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Abstract - The objective of this article is to find the optimal trajectory
of a pumping ship, used to clean oil spots in the open sea, in order to pump
the maximum quantity of pollutant on a fixed time period. We use a model
previously developed to simulate the evolution of the oil spots concentration
due to the coupling of diffusion, transport from the wind, sea currents and
pumping process and reaction due to the extraction of oil. The trajectory
of the ship is directly modeled by considering a finite number of interpola-
tion points for cubic splines. The optimization problem is solved by using a
global optimization algorithm based on the hybridization of a Genetic Algo-
rithm with a Semi-Deterministic Secant Method, to improve the population.
Finally, we check the efficiency of our approach by solving several numerical
examples considering various shapes of oil spots based on real situations.

keywords: Sea pollution; Pumping ship; Optimal trajectory; Global
Optimization; Genetic Algorithms.

1 Introduction

Recent oil contamination hazards in the open sea (see [24, 28]), shows
the importance of finding solutions to remove the oil in an efficient way.
To do that, there exist a large number of cleaning technologies [26]. Here,
we focus in the use of a pumping ship to clean the oil contaminated water
[2, 25]. More precisely, given a particular oil contamination scenario during
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a fixed time interval, we are interested in finding an optimal trajectory for
this pumping ship in order to find an optimum cleaning process.

In order to solve this complex optimization problem, using mathematical
and computational methods, we need to model first the evolution of the oil
spots concentration resulting from the combined effects of diffusion, trans-
port (by wind and sea currents) and the action of the pumping ship (that
implies transport and a reaction phenomena). In this paper we use a finite
volume numerical model previously developed [1].

It is also necessary to formulate mathematically our optimization prob-
lem. In particular, we need to model the ship trajectory by the use of a con-
tinuous function generated by cubic spline interpolation, where the position
of the finite number of interpolation points are the optimization variables.
The objective function is designed to maximize the amount of oil pumped
during the fixed time interval.

Since this optimization problem seems to have various local and global
minima (see Figure 1), we solve it by considering an hybrid global opti-
mization method based on the coupling of an efficient Genetic Algorithm
[5, 11, 12] with a Semi-Deterministic Secant Method (SDSM) [16, 18]. We
perform a sensitivity analysis of the algorithm parameters and operators, to
choose the most suited to our problem.

To verify the efficiency of our approach, we consider and solve numerically
three particular examples for various realistic oil spots shapes [24].

In Section 2, we introduce the numerical model considered to simulate
the movement of the oil spots and the effect of the pumping ship. Section
3 presents the optimal trajectory problem. In Section 4 we describe the
optimization method. Finally in Section 5, we show the numerical results
over the three considered examples.

2 Mathematical model for oil spots movement in

the open sea

Here, we present a numerical model used to simulate the evolution of
the oil spots concentration, due to the effects of the sea, wind and pumping
process [1]. First we introduce the continuous equations. Then, this model
is discretized by considering a Finite Volume approach.

2.1 Continuous model

We consider a spatial domain Ω = (xmin, xmax)×(ymin, ymax) ⊂ IR2, large
enough to ensure that the pollutant will stay in Ω during the corresponding
fixed time interval (0, T ).

We assume that the density of the pollutant is smaller than the one of
the sea water (so that it remains at the top) and the layer-thickness of the
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pollutant is a known constant h [23].
We denote by c(x, t) the pollutant superficial concentration, measured as

the volume of pollutant per surface area at {x, t} ∈ Ω × (0, T ). We assume
that the evolution of c is governed by five main effects, namely:

• Diffusion of the pollutant

• Transport due to the wind

• Transport due to the sea currents

• Transport and sink due to the pumping process

Furthermore, we consider that the pumping ship follows a trajectory
γ(t) ∈ C0([0, T ], Ω), t ∈ [0, T ], that remains inside the region Ω and the
pump is a cylinder with a cross section of radius Rp and height hp (we suppose
hp ≥ h), that pumps the fluid at a velocity Q in the radial directions.

