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Abstract. In stationary nonequilibrium states coupling between hydrodynamic modes causes thermal fluc-
tuations to become long ranged inducing nonequilibrium Casimir pressures. Here we consider nonequilib-
rium Casimir pressures induced in liquids by a velocity gradient. Specifically, we have obtained explicit
expressions for the magnitude of the shear-induced pressure enhancements in a liquid layer between two
horizontal plates that complete and correct results previously presented in the literature. In contrast to
nonequilibrium Casimir pressures induced by a temperature or concentration gradient, we find that in
shear nonequilibrium contributions from short-range fluctuations are no longer negligible. In addition, it is
noted that currently available computer simulations of model fluids in shear observe effects from molecular
correlations at nanoscales that have a different physical origin and do not probe shear-induced pressures
resulting from coupling of long-wavelength hydrodynamic modes. Even more importantly, we find that
in actual experimental conditions, shear-induced pressure enhancements are caused by viscous heating
and not by thermal velocity fluctuations. Hence, isothermal computer simulations are irrelevant for the
interpretation of experimental shear-induced pressure enhancements.

1 Introduction

When large and long-range fluctuations are present, they
will induce forces in confined fluids [1]. They are com-
monly referred to as Casimir-like forces in analogy to
forces induced by vacuum fluctuations between two con-
ducting plates [2]. Well-known examples are Casimir forces
due to critical fluctuations [3] or due to long-range corre-
lations in condensed systems with Goldstone modes [1,
4]. It has now been well established that even longer-
range thermal fluctuations exist in fluids in nonequilib-
rium states [5]. The physical reason is that the presence
of a gradient breaks the symmetry and causes a coupling
between long-wavelength hydrodynamic modes, which are
especially important in the convective nonlinear terms in
the Navier Stokes equations [6].

In this paper we consider Casimir forces due to
long-range thermal velocity fluctuations in laminar fluid
flow [7–9]. For the case of a liquid layer subjected to a sta-
tionary velocity gradient between two parallel plates, we
have obtained explicit expressions for the shear-induced
pressure enhancements which correct and extend results
obtained by previous investigators [10–13]. We provide
quantitative estimates for the magnitude of these shear-
induced Casimir pressures. In addition, we present an ex-
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tended kinetic theory approach to compare nonequilib-
rium Casimir pressures induced by long-range thermal
fluctuations with nonequilibrium pressures resulting from
short-range thermal fluctuations. We clarify an essential
difference between the Casimir pressures caused by macro-
scopic long-range fluctuations and pressures resulting from
fluctuations at nanoscales which are observed in computer
simulations. Finally, we shall point out that in actual
experimental conditions, observed shear-induced pressure
enhancements are caused by viscous heating, and not by
thermal velocity fluctuations.

We shall proceed as follows. Continuing an approach
adopted in some previous publications to determine the
intensity of thermal velocity fluctuations in laminar liquid
flow [14–17], we start in sect. 2 from a fluctuating Orr-
Sommerfeld equation for the wall-normal velocity fluc-
tuations and from a fluctuating Squire equation for the
wall-normal vorticity fluctuations. The solutions of these
equations are then converted into expressions for the fluc-
tuations of all velocity components, not only in the wall-
normal direction, but also in the stream-wise and the span-
wise directions. The procedure for solving these fluctuat-
ing hydrodynamics equations is also indicated in sect. 2,
but the mathematical details are presented in appendices.
We have solved the fluctuating hydrodynamics equations
both in the absence and in the presence of boundary condi-
tions. The solutions in the absence of boundary conditions
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are obtained from previous publications [14,15], but for
an evaluation of shear-induced Casimir forces in confined
liquid layers it is essential to include finite-size effects.
In previous publications we have considered liquid layers
confined between two rigid surfaces where no slip occurs.
However, in the case of such rigid boundaries it is very
difficult to get an exact solution [16,17] and in practice
we have previously settled for an approximate solution in
a so-called Galerkin approximation [14,15]. In the present
paper we have adopted periodic boundary conditions for
two reasons. First, for periodic boundary conditions we are
able to get an exact solution as was possible for the case
without boundary conditions. Second, periodic boundary
conditions are commonly adopted in computer simula-
tions [18–25].

