2.1. If μ1 ≡ μ1(λ, uλ) denotes the principal eigenvalue of

(2.1)
{ −Δϕ1 + ϕ1 = 0, in Ω

∂ϕ1
∂n = μ1ϕ1 + gs(λ, x, uλ)ϕ1, on ∂Ω

then uλ is stable, if μ1 > λ. Also uλ is unstable if μ1 < λ.
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Figure 3. Bifurcation diagram and sketch of the stability of solutions, + for
stable solutions and − for unstable solutions. There are marks ∗ for turning
points and o for resonant solutions.

Proof. Suppose μ1 > λ. The variational characterization of μ1 states that

μ1 := inf
u∈H1(Ω)

∫
Ω

|∇u|2 + u2 −
∫

∂Ω

gs(λ, ·, uλ)u2

∫
∂Ω

u2

Therefore, for any u ∈ H1(Ω) − {0}, we have

0 ≤
∫

Ω

|∇u|2 + u2 −
∫

∂Ω

μ1u
2 + gs(λ, ·, uλ)u2

<

∫
Ω

|∇u|2 + u2 −
∫

∂Ω

λu2 + gs(λ, ·, uλ)u2.

Hence Quλ
is positive definite and uλ is stable.

On the other hand, if μ1 < λ, letting ϕ1 denote the eigenfunction corresponding to the eigen-
value μ1, then

0 =
∫

Ω

‖∇ϕ1‖2 + ϕ2
1 −

∫
∂Ω

μ1ϕ
2
1 + gs(λ, ·, uλ)ϕ2

1

>

∫
Ω

‖∇ϕ1‖2 + ϕ2
1 −

∫
∂Ω

λϕ2
1 + gs(λ, ·, uλ)ϕ2

1.

Thus Quλ
is negative definite in the direction of ϕ1, which proves that uλ is unstable. �

3. Auxiliary Lemmas and proof of our main result

This section is devoted to giving sufficient conditions for the existence of unbounded sequences
of stable solutions, unstable solutions, and turning points of (1.1).

Let α be the rate with which g goes to infinity, see (H1), and ρ be rate with which g−sgs goes to
infinity, see (H2). In the first place we note that even if α �= ρ, then the boundary Steklov eigenvalue
μ1 → σ1 and of the boundary Steklov eigenfunction ϕ1 → Φ1 as λ → σ1 and ‖u‖L∞(∂Ω) → ∞.
In the following Lemma we rewrite Lemma 3.2 in [2], the proof is exactly the same. The only
restriction is that ρ < 1. We have the following result.
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Lemma 3.1. Assume the nonlinearity g satisfies hypotheses (H1) and (H2).
Then for any sequence of solutions of (1.1), (λn, un) such that λn → σ1 and ‖un‖L∞(∂Ω) → ∞,

setting μ1,n = μ1(λn, un), ϕ1,n = ϕ1(λn, un), the first eigenvalue and eigenfunction in (2.1) satisfy

(3.1) μ1,n → σ1 as λn → σ1 and ‖un‖L∞(∂Ω) → ∞,

ϕ1,n → Φ1 in H1(Ω) ∩ Cβ(Ω ) as λn → σ1 and ‖un‖L∞(∂Ω) → ∞,

for some β ∈ (0, 1).

Observe that (H1) and (H2) imply that,

|gs(λ, x, s)|
|s|γ−1

≤ |s|ρ−γF1(x) + |s|α−γG1(x), as λ → σ1, for s 
 1

where γ = max{ρ, α} < 1. Hence |gs(λ,x,s)|
|s|γ−1 ≤ D1(x) with D1 ∈ Lr(∂Ω) with r > N − 1, for s big

enough, x ∈ ∂Ω and λ → σ1.

In the second step, we analyze the changes of stability. To do that, we look at a detailed account
of the asymptotic behavior of the nonlinear term

F+ :=
∫

∂Ω

lim inf
(λ,s)→(σ1,+∞)

sg(λ, ·, s) − s2gs(λ, ·, s)
|s|1+ρ

Φ1+ρ
1

for ρ < 1. Changing lim inf by lim sup we define the number F+. Assume α = ρ, if

F+ > 0, then D+ is stable and subcritical,

see [2, Theorem 3.4], and if

F+ < 0, then D+ is unstable and supercritical,

see [2, Theorem 3.5]. In this paper we consider nonlinearities for which

F+ < 0 < F+,

Unlike the case α = ρ, , our assumption α �= ρ allows for the existence of sequences of stable
supercritical solutions and unstable subcritical solutions, see Theorem 1.3.