Under these assumptions, the space-time distribution of c is governed by
the following reaction-advection-diffusion type equation [1, 15]:



























∂c

∂t
−∇ · d∇c + ∇ · c w + ∇ · c s

+∇ · c p = −
2Q

Rp
c χB(γ(t),Rp), in Ω × (0, T ),

c = 0, on ∂Ω × (0, T ),
c = c0, in Ω × {0},

(1)

where:

• B(γ(t), Rp) is the ball of center γ(t) and radius Rp,

• p(ξ, t) =











QRp

−−−→
γ(t)ξ

|
−−−→
γ(t)ξ|2

, if ξ ∈ Ω\B(γ(t), Rp),

0, if ξ ∈ B(γ(t), Rp),

• χB(γ(t),Rp)(ξ) =

{

0, if ξ ∈ Ω\B(γ(t), Rp),
1, if ξ ∈ B(γ(t), Rp),

• function c0 : Ω → IR is the initial superficial concentration in Ω,

• d =

(

d1 0
0 d2

)

and d1, d2>0 are the diffusion coefficients in the west-

east and south-north directions,

• w is the wind velocity multiplied by a suitable drag factor,

• s is the sea current velocity.

Remark 1 Evaporation effects can be also taken into account by adding a
term kc in the left hand side of (1), where k ∈ IR.

3



2.2 Numerical approximation model

A Finite Volume numerical method [7, 9, 22] has been used to approxi-
mate numerically the solution of the continuous model presented in 2.1 [1].
More precisely, given I, J ∈ IN we divide Ω = (xmin, xmax)×(ymin, ymax) into
control volumes Ωi,j . For i = 1, . . . , I; j = 1, . . . , J , we define

Ωi,j = (xmin + (i − 1)∆x, xmin + i∆x)
×(ymin + (j − 1)∆y, ymin + j∆y),

(2)

with ∆x =
xmax − xmin

I
and ∆y =

ymax − ymin

J
. We define ∆t =

T

N
, where

N ∈ IN is the number of time steps.
Considering a fully implicit time discretization of backward Euler type for

the time discretization of (1) with an upwind scheme for the transport term,
one obtains at t = n∆t on the cell Ωi,j , for i = 1, . . . , I and j = 1, . . . , J , the
following scheme:

C0
i,j = C0(ξi,j), ξi,j being the center of cell Ωi,j ; (3)

for n ≥ 0 we compute {Cn
i,j} (with Cn

i,j ≈ c(n∆t, ξi,j)) from {Cn−1
i,j } using :

Cn
i,j − Cn−1

i,j

∆t
+ 2

(

d1

(∆x)2
+

d2

(∆y)2

)

Cn
i,j

−
d1

(∆x)2

(

Cn
i+1,j + Cn

i−1,j

)

−
d2

(∆y)2

(

Cn
i,j+1 + Cn

i,j−1

)

+
1

∆x
[max(0, V n

x,i,j− 1
2

)Cn
i,j + min(0, V n

x,i,j− 1
2

)Cn
i+1,j

−max(0, V n
x,i−1,j− 1

2

)Cn
i−1,j − min(0, V n

x,i−1,j− 1
2

)Cn
i,j ]

+
1

∆y
[max(0, V n

y,i− 1
2
,j
)Cn

i,j + min(0, V n
y,i− 1

2
,j
)Cn

i,j+1

−max(0, V n
y,i− 1

2
,j−1

)Cn
i,j−1 − min(0, V n

y,i− 1
2
,j−1

)Cn
i,j ]

+
2πRpQ

∆x∆y
Cn

i,jχ
p,n
i,j = 0,

(4)

where in (4)

• Cn
k,l = 0 if k ∈ {0, I + 1} or l ∈ {0, J + 1},

• Ωip,n,jp,n is the cell containing γ(n∆t), χp,n
i,j = 0 if {i, j} 6= {ip,n, jp,n}

and χp,n
i,j = 1 if {i, j} = {ip,n, jp,n} (if γ(n∆t) is in the boundary of

several cells we choose the cell of larger index),

• V(ξ, t) = (Vx(ξ, t), Vy(ξ, t)) = w(ξ, t)+s(ξ, t)+p(ξ, t), with ξ ∈ Ω and
t ∈ [0, T ],
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• V n
x,i,j− 1

2

= Vx((xmin + i∆x, ymin + (j −
1

2
)∆y), n∆t),

• V n
y,i− 1

2
,j

= Vy((xmin + (i −
1

2
)∆x, ymin + j∆y), n∆t).

