Guía Docente de asignatura - Máster en Biotecnología Industrial y Ambiental

Datos básicos de la asignatura

Asignatura:	BIOTECNOLOGÍA AP	LICADA AL MEDIO AMBIENTE
Tipo(Oblig/Opt):	Obligatoria	
Créditos ECTS:	6	
Teóricos/prácticos:	3,5	
Seminarios/conferenci	2	
as:		
Tutorías y Evaluación:	0,5	
Curso:	Primero	
Semestre:	Primer	
Departame ntos responsable s:	Unidades docentes de Fisiología Vegetal y Microbiología (Dpto GFM, Facultad CC. Biológicas, UCM), Urbaser, Centro de Astrobiología (CSIC), Ciemat	
Profesor responsable:	Lucía Arregui	María Teresa Solís
Profesores:	Consultar listado de profesores en la página web del Máster	

Datos específicos de la asignatura

Descriptor:

En esta materia se tratará fundamentalmente sobre la aplicación de las tecnologías más avanzadas relativas al medio ambiente, describiendo situaciones concretas y reales. Se elegirán procedimientos y modelos en los que diferentes estrategias se están aplicando en diferentes puntos y con distintos objetivos, desde la detección hasta la eliminación, transformación o producción. Algunos ejemplos incluyen: biosensores moleculares y celulares, indicadores biológicos, micromatrices; procedimientos para la bioestimulación, bioincremento, biocontención y bioprospección; tecnologías aplicadas en agrominería, biocombustibles y producción microbiana de energía; métodos de inmovilización y microencapsulación de células, insecticidas biológicos. Un aspecto relevante serán los microorganismos modificados genéticamente y medio ambiente: control y análisis de riesgos. Finalmente tecnologías aplicadas al diagnóstico ecológico de espacios degradados: procesos limitantes, modelos de funcionamiento ecosistémico y aproximaciones trans-escalares.

Castellano

Competencias

Idioma

Competencias generales (CG)

COMPETENCIAS GENERALES

- CG1 Reconocer y valorar los mecanismos, organismos y sistemas biológicos implicados en procesos biotecnológicos
- CG2 Analizar y resolver problemas cualitativos y cuantitativos en el área de la Biotecnología
- CG3 Reconocer y analizar nuevos problemas y planear estrategias para solucionarlos
- CG4 Evaluar, interpretar y sintetizar datos e información de procesos biotecnológicos
- CG5 Evaluar los riesgos del uso de materiales químicos y organismos y aplicar los procedimientos de seguridad para minimizar el impacto sobre el medio ambiente
- CG6 Manejar instrumentación básica y herramientas bioinformáticas de análisis para el diseño de procesos biotecnológicos e impacto medioambiental

CG7 - Interpretar datos procedentes de observaciones y medidas en términos de su significación y de los modelos explicativos que las apoyan

CG8 - Desarrollar buenas prácticas científicas de observación, medida y experimentación.

CG11 - Adquirir y aplicar conocimientos multidisciplinares avanzados para abordar un problema biotecnológico desde las perspectivas científico-técnica y empresarial

Competencias (CT)):

COMPETENCIAS TRANSVERSALES

- CT1 Elaborar y redactar informes de carácter científico.
- CT2 Demostrar razonamiento crítico y autocrítico
- CT3 Demostrar capacidad de trabajo autónomo y en equipo y de adaptación a nuevas situaciones
- CT4 Gestionar información científica de calidad, bibliografía, bases de datos especializadas y recursos accesibles a través de internet
- CT5 Incorporar a sus conductas los principios éticos que rigen la investigación científica y la práctica profesional
- CT6 Adquirir conciencia de los riesgos y problemas medioambientales que conlleva su ejercicio profesional
- CT7 Utilizar las herramientas y los programas informáticos que facilitan el tratamiento de los resultados experimentales CT8 Integrar creativamente conocimientos y aplicarlos a la resolución de problemas biológicos utilizando el método científico
- CT10 Perseguir objetivos de calidad en el desarrollo de su actividad profesional.
- CT12 Elaborar proyectos adecuadamente estructurados y enfocados a la actividad profesional.

