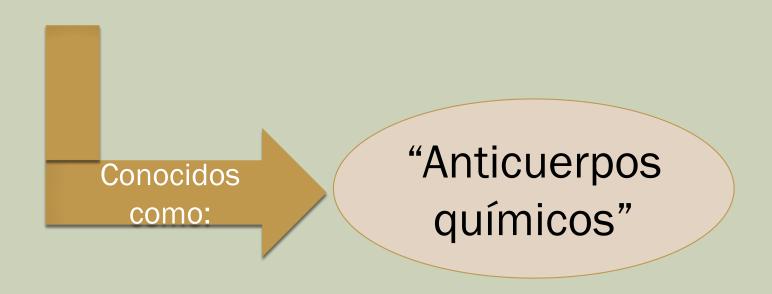
Adaptado y traducido de:

SUN, Hongguang, et al.
Oligonucleotide Aptamers: New Tools
for Targeted Cancer
Therapy. *Molecular Therapy—Nucleic Acids*, 2014, vol. 3, no 8, p. e182.

APTÁMEROS OLIGONUCLEOTÍDICOS: NUEVAS HERRAMIENTAS EN LA TERAPIA DIRIGIDA AL CÁNCER


Julia M. Coronas Serna Miguel Seguí Fernández Julia Pérez López Sistemas de Liberación de Fármacos

¿QUÉ SON LOS APTÁMEROS?

Introducción

- Cadenas oligonucleotídicas de RNA o ssDNA
- Son ligandos de alta ESPECIFICIDAD y AFINIDAD por estructuras tridimensionales presentes en las células diana

¿QUÉ SON LOS APTÁMEROS?

Introducción

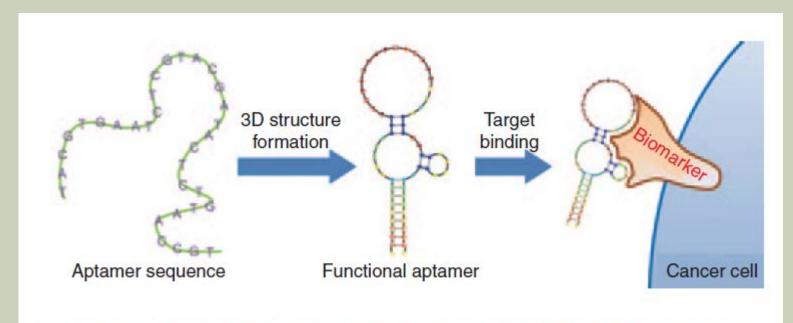


Figure 1 Schematic diagram of aptamer binding to its target.

¿POR QUÉ DESARROLLAR APTÁMEROS?

Introducción

- Permite identificar biomarcadores
- Diagnóstico in vitro
- Técnicas de visualización in vivo

Terapia dirigida o vectorizada

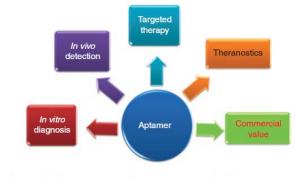
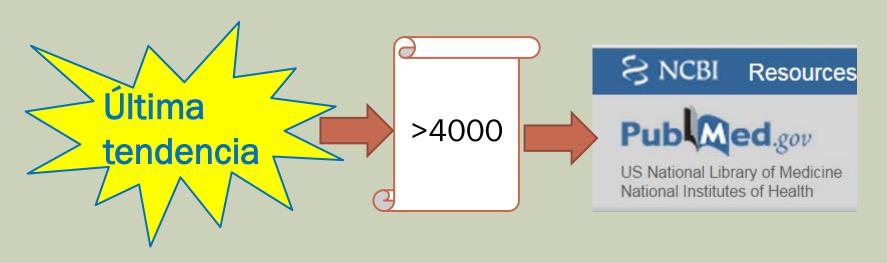



Figure 7 Summary of various aptamer applications.

VENTAJAS QUE OFRECEN

Frente a los anticuerpos clásicos

escala.

Introducción

- ✓ Bajo Peso Molecular. Paso de membranas.
- No inmun
- ✓ Estabilida ✓ Aplicaciones clínicas zarse.
- √ Síntesis y
- ✓ Baja varii ✓ Síntesis industrial
- ✓ Para dian dos).
- ✓ Menor coste de producción.