We shall argue as in [3] for the sub-critical and supercritical case. To determine whether a
sequence of solutions (λn, un) is stable or unstable, one must check the sign of

(3.2) lim inf
n→∞ F (λn, un) and of lim sup

n→∞
F (λn, un).

where F is defined by (1.8). This is done in Lemma 3.2. But this requires an a priori knowledge
of the solutions themselves, which is in general impracticable.

In [3, Proposition 3.2], it is proved that when g is such that

|g(λ, x, s)| = O (|s|α) as |s| → ∞ for some α < 1,

then, the solutions in D±, can be described as

un = snΦ1 + wn, where
∫

∂Ω

wnΦ1 = 0 and wn = O(|sn|α) as n → ∞,

and we intend to unveil the signs in (3.2) by just looking at the signs of those lim inf at λn = σ1

and un = snΦ1. This is achieved in Lemma 3.3.

With these tools, in Theorem 1.3 we take two sequences {sn} and {s′n} satisfying

(3.3) −∞ < lim
n→+∞F (σ1, s

′
nΦ1) < 0 < lim

n→+∞F (σ1, snΦ1) < ∞,

and from here we obtain the existence of unbounded sequences of stable and unstable solutions of
(1.1) in D+.
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Let us follow with the second technical lemma. Note that this result allows us to compare λ
and μ1 as λ → σ1. Next Lemma is essentially Lemma 3.3 in [2] rewritten for a different rate, we
omit the proof.

Lemma 3.2. Assume the nonlinearity g satisfies hypotheses (H1) and (H2).
Then for any sequence of solutions of (1.1) (λn, un) such that λn → σ1 and ‖un‖L∞(∂Ω) → ∞

denoting by μ1,n = μ1(λn, un), the first eigenvalue in (2.1), we have, if un > 0

F+∫
∂Ω

Φ1
2

≤ 1∫
∂Ω

Φ1
2

lim inf
n→∞ F (λn, un)

≤ lim inf
n→∞

μ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≤ lim sup
n→∞

μ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≤ 1∫
∂Ω

Φ1
2

lim sup
n→∞

F (λn, un) ≤ F+∫
∂Ω

Φ1
2

A similar statement is obtained for the case un < 0, just changing F+ by F− and F+ by F−.

In order to prove the main result, we have to guarantee that the signs in (3.2) can be deduced
from those of (3.3). This is stated in the following technical result, which is a slight variation of
[3, Lemma 3.3]

Lemma 3.3. Assume that g satisfies hypotheses (H1), (H2), (H3) and (1.7).

If λn → σ1, sn ↑ ∞ and there exists a constant C such that ‖wn‖L∞(∂Ω) ≤ C|sn|α for all
n → ∞, then

lim inf
n→+∞ F (λn, snΦ1 + wn) ≥ lim inf

n→+∞ F (σ1, snΦ1),

where F is given by (1.8). Similarly

lim sup
n→+∞

F (λn, snΦ1 + wn) ≤ lim sup
n→+∞

F (σ1, snΦ1).

Proof. For short, let us denote by h = g−sgs. For all (λ, s) ≈ (σ1,+∞) and for any w ∈ L∞(∂Ω)
such that 1

2Φ1 > |w|
s , we have (with a constant C that may change from line to line)∫

∂Ω

|h(λ, ·, sΦ1 + w) − h(λ, ·, sΦ1)|Φ1 ≤ C‖w‖L∞(∂Ω)

∫
∂Ω

∣∣∣∣
∫ 1

0

hs(λ, ·, sΦ1 + τw) dτ

∣∣∣∣
≤ C‖w‖L∞(∂Ω) sup

τ∈[0,1]

‖hs(λ, ·, sΦ1 + τw)‖L∞(∂Ω)

Taking into account hypothesis (H3) and whenever ‖w‖L∞(∂Ω) = O(|s|α), we deduce that