The solution of the non symmetric linear system (4) is obtained by using
a stabilized Bi-Conjugate gradient type algorithm [19, 27, 1].

3 Optimal trajectory

As mentioned in Section 1, we address the problem of finding an optimal
trajectory for the pumping ship, for a particular oil contamination scenario
during a fixed time interval (0, T ).

For the given time T , we minimize the concentration c(ξ, T ) of the re-
maining pollutant in Ω, which is equivalent to maximize the amount of
pumped oil from the sea. More precisely, we are interested in solving the
following optimization problem:

min
γ∈Dc

Jc(γ) (5)

where Jc(γ) =
∫∫

Ω c(0, x)dx −
∫ T
0 c(τ, γ(τ))Qdτ is the objective function,

Dc = {γ ∈ C([0, T ], Ω) such that length(γ) ≤ Vmax ∗T} is the feasible region
and Vmax is the maximum velocity of the ship when performing the pumping
process. This restriction on the length of γ avoids to consider trajectories
implying non realistic ship velocities.

In order to find numerically a smooth optimal pump trajectory (i.e. with-
out sharp corners), we consider trajectories built by using cubic spline inter-
polation through nnpi ∈ IN 2-D interpolation points.

The set of interpolation points, denoted by Pint, is constructed by using
a polar representation:

Pint = {(r1, θ1), ..., (rnnpi
, θnnpi

)},

where ri ∈ [0, rmax], with rmax = Vmax ∗ (T/nnpi) (modeling the ship velocity
constraint), and θi ∈ [0, 2π), for i = 1, ..., nnpi.

Given an interpolation point expressed in Cartesian coordinates (xint

k , yint

k ),
with k ∈ {1, ..., nnpi − 1}, the next one (xint

k+1, y
int

k+1) is built as:

xint

k+1 = xint

k + rk cos(θk),

yint

k+1 = yint

k + rk sin(θk).

The resulting interpolated trajectory is denoted by γ or (γx, γy) or γ(ri,θi).

5



0 2 4 6 0

2

4

6

40

80

θ
2

θ
1

Surface
J

θ
1

θ 2

Iso−contours

0 2 4 6
0

1

2

3

4

5

6

Figure 1: 2D graphical representation of function J(ri, θi) obtained by con-
sidering the example 1 presented in Section 5, with r1 = r2 = 5000 and two
variables θ1 and θ2: (Left) surface and (Right) isocontours.

Furthermore, we need to avoid the ship leaving the domain of study Ω.
To accomplish this, we project the trajectory γ using an orthogonal projector
on Ω, called PrΩ, defined as:

PrΩ(γ(ri,θi)(τ)) =
(

max(min(γx(τ), xmax), xmin),

max(min(γy(τ), ymax), ymin)
)

.
(6)

Thus, the numerical optimization problem that we solve, is of the form:

min J(ri, θi)
subject to

0 ≤ ri ≤ rmax , i = 1, ..., nnpi,
0 ≤ θi < 2π , i = 1, ..., nnpi,

(7)

where J(ri, θi) =
∫∫

Ω c(0, x)dx −
∫ T o

0 c(τ, γ(ri,θi)(τ))Qdτ is the objective

function and {(ri, θi)}
nnpi

i=1 ⊂ D are the discrete optimization variables with
D = [0, rmax] × [0, 2π) is the feasible region. The total number of optimiza-
tion variables is N = 2nnpi.

Since problem (7) has many local and global minima, we need to use a
global optimization method capable to find the global solution. A particular
2D graphical representation of function J is shown in Figure 1 where we can
observe several local minima.

4 Global optimization method

In order to solve optimization problem (7), we develop an hybrid global
optimization method. This method is based on the combination of a partic-
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ular Genetic Algorithm (GA) [5, 11, 12] and a SDSM [16, 18] to improve the
GA performance.