RNA

ssDNA

Introducción

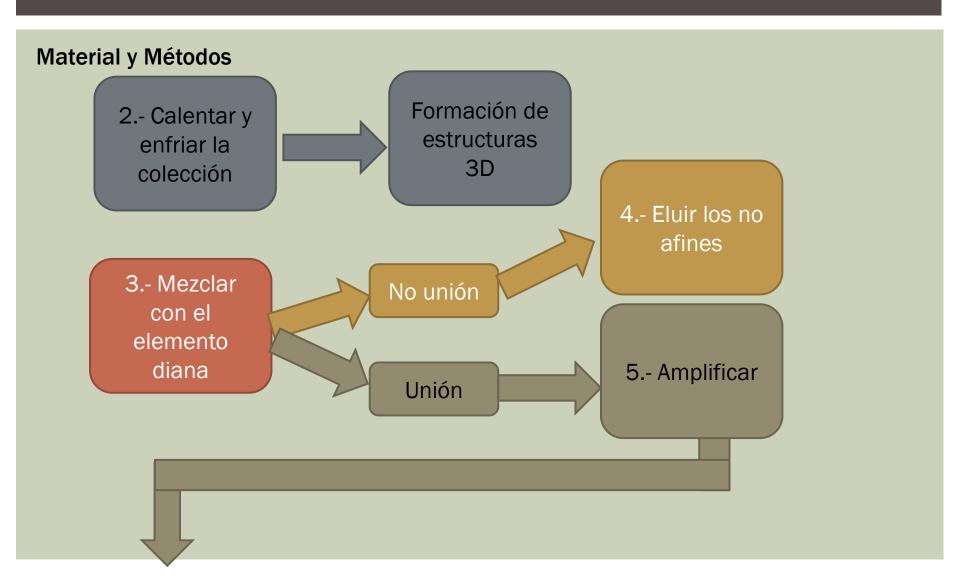
Fle Modificaciones químicas:

OH

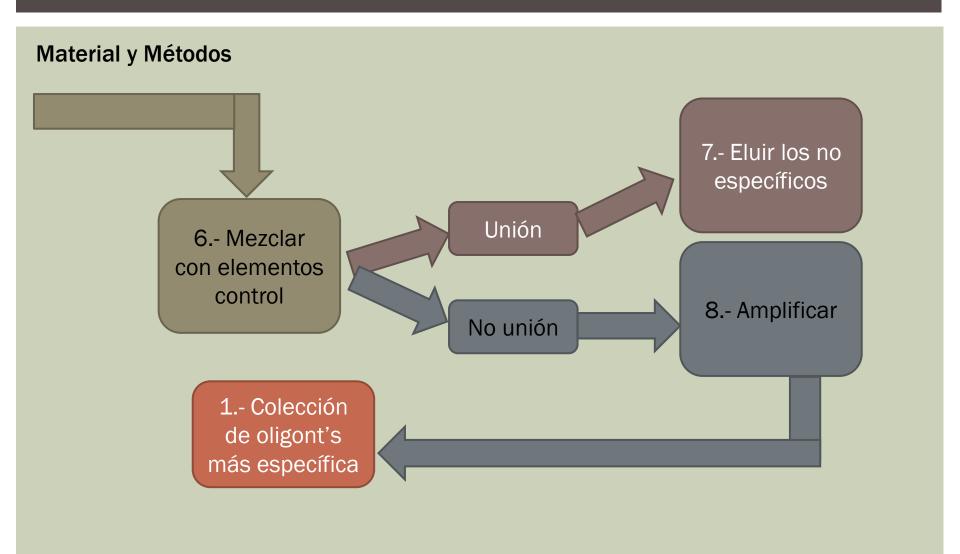
2'-OH \rightarrow 2'F, 2'NH₂, 2'OMe

Enlace fosfodiéster → fosforotionato

Degradación in vivo (RNAsa)


Menos posibilidades de estructuras 3D

¿CÓMO SE OBTIENEN? MÉTODO SELEX


Systematic Evolution of Ligands by Exponential enrichment

Material y Métodos Evolución Sistemática de Ligandos mediante Enriquecimiento Exponencial" (SELEX) 1.- Colección 1.- Colección de de ssDNA ssDNA aleatoria aleatoria +Promotor RNApol