(3.4)
∫

∂Ω

|h(λ, ·, sΦ1 + w) − h(λ, ·, sΦ1)|
|s|ρ Φ1 ≤ C sup

|s|≥M

∥∥∥∥hs(λ, ·, s)
|s|ρ−α

∥∥∥∥
L∞(∂Ω)

−→ 0

as λ → σ1, M → +∞.
Consequently, for ‖wn‖L∞(∂Ω) = O(|sn|α)

lim inf
n→+∞

∫
∂Ω

snh(λn, ·, snΦ1 + wn)
|sn|1+ρ

Φ1

≥ lim
λ→σ1
s→+∞

∫
∂Ω

sh(λ, ·, sΦ1 + w) − sh(λ, ·, sΦ1)
|s|1+ρ

Φ1 + lim inf
n→+∞

∫
∂Ω

snh(λn, ·, snΦ1)
|sn|1+ρ

Φ1

= lim inf
n→+∞

∫
∂Ω

snh(λn, ·, snΦ1)
|sn|1+ρ

Φ1 = lim inf
n→+∞

∫
∂Ω

snh(σ1, ·, snΦ1)
|sn|1+ρ

Φ1,
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where we used firstly (3.4) and secondly hypothesis (1.7).
Now note that the left hand side above can be written as

snh(λn, ·, snΦ1 + wn)
|sn|1+ρ

Φ1 =
(snΦ1+wn)h(λn, ·, snΦ1 + wn)

|snΦ1+wn|1+ρ

∣∣∣∣Φ1 +
wn

sn

∣∣∣∣
ρ

Φ1.

Then, (H2) and the fact that Φ1 + wn/sn → Φ1 in L∞(∂Ω) concludes the proof.

We are now in a position to prove our main result, which states the existence of unbounded
sequences of stable solutions, unbounded sequences of unstable solutions and also unbounded
sequences of turning points.

Proof of Theorem 1.3
(i) To prove the result, we show that from (1.9) we can find two unbounded sequences of

solutions {(λn, un)}, {(λ′
n, u′

n)}, with λn, λ′
n close enough to σ1, such that μ1,n := μ1(λn, un) > λn

and μ′
1,n := μ1(λ′

n, u′
n) < λ′

n, respectively and then we use Lemma 2.1. We below focus in the
stable case and the unstable one is analogous.

Since the projection of the unbounded branch of positive solutions on span[Φ1], is an interval
[s0,∞), choose (λn, un) → (σ1,∞) such that

P (un) :=

∫
∂Ω

unΦ1∫
∂Ω

Φ2
1

= sn,

with sn as in (1.9). Writing un = snΦ1 + wn, from [3, Proposition 3.2] and hypotheses (H2), we
obtain that wn = O(|sn|α).

Taking into account Lemma 3.2 we have

(3.5) lim inf
n→∞

μ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≥ lim inf
n→∞

μ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≥ 1∫
∂Ω

Φ2
1

lim inf
n→∞ F (λn, un)

Applying Lemma 3.3 applied to the function h = g − sgs, using firstly hypothesis (H1), (H2)
and (1.7), and secondly (1.7) and (1.9), implies that

(3.6) lim inf
n→∞ F (λn, snΦ1 + wn) ≥ lim inf

n→+∞ F (σ1, snΦ1) > 0

The inequalities (3.5)-(3.6) imply that μ1,n > λn for λn close enough to σ1. Likewise it can be
proved that μ′

1,n < λ′
n for λ′

n close enough to σ1, ending this part of the proof.

(ii) To achieve this part of the proof, we use Leray-Schauder degree theory. Let

Kn := {(λ, u) ∈ D+ : P (u) = s and sn ≤ s ≤ s′n}.
For each n ∈ N, Kn is a compact set in R ×C(Ω̄), see for instance [3, Proof of Theorem 3.4]. For
each n ∈ N fix, let λmin := min{λ : (λ, u) ∈ Kn}, and likewise λmax. Assume to the contrary that
Kn contains no turning point. In other words, assume that for each λ ∈ [λmin, λmax] there exist
a unique solution uλ ∈ Kn.

For any b ∈ Lq(∂Ω), q ≥ 1, there exists a unique solution of{ −Δv + v = 0, in Ω
∂v
∂n = b, on ∂Ω.