In sect. 3 we present the elements of the nonequilib-
rium pressure tensor thus obtained from the fluctuating
hydrodynamics equations. We find a scaling relation for
the shear-induced pressure enhancement in terms of a
function that, for a given set of boundary conditions, only
depends on the Reynolds number Re. We present exact
results for the shear-induced pressure enhancements both
in the limit of large and of small Re and also discuss the
nature of the crossover from small Re to large Re behav-
ior. Specifically, we find that for laminar-flow conditions,
finite-size effects always need to be included.

In sect. 4 we discuss the magnitude of the shear-
induced pressure enhancements and, in particular, show
how our new results correct and extend results previ-
ously obtained by some other investigators [10–13]. We
also present in sect. 4 estimates of the shear-induced
pressure enhancements for realistic experimental condi-
tions. It turns out that, in contrast to nonequilibrium
Casimir pressures induced by a temperature gradient [26],
for nonequilibrium Casimir pressures induced by a veloc-
ity gradient contributions from short-ranged velocity fluc-
tuations cannot be neglected. In sect. 5 we review the
currently available computer simulations for determining
shear-induced pressure enhancements. A problem is that
molecular dynamics simulations observe correlations at
nanoscales which have a different physical origin than the
nonequilibrium pressures arising from the long-range ve-
locity fluctuations.

In sect. 6 we provide estimates of pressure enhance-
ments from possible viscous heating effects in real experi-
mental conditions. We find that in real experiments these
viscous effects will be dominant.

Our principal conclusions are summarized in sect. 7.

2 Fluctuating hydrodynamics in laminar fluid
flow

To elucidate the role of nonequilibrium velocity fluctu-
ations in laminar flow, we consider the simplest case,
namely that of a liquid under isothermal incompressible
laminar flow (thus with uniform temperature T and den-
sity ρ) between two horizontal boundaries, commonly re-
ferred to as planar Couette flow. To maintain consistency

Fig. 1. Schematic representation of planar Couette flow.

with our previous analysis of nonequilibrium velocity fluc-
tuations [14–17], we continue using here the nomenclature
of Drazin and Reid [27], sometimes referred as the mete-
orological convention [28], as indicated schematically in
fig. 1. Specifically, we use a coordinate system where the
x coordinate is in the stream-wise direction, the y coor-
dinate in the span-wise direction, and the z coordinate in
the wall-normal direction. The liquid layer is confined be-
tween two horizontal boundaries located at z = ±L mov-
ing with constant velocities ±U in the x direction. The
local fluid velocity can be decomposed as v = v0(z) + δv,
where v0 = {γz, 0, 0} is the average velocity depend-
ing on the shear rate γ = U/L with a component only
in the stream-wise direction x, and where δv(r, t) is a
fluctuating-velocity contribution dependent on the loca-
tion r(x, y, z) and on the time t. As is common in the
statistical-physics literature on the subject [12], we assume
isothermal fluid flow and neglect here any viscous-heating
effects, but they will be considered later in sect. 6.

Our task is to evaluate the nonequilibrium contribu-
tion δP (r) to the pressure tensor arising from the long-
range nonequilibrium velocity fluctuations

δP (r) = ρ〈δv(r)δv(r)〉NE, (1)

where the average is taken over the stationary nonequilib-
rium state which is independent of the time t. In princi-
ple there are also contributions from nonequilibrium den-
sity and internal-energy contributions, but the dominant
contribution to the nonequilibrium pressure tensor arises
from the velocity fluctuations [10]. The diagonal elements
δpii = ρ〈δviδvi〉 contribute to the shear-induced pressure
enhancement, such that δp = 1

3 (δpxx + δpyy + δpzz). For
reasons of symmetry, the off-diagonal elements all van-
ish except for δpxz = ρ〈δvxδvz〉, yielding a fluctuation-
induced contribution to the shear viscosity η [12].