¿CÓMO SE OBTIENEN? MÉTODO SELEX

¿CÓMO SE OBTIENEN? MÉTODO SELEX

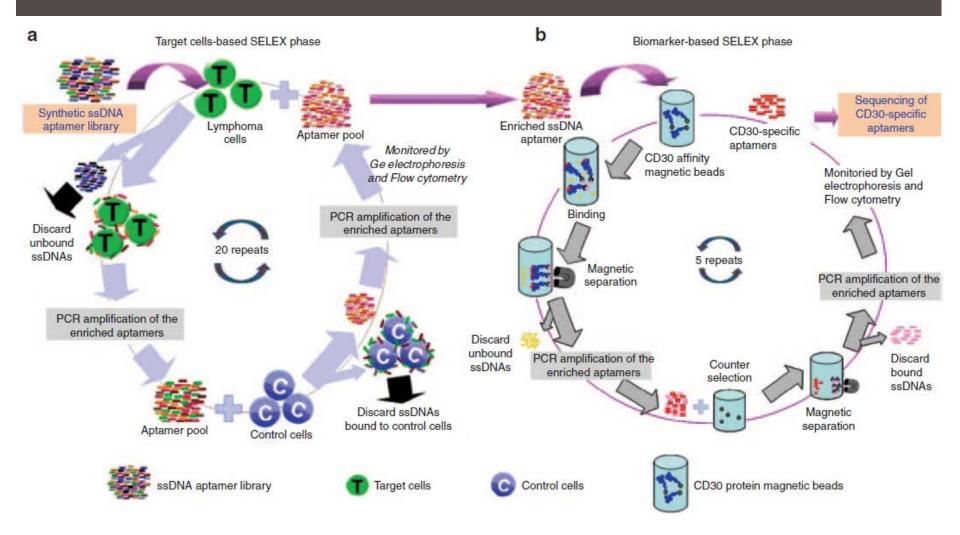
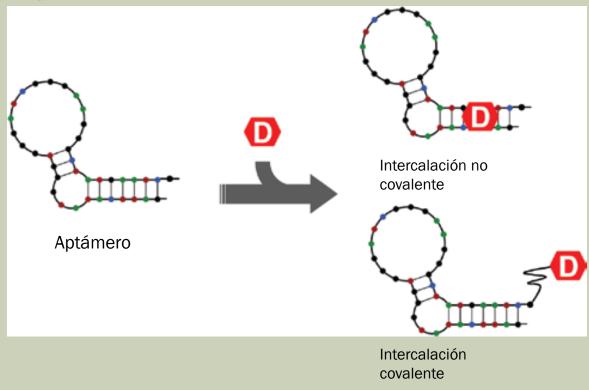


Figure 2 Schematic diagram of our hybrid-SELEX method for selection of CD30-specific ssDNA aptamer. In our experiment, the hybrid-SELEX process is divided into (a) the cell-based SELEX selection and (b) CD30 protein-based SELEX enrichment. First, CD30-expressing lymphoma cells are used for positive selection and CD30-negative Jurkat cells are used in negative counter-selection. After 20 rounds of selection, the enriched aptamer pool is incubated with CD30 protein immobilized on magnetic beads for five additional rounds of enrichment. SELEX, Systematic Evolution of Ligands by EXponential enrichment.

Table 2 Aptamers specifically targeting cell surface biomarkers used in cancer therapy