4.1 Genetic Algorithm

Genetic algorithms (GA) are a class of Evolutionary metaheuristic Opti-
mization Algorithms which apply the principles of natural evolution to find
an optimal solution to a problem (see for instance [13, 21]).

For numerical optimization problems on continuous domains of IRN ,
where N ∈ IN is the number of optimization variables, real-coded GAs,
i.e. GAs where each point in the feasible region is represented as a real
n-dimensional vector, are well suited [14].

In a GA, a first set of points, called ‘Initial Population’, X0 = {x0
l ∈

D, l = 1, ..., Np} of Np ∈ IN possible (an even number) solutions to the opti-
mization problem, called ‘individuals’, is randomly generated in the feasible
region D ⊂ IRN . Throughout this section, all random numbers are generated
by considering a uniform distribution in (0, 1) and using a seed number (i.e.,
a number used to initialize a pseudo-random number generator) Seed∈ IN.
Starting from this population, we build recursively Ng ∈ IN new populations
through three stochastic operators: selection, crossover and mutation. Each
time a new population is created, it is called a ‘generation’. Np and Ng

are set by the user and are called the population size and the number of
generations, respectively.

A fitness function (in our case the value of the objective function), is
used to measure the ‘goodness’ of each individual. An optimal solution to
the problem is given by the fittest individual (i.e., the one with the lowest
objective function value) after the last generation. An introductory survey
about GAs can be found in [8, 10, 13, 21].

The efficiency of GAs strongly depends on the design of the genetic op-
erators and their tuning to the specific problem under consideration.

While the number of generations is less than the maximum allowed Ng,
for each population we perform the following operators:

• Selection to determine which individuals become ‘parents’.

• Crossover to recombine pairs of parents to generate ‘offspring’.

• Mutation of the resulting population, to increase diversity, checking
feasibility.

• Evaluation of the fitness of the new population. This implies the evalu-
ation of the objective function J for each individual of the population.

• Increase the generation counter.

• Check the considered stopping criteria. Here, we consider a fixed total
number of function evaluation, denoted by Nfe.
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Next, we describe those operators as they have been chosen in our algo-
rithm.

Selection of parents:

An intermediate population of potential parents, with the same number of
individuals than the initial population, is chosen using a selection process.

The selection chooses, from the current population, some individuals that
will mate to generate offspring through the recombination of their digits.
The selection of parents, could be based on elitism, so that the individuals
with better fitness should have higher probability to be selected. However,
the intermediate population should also have diversity in order to avoid a
premature convergence of the algorithm, and therefore too much elitism in
the selection might result in a serious drawback, especially when many local
solutions exist.

Several selection operators have been studied [3, 4]. For our problem,
we choose the binary tournament without replacement which is suitable for
handling the existence of a large number of local minima.

In the binary tournament, a group of 2 individuals is chosen randomly in
D. The best of both (i.e with smallest fitness), is selected as a parent. The
selected pair of individuals is removed from the population and the process
continues until all individuals have participated in the tournament. As this
process has chosen half the number of individuals from the population, it has
to be repeated again starting from the original population, to finally select
Np parents. In this way, the best individual is selected twice and the worst
one is eliminated. We also note that the same individual can be present in
the mating pool twice, depending on its fitness.

Crossover:

Once the mating pool is defined, pairs of individuals are randomly taken
from it and mated. The number of actual parents depends on a parameter
Pc ∈ [0, 1], called probability of crossover; for each individual in the mating
pool, a random number r from a uniform distribution in (0,1) is generated
and, if r < Pc, the individual is selected as parent. A pair of parents is
formed by two individuals consecutively selected.

The way to perform the crossover on each pair depends on the desired
effect. In our case, we want to achieve diversity, and therefore we use a
parent-centric crossover called best combinatorial crossover and denoted Bcx-
α [29]. Studies carried out in reference [14] show that these operators arise
as a meaningful and efficient way for solving real-parameter optimization
problems.