The relevant linearized fluctuating hydrodynamics
equations for the fluctuations δv(r, t) and δp(r, t) of the
velocity and the pressure at location r and time t around
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their mean values v0 = {γz, 0, 0} and p = p0 are [6,29]

∇ · δv = 0, (2)
∂(δv)

∂t
+ γz

∂(δv)
∂x

+ δvxγx̂ = −1
ρ
∇δp + ν∇2δv

+
1
ρ
∇ · δΠ, (3)

where ν is the kinematic viscosity and where δΠ(r, t) is a
random fluctuating tensor whose autocorrelation function
is given by a fluctuation-dissipation theorem, which for
incompressible (divergence-free) flow reads [6]

〈δΠij(r, t) · δΠkl(r′, t′)〉 = 2kBTη(δikδjl

+δilδjk)δ(r − r′)δ(t − t′). (4)

Here kB is Boltzmann’s constant and η = ρν is the dy-
namic viscosity. The solution of the fluctuating hydro-
dynamics equations depends on the Reynolds number
Re = γL2/ν. By adopting the incompressible-flow as-
sumption, eq. (2), we are neglecting any possible contri-
butions from sound modes.

It is convenient to use dimensionless variables with
spatial coordinates r(x, y, z) in terms of L, t in terms of
γ−1. v in terms of Lγ, and Π in terms of ρL2γ2. As shown
in previous publications [14,15], by applying a single ro-
tational and a double rotational, one eliminates pressure
fluctuations and obtains from eqs. (2) and (3) two dimen-
sionless fluctuating hydrodynamics equations, one for the
fluctuations δvz of the wall-normal component of the ve-
locity and one for the fluctuations δωz = ∂yδvx −∂xδvy of
the wall-normal component of the vorticity

∂

∂t
(∇2δvz) + z

∂

∂x
(∇2δvz) −

1
Re

∇4(δvz) =

[∇ × ∇ × {∇δΠ}]z, (5)
∂

∂t
(δωz) + z

∂

∂x
(δωz) −

∂

∂y
δvz −

1
Re

∇2(δωz) =

[∇ × {∇δΠ}]z. (6)

Equation (5) is the stochastic version of what is known as
the Orr-Sommerfeld equation and eq. (6) is the stochastic
version of what is known as the Squire equation in the
fluid mechanics literature [27,30].

A procedure for solving these fluctuating equations
has been developed in some previous publications [14,15].
The solution of eqs. (5) and (6) depends on the Reynolds
number Re and on the boundary conditions at the two
horizonal plates. At a given shear rate γ large L corre-
sponds to large Re and small L corresponds to small Re.
For large L and, hence, for large Re (assuming that the
laminar average flow is still stable) we can obtain an ap-
proximate solution by neglecting the boundary conditions.
Then the fluctuating Orr-Sommerfeld equation (5) and the
fluctuating Squire equation (6) can be solved by apply-
ing a Fourier transform in terms of a 3-dimensional wave
vector q(qx, qy, qz). As shown in appendix A, relatively
simple expressions are obtained for the nonequibrium
part of the equal-time correlation functions in momen-
tum space for the fluctuations of the wall-normal velocity,

〈δv∗
z(q)δvz(q′)〉NE, of the vorticity, 〈δω∗

z(q)δωz(q′)〉NE, as
well as for the cross-correlation, 〈δv∗

z(q)δωz(q′)〉NE

〈δv∗
z(q)δvz(q′)〉NE = CNE

zz (q)(2π)3δ(q − q′), (7)

〈δω∗
z(q)δωz(q′)〉NE = WNE

zz (q)(2π)3δ(q − q′), (8)

〈δv∗
z(q)δωz(q′)〉NE = iBNE

zz (q)(2π)3δ(q − q′). (9)

Disregarding any boundary conditions makes the equal-
time correlations translationally invariant in the three spa-
tial directions, so that their Fourier-transforms are propor-
tional to 3-dimensional delta functions δ(q− q′). Explicit
expressions for the functions CNE

zz (q) and WNE
zz (q) were

presented in previous publications [14,15] and are repro-
duced by eqs. (A.2) and (A.3) in appendix A. Following
the same procedure we have also obtained the explicit ex-
pression of the cross-correlation BNE

zz (q), as represented
by eq. (A.4) in appendix A. The corresponding equal-time
correlation functions in momentum space for the fluctu-
ations of the stream-wise and span-wise velocity compo-
nents are then readily obtained by noting that