Cell surface biomarker	SELEX method	Aptamer	Applications
Alkaline phosphatase placental-like 2 (ALPPL-2)	Cell-SELEX	RNA	Pancreatic carcinoma diagnosis or therapy ^{se}
AXL	Cell-SELEX	RNA	Inhibitory aptamer for AXL-dependent cancer69,123
B-cell activating factor receptor (BAFF-R)	Protein-SELEX	RNA	Targeting aptamer for BAFF-R-dependent cancer therapy™
Carcinoembryonic antigen (CEA)	Protein-SELEX	RNA	Inhibition of CEA-mediated cancer metastasis 124
CD 16a (FcyRIIIa)	Hybrid-SELEX	DNA	Targeting CD16α for immunotherapy ¹¹³
CD28	Protein-SELEX	RNA	Agonistic aptamer that enhances cellular immune re- sponse against lymphoma 125
CD30	Protein-SELEX or Hybrid-SELEX	RNA and DNA	Targeting or immunotherapy of T-cell lymphoma ^{23;26}
CD44	Protein-SELEX	RNA and DNA	Targeting aptamer for cancer stem cells 31,127,128
CD71 (Transferrin receptor)	Interna lized-SELEX	RNA	Targeting of CD71-dependent cancer™
CD124 (IL-4Pix)	Protein-SELEX	DNA	Blocking CD124 and inducing Myeloid-derived suppres- sor cells (MDSCs) apoptosis ¹²⁹
CD133	Cell-SELEX	RNA	Aptamer that targets cancer stem cells ³⁴
c-MET	Protein-SELEX	DNA	Targeting aptamer for c-MET-driven cancer ¹⁵
EGFR (ErbB1/HER1)	Cell-SELEX or Protein-SELEX	RNA	Antagonist for EGF-dependent cancer proliferation52,130
ErbB2/HEP2	Protein-SELEX or Cell-SELEX or Internalized-SELEX	RNA and DNA	Targeting of HER2-driven cancer for therapy or diagnosis (40,04,115,13)
ErbB3/HER3	Protein-SELEX	RNA	Inhibition of heregulin-induced growth of MCF7 cells102
E-Selectin	Protein-SELEX	DNA	Targeting of cancers with up regulated E-Selectin expres sion for diagnosis or therapy 199-196
ЕрСАМ	Protein-SELEX	DNA and RNA	Targeting of EpCAM-expressing cancer cells for diagno- sis or therapy ^{100,107}
Fractalkine (CX3CL1)	Protein-SELEX	DNA	Antagonist for Fractalkine-related inflammatory disease or cancer ^{tae}
HPV-16 E7	Protein-SELEX	RNA	HPV-infected cervical cancer therapy or diagnosis139
lmmunoglobin Heavy Mu Chain (KGHM)	Cell-SELEX	DNA	Targeting aptamer for Burkitt lymphoma diagnosis and therapy ^{47,48}
Integrins- ανβ3	Protein-SELEX	RNA	Inhibition of integrin-dependent cancer cell prolifera- tion ¹⁴⁰
Matrix metalloprotease 9 (MMP-9)	Protein-SELEX	RNA	Targeting aptamer for MMP-9 to promote cancer diagno- sis or therapy ¹⁴¹
MUC1	Protein-SELEX	DNA	MUC1-targeted aptamenthat enhances cancer diagnosis on the rapy #576,142
Necleolin	Non-SELEX	DNA	Targeting or biotherapy for nucleolin-expressing can- cers ¹⁵
Prostate specific membrane antigen (PSMA)	Protein-SELEX	RNA and DNA	Targeting aptamer used in prostate cancer therapy or diagnosis ^{93,140}
РТК7	Cell-SELEX	DNA	Targeting aptamer for acute lymphoblastic leukemia therapy or diagnosis ^{11,60}
RET	Cell-SELEX	RNA	Neutralizing aptamer that inhibits RET-dependent intra- cellular signaling pathway ²⁶
Tenascin-C	Hybrid-SELEX	RNA	Aptamer that targets Tenascin-C-driven cancer for therapy or diagnosis ³⁸


APLICACIONES Y EJEMPLOS

Terapia dirigida por aptámeros

- Conjugados fármaco-aptámero
- Nanopartículas
- Terapia génica
- Inmunoterapia
- Terapia biológica

- Método simple y efectivo
- Eficacia mayor frente a fármaco solo
- Varios problemas de los conjugados:
- a) Inestabilidad (en uniones no covalentes)
- b) Baja vida media *in vivo* (bajo peso molecular)
- c) Baja cantidad de fármaco conjugada (estructura de los aptámeros es simple)

Aplicaciones y ejemplos

a) Solución: Unión covalente con un linker sensible a condiciones controlables (ejemplo: pH bajo)

- b) Aumento de peso molecular:
- Conjugación con polímeros:
- Ejemplo: polietilenglicol (PEG), produjo:
- Aumento en peso molecular (y vida media)
- Aumento de estabilidad
- Menor acumulación en tejidos no diana

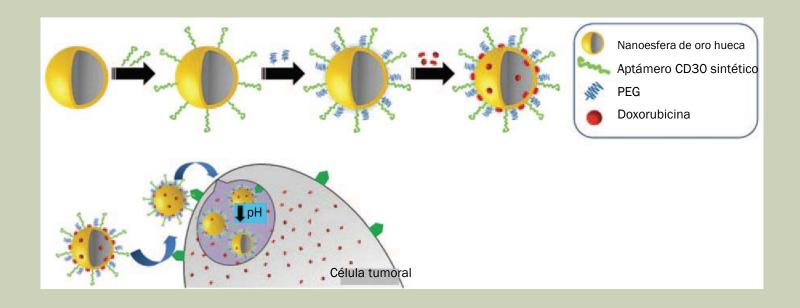
- c) Aumento de cantidad de fármaco conjugada Varias estrategias:
- "Nanotrenes" (aptNTrs):
- Aptámero= Locomotora
- Sondas DNA= Vagones
- Aptámeros con fármacos fotosensibles
- Aptámeros bi- o tri-específicos