Moreover ‖v‖W 1,p(Ω) ≤ C‖b‖Lq(∂Ω), with p = q N
N−1 . We denote it by T (b) = v and

S(b) := γT (b), where γ : W 1,p(Ω) → W 1−1/p,p(∂Ω) is the trace operator.

The operator S is known as the Neumann-to-Dirichlet operator. If q > N − 1, then the map
S transforms Lq(∂Ω) into Cτ (∂Ω) for some τ ∈ (0, 1), and is continuous and compact, see for
instance [1, Lemma 2.1].

Let H : [λmin, λmax] × C(∂Ω) → C(∂Ω) be the homotopy defined by

H(λ, u) := λSu + S(g(λ, ·, u)).
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Hence, the fixed points of H(λ, ·) are the solutions to (1.1). Let ε > 0, writing u = sΦ1 + w and
due to ‖w‖L∞(∂Ω) = O(|s|α) with α < 1, we obtain ‖u − sΦ1‖L∞(∂Ω) ≤ εs for any s big enough.

Now consider the Leray-Schauder degree of I − H(λ, ·) with respect to zero, in the set

O :=
⋃

s∈[sn,s′
n]

{u ∈ C(Ω̄) : ‖u − sΦ1‖L∞(∂Ω) ≤ 2εs}.

From the homotopy invariance property, degLS(I − H(λ, ·),O, 0) is well defined and independent
of λ for λ ∈ [λmin, λmax]. In particular

(3.7) degLS(I − H(λn, ·),O, 0) = degLS(I − H(λ′
n, ·),O, 0).

Since from part (i) λn < μ1,n, the linearized operator I − λnS − S[gs(λn, x, un)·] is invertible and
consequently un is an isolated fixed point. Therefore the fixed point index is well defined and
moreover

i (H(λn, ·), un) = degLS(I − λnS − S[gs(λn, x, un)·],O, 0) = (−1)m(λn) = 1

where m(λn) is sum of the algebraic multiplicities of the eigenvalues of the linearization strictly
smaller than λn and m(λn) = 0 if the linearization has no eigenvalues μi,n of this kind.

Moreover, from hypothesis un is the only solution in Kn for the value of the parameter λ = λn,
we deduce degLS(I − H(λn, ·),O, 0) = i (H(λn, ·), un).

On the other side

i (H(λ′
n, ·), u′

n) = degLS(I − λ′
nS − S[gs(λn, x, un)·),O, 0] = −1

and likewise degLS(I − H(λ′
n, ·),O, 0) = i (H(λ′

n, ·), u′
n) = −1 which contradicts (3.7) and the

proof is accomplished.

4. Two examples

4.1. The oscillatory nonlinearity. We try to summarize some of the known results for the
nonlinearity (1.6). In [1] it is proved that if α < 1, for any β ∈ R, and C ∈ R, there is an
unbounded branch of positive solutions, see [1, Theorem 3.4]. Assume from now in advance that
β > 0. In [1, Theorem 4.3] it is proved that if C > 1, then the bifurcation is subcritical while if
C < −1, the bifurcation is supercritical and in any case there are no resonant solutions, see Figure
2. In [3] it is proved that if β > 0, α + β < 1, and |C| < 1, there exist unbounded sequences
of subcritical and supercritical solutions, subcritical and supercritical turning points and infinite
resonant solutions, see Figure 1. Case |C| = 1 is a critical case. In this particular example, if
|C| = 1 we have an infinite sequence of resonant solutions given by

uk(x) := [(2k ± 1/2)π]1/βΦ1(x), k ≥ 0.

In this paper we proved that if

β > 0, α + β < 1, and ∀C,

then the unbounded branch of positive solutions contains a sequence of stable solutions, a sequence
of unstable solutions and a sequence of turning points, see Theorems 1.2 and 1.3.