Competencias específicas (CE):

COMPETENCIAS ESPECÍFICAS

- CE2 Analizar, planificar y desarrollar procesos para la minimización del impacto medioambiental en producciones biotecnológicas.
- CE5 Manejar las técnicas de cultivos in vitro y de obtención de organismos transgénicos para su utilización en producción y biorremediación.
- CE9 Identificar y evaluar los agentes contaminantes
- CE10 Analizar, planificar y desarrollar procesos para controlar la liberación de agentes contaminantes al medio ambiente
- CE12 Evaluar las relaciones entre el metabolismo microbiano y la biodegradación y bioconversión de contaminantes

CE13 - Planificar y desarrollar sistemas de control, seguimiento y recuperación de ambientes

CE14 - Comprender y aplicar las normativas nacionales e internacionales vigentes de control ambiental.

CE15 - Detectar y controlar los riesgos de contaminación por microorganismos patógenos o que deterioran el medio ambiente

CE16 - Restituir el funcionamiento de distintos ecosistemas mediante el uso de microorganismos, hongos, vegetales, o sus productos derivados

Metodología

Descripción:

Lecciones expositivas, conferencias. En las que el profesor, expertos investigadores de centros de investigación o de empresas, aportarán conocimientos específicos y planteará cuestiones relacionadas para contribuir al mejor entendimiento y adquisición de conocimientos. El objetivo será procurar la participación e intervención activa de los alumnos mediante preguntas dirigidas que estimulen y faciliten el aprendizaje y fomentando el debate siempre que sea posible. Se hará uso del Campus Virtual para ofrecer el material de consulta o apoyo, las normativas y regulaciones que estime conveniente.

Seminarios. En los que se plantearán y debatirán situaciones complejas. Esta actividad se realizará en grupos de trabajo partiendo de cuestiones planteadas por el profesor, cada estudiante tendrá su cometido dentro del grupo y se encargarán de buscar la bibliografía oportuna, debatir el problema, plantear soluciones posibles y los mecanismos para alcanzar los objetivos.

Resolución de problemas. El profesor definirá el problema explicando qué se debe resolver, demostrar o responder y guiará al alumno en la interpretación de los datos así como a relacionar conocimientos aportando explicaciones coherentes.

Tutorías dirigidas. En las que se proporcionará al alumno una atención personalizada en temas concretos Utilización de tecnologías de información y comunicación haciendo uso permanente de las proporcionadas por la UCM, en particular el servicio de correo electrónico, la web del Máster y de manera especial e imprescindible el campus virtual UCM. En esta plataforma se encontrará el espacio virtual de las asignaturas debidamente ordenado y organizado, conteniendo todo lo relativo a cuestiones de desarrollo y organización de las asignaturas, TFM, materiales docentes y como medio de comunicación directo y permanente entre profesor y alumno.

Trabajos dirigidos. Se planteará un tema que los alumnos tendrán que abordar de forma individual o en grupo. Los alumnos tendrán que elaborar un informe en el que aborden el estado de la cuestión. Realizarán una exposición oral, apoyándose en medios audiovisuales, en la que tendrán que responder a las cuestiones planteadas por el profesor y el resto de los alumnos.

Visitas a centros de investigación y empresas del ámbito de la Biotecnología. Con el fin de que el alumno conozca la realidad del sector y establezca contactos con el mismo.

Trabajo autónomo. Las actividades no presenciales mediante el trabajo autónomo están dirigidas para que el alumno afiance los conocimientos en las actividades presenciales y desarrolle su sentido crítico y capacidad de planificación, organización y toma de decisiones.

Evaluación

Criterios aplicables:

La calificación final de la asignatura será el resultado del rendimiento del alumno en lo que respecta a la consecución de los objetivos y competencias propuestos. Las calificaciones obtenidas en los distintos apartados se computarán de forma ponderada según los siguientes porcentajes, que se mantendrán en todas las convocatorias:

Realización de pruebas escritas objetivas presenciales o a través del Campus Virtual: 65 %

Informes de tutorías, asistencia y participación en las actividades propuestas y discusión de casos prácticos en el aula: 15 %

Memoria, exposición y defensa de trabajos realizados en grupo o individuales. La exposición y presentación de la memoria de los trabajos dirigidos es obligatoria para la evaluación de la asignatura. 20%

Para realizar la evaluación final será necesario que el alumno haya participado al menos en el 80% de las actividades presenciales (asistencia a clases teóricas / seminarios / actividades académicas dirigidas).

La puntuación mínima en cada uno de los apartados para realizar la media ponderada será de 5,0.