NANOPARTÍCULAS

- Biocompatibilidad
- Gran superficie (unión del aptámero y del fármaco)
- Otras características según tipo

NANOPARTÍCULAS

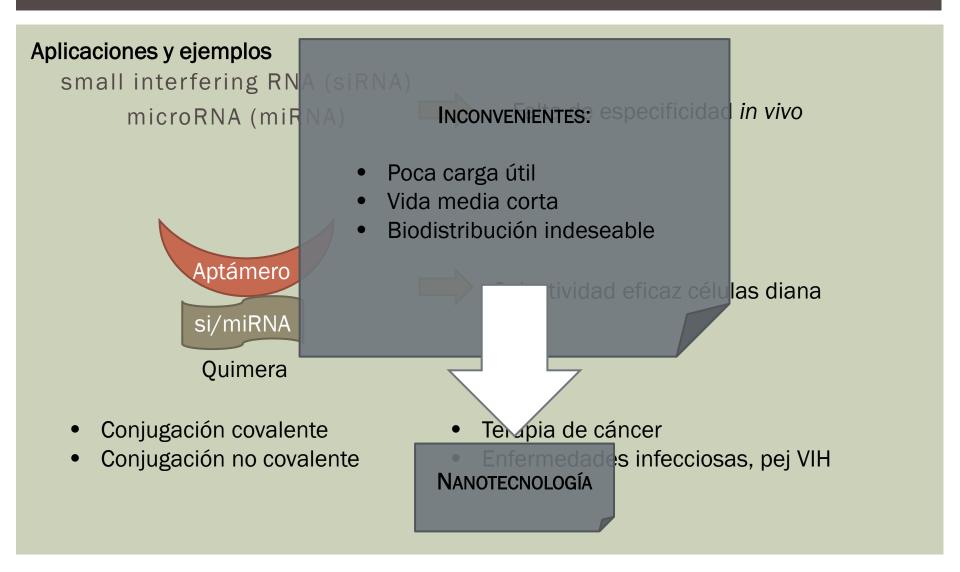
- Tipos
- a) Copolímeros y liposomas
- b) Nanomateriales metálicos
- c) VLPs (virus-like particles)


COPOLÍMEROS Y LIPOSOMAS

- Mayor degradación y biocompatibilidad
- Ejemplo: Bioconjugado: PLGA-lecitina-PEG y aptámero con paclitaxel
- Gran eficiencia en encapsulación
- Mayor vida media

NANOMATERIALES METÁLICOS

- Propiedades ópticas
- Propiedades electromagnéticas
- Estabilidad
- Biocompatibilidad


NANOMATERALES METÁLICOS

VLPS

- Ejemplo:
- Estrategia oxidativa
- 60 copias de aptámero sgc8 en cada cápsida de bacteriófago
 MS2
- Unión fuerte a células diana
- Internalización y degradación por lisosomas

TERAPIA GÉNICA

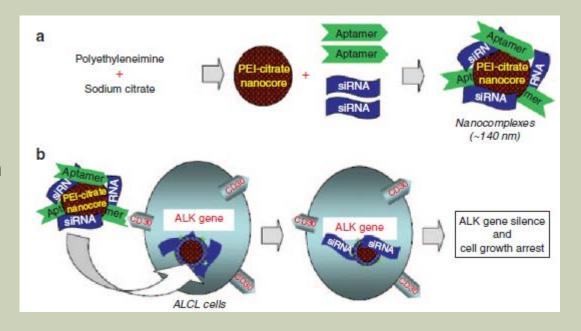
TERAPIA GÉNICA. EJEMPLO

Aplicaciones y ejemplos

Sun et al.

Nanonúcleo con polímero transportador

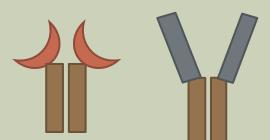
PEI


Alta eficacia de transfección celular

→ Internalización: endosomas → citoplasma

Linfoma Expresión de CD30

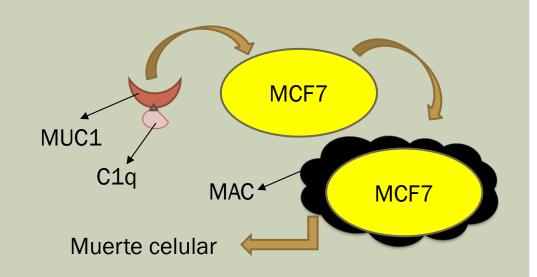
- Downregulation del gen
- Inhibición proliferación celular


INMUNOTERAPIA

Aplicaciones y ejemplos

Bajo potencial de efectos adversos Alta especificidad

Anticuerpos artificiales


Reconocimiento – internalización en macrófagos (Bruno et al.)