δvx =
−1
q2
‖

(qxqzδvz − iqyδωz), (10)

δvy =
−1
q2
‖

(qyqzδvz + iqxδωz), (11)

yielding

〈δv∗
x(q)δvx(q′)〉NE = CNE

xx (q)(2π)3δ(q − q′), (12)

〈δv∗y(q)δvy(q′)〉NE = CNE
yy (q)(2π)3δ(q − q′). (13)

The functions CNE
xx (q) and CNE

yy (q) are directly related to
the functions CNE

zz (q), WNE
zz (q), and BNE

zz (q) in eqs. (7)–
(9) as shown in eqs. (A.6) and (A.7) in appendix A.
Finally, the intensity of the velocity fluctuations in real
space, to be substituted into the right-hand side of eq. (1)
for the nonequilibrium pressure tensor δP (r), are obtained
by integrating the correlation functions, eqs. (7), (12)
and (13), over the wave vector q(qx, qy, qz). The results
thus obtained for the shear-induced elements δpij of δP (r)
are presented in appendix A and will be further dis-
cussed in the subsequent section. These contributions to
the nonequilibrium pressure tensor in eq. (1) do not de-
pend explicitly on the position r, since we have assumed
the temperature and density to be uniform in space.

However, for confined liquid layers with a finite L and,
hence, for finite values of Re, it is necessary to account for
the boundary conditions at the two horizontal surfaces. As
explained in previous publications [14,15], in that case we
can apply a two-dimensional Fourier transform in terms
of a two-dimensional wave vector q‖(qx, qy) parallel to the
horizontal walls, while the dependence of the solution on
the coordinate in the wall-normal z-directions needs to be
treated separately to account for the boundary conditions
at z = ±L. Especially for periodic boundary conditions,
this can be simply accomplished by taking advantage of
the same solutions obtained without boundary conditions,
as shown in appendix B. The idea is to convert the cor-
relation functions to real space by restricting the allowed
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qz values to multiples of Nπ (in dimensionless units). Al-
ternatively, this can be understood as applying a finite
sine transform in the z-direction [13]. That is, the inten-
sity of the velocity fluctuations in real space are obtained
by integrating these correlation functions over the two-
dimensional wave vector q‖(qx, qy) and a summation over
the finite sine transform in the z-direction.

The mathematical details for obtaining the solutions
in the absence of boundary conditions, thus for large Re,
are presented in appendix A. The solutions including the
boundary effects for a finite-size system in the limit of
small Re are presented in appendix B. In appendix C we
present an analysis of the crossover behavior from small
to large Re explicitly for the wall-normal component of
the nonequilibrium pressure tensor. Most importantly, we
find that the inclusion of finite-size effects is essential for
all values of Re corresponding to laminar flow conditions,
as further discussed below.

3 Fluctuation-induced pressures in a liquid
under steady shear

As pointed out by previous investigators [10–13], and con-
firmed by eq. (A.8) in appendix A and eq. (B.4) in ap-
pendix B, in the absence of boundary conditions the mag-
nitudes of the elements δpii of the nonequilibrium pressure
tensor are proportional to kBT (γ/ν)3/2, or to (Re)3/2 in
dimensionless form. However, when one accounts for finite-
size effects by the imposition of boundary conditions, the
shear-rate dependence of all elements δpij of the nonequi-
librium pressure tensor changes and, in the limit Re → 0,
they become proportional to (Re)2 in dimensionless form,
as shown in eqs. (B.6)–(B.8) in appendix B. Since the solu-
tions of the dimensionless fluctuating eqs. (5) and (6) only
depend on the Reynolds number Re, we conclude that for
arbitrary Re the elements of the nonequilibrium pressure
tensor for arbitrary Re will be of the form

δpij = V ∞
ij kBT

(γ

ν

)3/2

ϕij(Re), (14)

where ϕij(Re) defines a crossover function, such that
for fixed γ and sufficiently large L ϕij(Re) approaches
unity, while for fixed γ and small L ϕij(Re) approaches
(V 0

ij/V ∞
ij )(Re)1/2. Specifically, the two limiting cases may

be written as

δp∞ij ≡ lim
Re→∞

δpij = V ∞
ij kBT

(γ

ν

)3/2

, (15)

δp0
ij ≡ lim

Re→0
δpij = V 0

ijkBTL
(γ

ν

)2

. (16)

In these equations V ∞
ij and V 0

ij are numerical coefficients,
which follow from the solutions of the fluctuating hy-
drodynamics equations evaluated in appendix A and ap-
pendix B, respectively.