Note that if α + β ≥ 1 then gs �→ 0 as s → ∞ and therefore the eigenvalue of the linearized
equation does not converge to the first boundary Steklov eigenvalue, i.e. μn �→ σ1 as n → ∞, see
Lemma 3.1. In addition, condition (H3) in Theorem 1.3 cannot be satisfied, and stability of the
solutions cannot be deduced from the signs on multiples of the eigenfunction, see the arguments
explained at the beginning of Section 3 and also Lemma 3.3. Thus, the restriction α + β < 1
is needed to guarantee both, for the convergence of eigenvalues and eigenvectors to σ1 and Φ1

respectively, and for hypothesis (H3) to be satisfied.
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4.2. An example for the case N = 1. We make explicit some ideas on the one dimensional
case. We know that the bifurcation problem is a two parameter non linear problem that can be
treated using finite dimensional techniques, see section 8 in [1].

Observe that if we consider equation (1.1) in the one dimensional domain Ω = (0, 1), we can
rewrite it as ⎧⎨

⎩
−uxx + u = 0, in (0, 1)
−ux(0) = λu + g(λ, 0, u(0)).

ux(1) = λu + g(λ, 1, u(1)),

The general solution of the differential equation is u(x) = aex+be−x and therefore the nonlinear
boundary conditions provides two nonlinear equations in terms of two constants a and b. The
function u = aex + be−x is a solution if (λ, a, b) satisfy(−(1 + λ) (1 − λ)

(1 − λ)e −(1 + λ)e−1

)(
a
b

)
=
(

g(λ, 0, a + b)
g(λ, 1, ae + be−1)

)

In this case we only have two Steklov eigenvalues,

σ1 =
e − 1
e + 1

< σ2 =
1
σ1

=
e + 1
e − 1

.

Choose g(λ, x, s) = sα sin(sβ) for any α < 1, β > 0, see Fig 4.
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Figure 4. A bifurcation diagram of changing stability solutions, on the left α +
β < 1, and on the right α + β > 1 and in both cases λ → σ1.

The eigenvalue of the linearized equation is

μ1

(− gs

(
λ(s), ·, us

))
:=

e − 1
e + 1

− α
sin
[
[s(e + 1)]β

]
[s(e + 1)]1−α

− [s(e + 1)]α+β−1 cos
[
[s(e + 1)]β

]
.

If

[s(e + 1)]β =

⎧⎨
⎩

(2k + 1)π
(2k+1)π

2
2kπ

, then μ1

(
λ(s), us

)− λ(s)

⎧⎨
⎩

> 0
= 0
< 0

and we can conclude that (σ1, u2k+1), where

u2k+1(x) :=
[(2k + 1)π]1/β

e + 1
(ex + e1−x) for any k ∈ Z,
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is a stable solution. Likewise, (σ1, u2k) is a sequence of unstable solutions where

u2k(x) :=
(2kπ)1/β

e + 1
(ex + e1−x) for any k ∈ Z.

Moreover, (λ∗
k, u∗

k) is an unbounded sequence of turning points, where

λ∗
k :=

e − 1
e + 1

− (−1)k α

[(k + 1/2)π]1−α
, u∗

k(x) :=
[(2k + 1)π]1/β

2(e + 1)
(ex + e1−x).

The bifurcated branch from infinity contains stable and unstable solutions, and there are an
unbounded sequence of turning points. See Figures 1, 2 and 3 for a bifurcation diagram when
N = 1. In that case, there is not restriction on the size of β, see Fig. 4.

We notice that with respect to the linearization, the things are different depending on α + β.
If α + β ≥ 1 then μ1

(
λ(s), ·, us

)
� σ1 as s → ∞. On the other side, the eigenvalue of the

linearized equation satisfies μ1

(
λ(s), ·, us

) → σ1 as s → ∞, whenever α + β < 1, see Fig. 5.
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Figure 5. The difference between μ − σ1. On the left α + β < 1, and μ → σ1,
on the right α + β > 1 and μ �→ σ1.

Moreover, if α + β < 1,

F+ :=
∫

∂Ω

lim inf
s→+∞

sg − s2gs

|s|1+α+β
Φ1+α+β

=
∫

∂Ω

lim inf
s→+∞ −β cos(sβ) Φ1+α+β = −β

∫
∂Ω

Φ1+α+β ,

F+ :=
∫

∂Ω

lim sup
s→+∞

sg − s2gs

|s|1+α+β
Φ1+α+β

=
∫

∂Ω

lim sup
s→+∞

−β cos(sβ) Φ1+α+β = β

∫
∂Ω

Φ1+α+β

i.e. F+ < 0 < F+.
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