INMUNOTERAPIA. EJEMPLOS

Aplicaciones y ejemplos

Stecker et al.

Línea de células de cáncer de pulmón (MCF7)
Formación de un complejo de ataque a membrana (MAC)

Xiong et al.

Células de leucemia (K562)

- + Ligando PEG Protección conformación 3D (aptámero)
- + Cola: lípido diacetilado Facilita y mejora incorporación a membrana

TERAPIA BIOLÓGICA

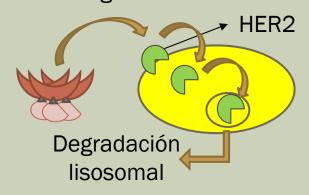
Aplicaciones y ejemplos

Vías de transducción Agonistas o antagonistas

Aptámeros monovalentes (diana: biomarcadores)

Activar vías de señalización downstream

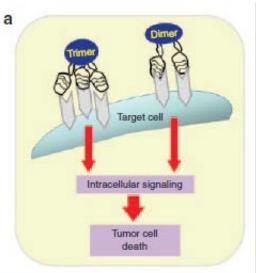
Aptámeros multivalentes

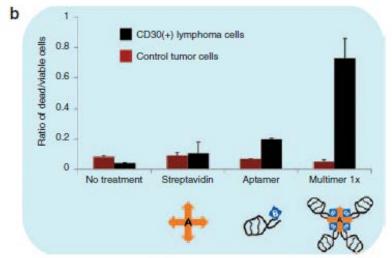

Activar vías de señalización downstream (multimerización del receptor)

TERAPIA BIOLÓGICA. EJEMPLOS

Aplicaciones y ejemplos

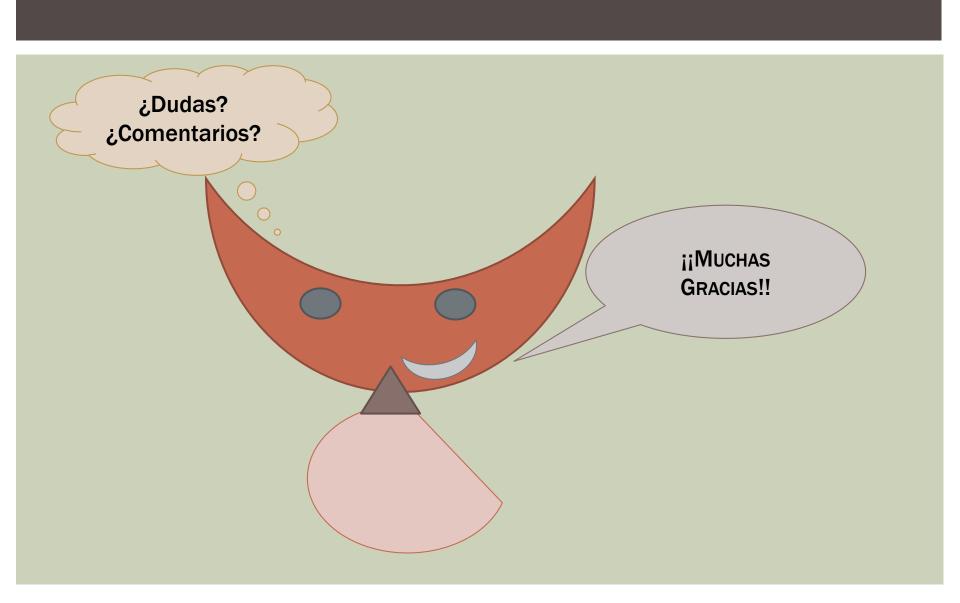
Mahlknecht et al.


Modelo de cáncer de estómago



Sun et al.

Linfoma


Expresión CD30

CONCLUSIONES

- Los aptámeros suponen un gran avance con respecto a los anticuerpos en el campo de la terapia dirigida.
- Por otro lado, aún resulta necesaria la optimización de algunos aspectos técnicos:
 - SELEX mejorado, para mayor rapidez de selección de las estructuras.
 - Búsqueda de elementos diana relevantes.
 - Mejora de la estabilidad in vivo.
 - Liberación efectiva del principio activo.
- En definitiva, los aptámeros prometen ser una atractiva herramienta en la terapia dirigida al cáncer.