More precisely, each pair of parents mm, mf generates three offspring,
m1, m2, m3. The crossover is carried out separately on each component
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i = 1, ..., N , of the individual by taking

mj
i = rand(Ii), (8)

with Ii = [gi − αMi, Gi + αMi] (action interval), i = 1, ..., N , j = 1, 2, 3
, rand(Ii) returns a random normal distributed number in the interval Ii,

gi = min{mm
i , mf

i }, Gi = max{mm
i , mf

i } and Mi = Gi − gi.
The two children with better fitness are chosen.
We note that α is related to the size of the region around each parent,

and thus its value controls the degree of ’resemblance’ to a parent. The
degree of diversity induced by Bcx-α may be easily adjusted by means of
varying its associated parameter α. The greater the value of α is, the higher
the variance (diversity) introduced into the population. In our problem we
have used α = 2.

Mutation:

In this work, we test three different mutation operators, as our problem is
quite sensitive to this operator. For all types of mutation operators,we choose
randomly round(Np · Pm) individuals to be mutated, where round(.) is the
function that returns the nearest integer of a real number and Pm ∈ [0, 1] is
the proportion (given a priori) of mutated individuals.

• The first mutation operator is called the classical uniform mutation,
and is denoted by clas.unif. For each individual to be mutated, only
one of its component (each individual is a vector with N components),
chosen randomly, will be randomly modified within the feasible region.

• The second mutation operator is called the exhaustive uniform muta-
tion and is denoted by exh.unif. It randomly mutates (in the feasible
region) all the components of each individual selected for mutation.

• The third mutation, is called non-uniform mutation as described in
[21], and is denoted by non.unif.. In this case, a component mi of the
individual to be mutated is transformed to mnewi according to the
following formula:

mnewi =

{

mi + ∆(k, u − mi) if r ≥ 0.5,
mi + ∆(k, mi − l) if r < 0.5,

(9)

where u is the upper bound and l the lower bound of the component
mi in D, r is a random number and ∆(k, y) = y(1 − r(1−k/Ng)2), with
k equal to the number of generations performed so far. This operator
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allows to explore the feasible domain uniformly in the first generations,
and locally in later generations.

To avoid the best individual to be lost through the generations, we use
an elitist strategy, i.e. we preserve a copy of the best individual by
avoiding mutating it.

At the end of the algorithm, after Ng iterations, the GA returns an output
denoted by GA(X0) = argmin{J(xi

j)/xi
j ∈ D, i = 1, ..., Np, j = 1, ..., Ng)

where J is the objective function.

4.2 Hybrid GA Secant Method

Maaranen et al. [20] recently provided numerical evidence that the initial
population may strongly affect the speed of GAs and that a "good" initial
population should combine genetic diversity (i.e. the ability to reach the
whole feasible space during the evolution process) with uniform coverage
(i.e. a spatial distribution in the feasible space which avoids clustering and
uncovered regions).

Taking this into account, we present an hybrid optimization method
based on the successive execution of GA, starting from an initial popula-
tion which is recursively improved. More precisely, at the beginning the
GA is run Ng generations starting from a totally random initial popula-
tion denoted by X0

1 = {x0
1,j ∈ D, j = 1, ..., Np}. At the end of this run,

we denote o1 ∈ D the best individual obtained. Then, we perform secant
linear searches starting from each individual x0

1,j with j = 1, ..., Np along

the direction
−−→
x1

jo1. Those linear searches generate a set of Np − 1 denoted

XS
2 = {x0

2,j ∈ D, j = 1, ..., Np−1}. Then, we consider X0
2 = XS

2 ∪ {o1} that
is used as the initial population for another run of the GA, and this process
will be repeated NSec number of times.

This algorithm, called Hybrid GA Secant Method, is now described:

Step 1- Set X0
1 = {x0

1,j ∈ D, j = 1, ..., Np} a totally random initial popu-
lation.

Step 2- For l from 1 to NSec ∈ IN:

Step 2.1- Set ol = GA(X0
l ) (i.e., the optimal solution of the GA when

using X0
l as initial population).