Temario

Programa teórico:

Bloque TEMÁTICO I: INTRODUCCIÓN

Tema 1. Introducción a la Biotecnología aplicada al medio ambiente. Áreas de la Biotecnología. Utilización cíclica de recursos. Seres vivos implicados.

Bloque TEMÁTICO II: PROBLEMAS AMBIENTALES

Tema 2. Contaminación ambiental. Tipos de contaminantes. Biodegradabilidad, toxicidad y transferencia a sistemas biológicos.

Tema 3. Cambio climático. Especies vegetales y microbianas en el contexto del cambio climático. Emisiones y captación de gases: huella de carbono. Criterios de sostenibilidad y compatibilidad. Aplicaciones del cultivo in vitro. Control de emisiones de gases. Convenios internacionales.

BIOQUE TEMÁTICO III: MÉTODOS DE ANÁLISIS Y TECNOLOGÍAS AMBIENTALES

Tema 4. Análisis de la biodiversidad. Contribución de la biotecnología a la conservación de la biodiversidad. Colecciones de cultivo. Convenios relativos a la biodiversidad.

Tema 5. Evaluación de riesgos. Evaluación de la toxicidad: parámetros ecotoxicológicos. Detección y monitorización de contaminantes: bioindicadores ybiosensores. Liberación de microorganismos modificados genéticamente y su problemática.

Tema 6. Micromatrices (*Microarrays*) aplicados al medio ambiente. Fundamentos. Casos reales: validación y análisis de resultados.

Bloque TEMÁTICO IV: SOLUCIONES BIOLÓGICAS A PROBLEMAS AMBIENTALES Tema 7. Estrategias para la eliminación de la Contaminación. Biorremediación in situ y ex situ. Bioprevención como alternativa sostenible.

Tema 8. Soluciones al cambio climático. Acciones frente al cambio climático. Incremento del rendimiento de cultivos. Plantas transgénicas y biotecnología agrícola. Microorganismos y cambio climático. Control de emisiones de CO₂, metano y óxidos de nitrógeno. Oxidación aerobia y anaerobia de metano. Oxidación de amonio.

Tema 9. Tratamiento y reciclaje de residuos. Tipos de residuos: tratamiento y reciclaje. Residuos sólidos. Compostaje. Digestión anaerobia. Depuración de aguas residuales

Tema 10. Bioenergética y biocombustibles. Cultivos de especies vegetales como fuente de energías alternativas. Producción de etanol. Biohidrógeno. Biopilas y nanocables. Producción de biogás.

Tema 11. Aplicaciones biotecnológicas en el control de patógenos. Insecticidas microbianos. Control de fitopatógenos mediante bacteriófagos y antagonistas microbianos. Control de la transmisión de patógenos humanos vehiculados por artrópodos

Seminarios:	Se seleccionarán contenidos que complementarán el programa teórico o que estarán relacionados con temas de actualidad dentro del área de la biotecnología ambiental
Bibliografía:	 Bahadur, B.; VenkatRajam, M.; Sahijram, L.; Krishnamurthy; K.V. 2015. Plant Biology and Biotechnology. Volume I: Plant diversity, organization, function and improvement. Springer. Dighton, J.; Krumins, J. A. 2014. Interactions in Soil: Promoting Plant Growth. Springer. Evans, G.M.; Furlong, J.C. 2011. Environmental Biotechnology. Theory and Application.Wiley-Blackwell. Insam, H.; Franke-Whittle, I.; Goberna, M. 2010. Microbes at work. Springer, Heidelberg. Kenneth N.T.; Wagner, M.; Jetten, M.; Orphan, V., Polz, M., Bonfante, P., Gilbert, J.A., Whitaker, R., Ramos, J.L. (eds.). 2013. Environmental Microbiology. 13/119. Society of Applied Microbiology and John Wiley & Sons Ltd. Mitchell, R.; Gu, JD. 2010. Environmental Microbiology. 2nd edition. WileyBlackwell. 7. Pepper, I.L.; Gerba, C.P.; Gentry, T.J. 2015. Environmental Microbiology. 3rd edition. Academic Press. Ricroch, A.; Chopra, S.; Fleischer, S. 2014. Plant Biotechnology. Experience and Future Prospects. Springer. Ruppert, H.; Kappas, M.; Ibendorf, J. 2013. Sustainable Bioenergy Production - An Integrated Approach. Springer. Wang, L.K.; Ivanov, V.; Tay, JH.; Hung, YT. 2010. Environmental Biotechnology, Humana Press