Step 2.2- We construct X0
l+1 = {x0

l+1,j ∈ D, j = 1, ..., Np} as following:

· if j = 1 then x0
l+1=ol,

· if j ∈ {2, ..., Np − 1} then
if J(ol) = J(x0

l,j) set x0
l+1,j = x0

l,j

else set x0
l+1,j = ProjD(x0

l,j − J(ol)
ol−x0

l,j

J(ol)−J(x0
l,j

)
),

where ProjD is a projection algorithm over D.
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Step 2.3- Check the considered stopping criteria.

Step 3- Return ol = GA(X0
l ).

In the previous algorithm the GA is executed NSec times. Then, to satisfy
the given computational effort (the stopping condition), which corresponds
in our case to the total number of function evaluation Nfe, each run of the GA
is allowed to perform Nfe/NSec evaluations of J . This is done, by reducing
Np and/or Ng.

The SDSM has been reported and validated on various industrial prob-
lems in [6, 16, 17, 18].

5 Numerical experiments

In this section, we check the efficiency of our approach. First, we intro-
duce three numerical examples representing different realistic situations for
the shape of the oil spots [24]. Then, we perform some experiments to deter-
mine the optimization algorithm parameters and the most suited operators
for our optimization problem. Finally we present the optimization results
obtained for the three cases.

5.1 Numerical examples

Due to the fact that in the real world the oil spots have a tendency to
adopt various shapes we have created three representatives examples [24].

In all cases, the common parameters are the following:

• The computational domain Ω is defined by xmin = 0 m, xmax = 2×104

m, ymin = 0 m and ymax = 2 × 104 m.

• The constraint rmax = 1000 m.

• The number of interpolation points is nnpi = 10.

• The simulation time is equal to one day: T = 86400 s.

• We consider a discretization mesh of (I, J)=(50, 50).

• The time step is ∆t = 172.8 s (i.e. N =500).

• The diffusion coefficients are d1 = d2 = 0.5.

• The pump parameters are Q = 100 m/s and Rp = 1 m.

The first example has two circular spots defined by:

c(ξ, 0) = χB((8000,8000),1200)(ξ) + χB((8000,12000),1200)(ξ). (10)
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The wind multiplied by a drag factor plus the sea velocity field, s(ξ, t) +
w(ξ, t), is defined by

( x

4xmax
cos(

πt

3600
),

y

4ymax
sin(

πt

3600
)
)

, (11)

for t ∈ [0, T ] and ξ = (x, y) ∈ Ω.
The initial position of the pump is set to (10000, 14000). The initial

pollutant concentration and initial position of the pump are depicted in
Figure 2.

The second example has five ellipsoid spots defined by:

c(ξ, 0) = χE((8000,8000),100,1500)(ξ) + χE((12000,6000),100,3000)(ξ)+

χE((10000,10000),100,2000)(ξ) + χE((6000,10000),100,5000)(ξ)+

χE((14000,6000),100,1000)(ξ)
(12)

where χE((a,b),c,d)(ξ) = 1 if (x − a)2/c + (y − b)2/d ≤ 1 and 0 elsewhere.
The wind multiplied by a drag factor plus the sea velocity field, s(ξ, t) +

w(ξ, t), is defined by

(1

7
cos(4π

x + (4/7)t

xmax
), 0

)

, (13)

for t ∈ [0, T ] and ξ = (x, y) ∈ Ω.
The initial position of the pump is set to (4000, 4000). The initial pol-

lutant concentration and initial position of the pump are depicted in Figure
2.

The last example has one large spot defined by the following three joint
ellipsoids:

c(ξ, 0) = χE((10000,6000),1900,3500)(ξ) + χE((12000,8000),3000,1800)(ξ)+

χE((12000,10000),4000,2000)(ξ).
(14)

The wind multiplied by a drag factor plus the sea velocity field, s(x, t)+
w(x, t), is defined by

(

−
1

6
cos(10π

t

86400
)

x

xmax
, 0.038

)

, (15)

for t ∈ [0, T ] and ξ = (x, y) ∈ Ω.
The initial position of the pump is far from the oil spot (to test the ability

of the optimal trajectory) and is set to (4000, 14000). The initial pollutant
concentration and initial position of the pump are depicted in Figure 2.
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Figure 2: Initial position of the pollutant spots (in black) in the domain Ω
for examples 1 (Top), 2 (Center) and 3 (Bottom). The initial position (X)
of the pump is also shown.
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5.2 Calibration of the parameters for the Genetic Algorithm

We are interested in finding efficient genetic operators to be used to
solve our problems. To do that, we check the performance when considering
the Hybrid GA Secant Method proposed in Section 4.2 and three different
mutation processes. In all the following experiments of this section, Pm =
0.5, Pc = 0.3 and the stopping criteria is fixed to Nfe = 10000 function
evaluations.

First, we check the performance of the Hybrid GA Secant Method. To
do that, we perform twelve experiments: four for each example described in
Section 5.1. In all these experiments, the mutation operator is the so called
exhaustive uniform. The other genetic algorithm parameters (i.e., Seed, Np,
Ng and Nsec) and the obtained solutions are shown in Table 1.

In this table, we can clearly see that using the SDSM to improve the
initial population improves the performance of the Genetic Algorithm. For
the three examples, This is coherent with other studies [6, 16, 17, 18].

Seed 12345 12345 20153 20153

Np 100 20 100 20

Ng 100 20 100 20

Nsec 0 25 0 25

Sol. Ex. 1 13.58 6.65 8.07 5.68

Sol. Ex. 2 66.51 63.99 71.04 62.77

Sol. Ex. 3 76.26 63.18 78.76 67.99

Table 1: Results obtained when testing the effect of the SDSM. For all the
experiments we show Seed, Np, Ng, Nsec, and the results (Sol. Ex.) for
examples 1 to 3 explained in Section 5.1.

Secondly, we test the best mutation operator for our problem. To do
that, we perform nine experiments: three for each example. In all these
experiments, Seed=20153, Np = Ng = 20 and Nsec = 25. The solutions
obtained are shown in Table 2.

Mut. type exh. unif. clas. unif. non unif.

Sol. Ex. 1 6.65 6.15 4.3

Sol. Ex. 2 63.99 49.85 49.59

Sol. Ex. 3 63.18 56.35 55.70

Table 2: Results obtained when testing different mutation operators. In all
the experiments we show the mutation type (Mut. type) and the results
(Sol. Ex.) for examples 1 to 3 explained in Section 5.1.
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These results indicate that the non-uniform mutation is the most efficient.
This can be explained by the need to preserve diversity in the population
due to its reduced number of individuals. In fact, as we are using the SDSM
for the initial population, the number of individuals for each GA is reduced
to 20.

5.3 Results

Taking into account the results obtained in Section 5.2, we have used
the Hybrid GA Secant Method proposed in Section 4.2 to solve the three
examples, with the following set of parameters: Nsec = 30, the mutation
is non-uniform with Pm = 0.5, Pc = 0.3, Np = 40 and Ng = 40 (this
corresponds to Nfe = 48000). We have used a quad-core computer 64-Bit
PC of 2.8Ghz and 12 GB of local memory. The code is programmed in
Fortran 90. Double precision values were used in all computations. Each
cost function evaluation takes around 1 second.

Furthermore, we have designed a fixed trajectory crossing the initial oil
spots at constant velocity, as a reference to compare with the optimal tra-
jectories obtained using the Genetic Algorithm. Those fixed trajectories are
depicted in Figure 3.

The resulting optimal and fixed a priori trajectories, and their respective
final oil concentration distributions, are depicted in Figure 4. We point out
that in the case of example 1, the gray-scale has been modified in order
to emphasize the difference between the concentration distribution for the
optimal and for the fixed trajectories.

Furthermore, in Table 3, we report the final percentage of pumped oil
(objective function value), with respect to the initial concentration, obtained
using the optimal and the fixed trajectories.

We can observe in Table 3 that the percentage of the remaining oil for
the optimal trajectories is sufficiently lower than the fixed ones (the increase
of pumped oil is about 10%-15%).

Example 1 Example 2 Example 3

Fix. 12.34 57.62 69.36

Opt. 1.98 48.61 55.34

Table 3: Final percentage of pumped oil obtained with the optimal (Opt.)
and fixed (Fix.) trajectories for examples 1,2 and 3.

However we can see that for examples 2 and 3 the remaining quantity
of oil on the sea is still important (around 50%). Then for both cases,
we have run additional experiments considering that the ship can continue
pumping for two days. As the simulated time is twice higher, we have solved
the optimization problem with two different number of interpolation points:
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Figure 3: Fixed trajectories and the initial spots for example 1 (Top), 2
(Center) and 3 (Bottom). The initial (X), the final (o) position and the
trajectory (–)of the pump are also shown.
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Example 1 − Optimal trajectory
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Figure 4: Final concentration considering the prefixed (Left) and optimal
(Right) trajectories for examples (Top) 1, (Center) 2 and (Bottom) 3. The
initial position (X), the final position (o) and trajectory (–) of the pump are
also shown.
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nnpi = 10 (which is the same number as used for one simulation day) and
nnpi = 20 (which is the double number of points). In order not to change
the ship velocity, for 10 interpolation points the maximum distance between
two interpolation points is set to rmax = 2000 m and for 20 interpolation
points rmax = 1000 m. Furthermore, we have also considered the same fixed
trajectories than for the case of one simulation day with half velocity.

For each experiment, the final percentage of pumped oil is presented on
Table 4. The optimal and fixed trajectories, and their respective final oil
concentration, are shown in Figure 5.

Example 2 Example 3

Fix. 34.30 59.14

nnpi = 10 15.95 15.13

nnpi = 20 17.39 13.23

Table 4: Final percentage of pumped oil obtained with the optimal trajec-
tories, when considering 10 and 20 interpolation points, and the fixed (Fix.)
trajectory for examples 2 and 3 and 2 days of simulation.

These results show that increasing the number of simulation days, allows
to reduce dramatically the amount of remaining oil in the sea.

As expected, the optimal trajectories are much more efficients than the
fixed one designed considering the initial position of the spots.

For the optimization method the increase in the number of interpolation
points, which are the number of optimization variables, increases the dimen-
sion of the search space. Then, on could expect better results for higher
number of interpolation point, as this generates a larger number of possible
trajectories. However, since we have used the same number of function eval-
uation Nfe for both cases, it may happen (as for example 2) that the amount
of remaining oil is higher than in the case of 10 interpolation points.

The results (trajectories and pumped oil) obtained are similar for both
cases of 10 or 20 interpolation points, although the 20 points trajectories are
more irregular since the ship increases the number of direction changes (see
Figure 5). We can conclude that, in these cases, 10 interpolation points are
sufficient to achieve a good trajectory.

6 Conclusions

In this work, we have used a novel model, as reported in [1], to simu-
late the evolution of oil spots in the open sea considering the wind and sea
currents and the effect of a pumping ship used to clean it.

We have modeled the trajectories considering cubic spline interpolation
techniques. Those interpolation points are used as the independent variables
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Example 3 − Optimal trajectory − 2 days − 20 pts

x−axis (m)

 

y−
ax

is
 (

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

 

Example 2 − Fixed trajectory − 2 days
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Figure 5: Final concentration considering the optimal trajectories, obtained
by considering 10 (Top) and 20 (Center) interpolation points, and fixed tra-
jectory (Bottom) for examples (Left) 2 and (Right) 3. The initial position
(X), the final position (o) and the trajectory (–) of the pump are also shown.
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for an optimization problem designed to maximize the amount of pumped
oil during a fixed time interval.

We have used a global optimization method, called Hybrid GA Secant
Method, where a GA is applied recursively to improved populations gener-
ated by a Semi-Deterministic Secant Method, to solve our optimal trajectory
problem.

This approach has been validated by considering three numerical exam-
ples, based on real oil spots shapes. For these examples, we have calibrated
the parameters and operators of our hybrid method.

The obtained results for simulations of one day or two days show the
efficiency of our approach. The developed tool can then be used for real
cases.
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