From the solutions of the fluctuating hydrodynamics
equations in the absence of boundary conditions evaluated

Table 1. Comparison with the literature.

V ∞
xx V ∞

yy V ∞
zz

Kawasaki and Gunton [10] +0.0050 −0.0046 −0.0017

Yamada and Kawasaki [11] +0.0428 +0.0173 +0.0106

This work +0.0847 +0.0046 +0.0106

in appendix A, we find from eqs. (A.9) and (A.10) for the
values of the coefficients V ∞

ii in eq. (15)

V ∞
xx = +0.0847, V ∞

yy = +0.0173, V ∞
zz = +0.0106.

(17)
(see also table 1). From the solutions in the presence of
periodic boundary conditions, evaluated in appendix B,
we find for from eqs. (B.6)–(B.8) for the coefficients V 0

ii in
eq. (16):

V 0
xx = +0.001243, V 0

yy = +0.000414, V 0
zz = +0.000553.

(18)
Upon substituting the results quoted above for V ∞

ii and
V 0

ii into eqs. (15) and (16) we obtain:

δp∞ =
1
3

∑

i

δp∞ii = +0.0375kBT
(γ

ν

)3/2

, (19)

δp0 =
1
3

∑

i

δp0
ii = +0.000737kBTL

(γ

ν

)2

. (20)

In addition to the asymptotic expressions, given by
eqs. (15)–(20) above, we have also determined numeri-
cally the dependence of the crossover function ϕzz(Re) of
the wall-normal shear-induced pressure component δpzz as
a function the Reynolds number Re in appendix C. The
crossover function ϕzz(Re) thus obtained is shown in fig. 2.
The information in this figure shows that, for Re values
corresponding to laminar flow (Re < 350 [31]), finite-size
effects are always very significant and the limiting solution
in the absence of boundary conditions, eq. (15), is actu-
ally never reached in stable laminar-flow. For values of Re
corresponding to stable laminar flows the asymptotic so-
lution ϕzz(Re) ∝ (Re)1/2 yields a quadratic dependence
of δpzz on the shear rate γ in accordance with eq. (16)
for δp0

zz. This low-Re solution in the presence of bound-
ary conditions appears to be a better approximation than
the asymptotic solution ϕzz(Re) = 1 in the absence of
boundary conditions. The most important conclusion is
that finite-size effects are always important and that a de-
pendence of the pressure enhancements from long-range
velocity fluctuations on γ3/2, predicted by previous au-
thors [10–13], will never be seen in practice.

We conclude this section by noting that, while the
shear-induced pressures in the limit L → ∞ exhibit a non-
analytic dependence on the shear rate γ as γ3/2, finite-size
effects cause a crossover to an analytic dependence of the
shear-induced pressures as γ2.

We also note that coupled sound modes in the limit
U = Lγ → ∞ formally give a result similar to eq. (15) [10–
12]. However, for finite systems considered here the sound-
mode contributions are suppressed by a factor (U/c)1/2,
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Table 2. Traceless part of shear-induced pressure tensor.

V ∞
xx − 1

3

P

i V ∞
ii V ∞

yy − 1
3

P

i V ∞
ii V ∞

zz − 1
3

P

i V ∞
ii V ∞

xz

Ernst et al. [12] +0.0470 −0.0202 −0.0268 +0.00916

This work +0.0472 −0.0202 −0.0269 +0.00916

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

zz

Re

φ

Fig. 2. The crossover function ϕzz(Re) for the wall-normal
component δpzz of the nonequilibrium pressure tensor as a
function of the Reynolds number Re. The dashed curve repre-
sents the limiting low-Re behavior ϕzz(Re) ∝ Re1/2 in eq. (14),
yielding the asymptotic eq. (16) for δpzz. The limiting large-Re
behavior is ϕzz(Re) = 1, yielding eq. (15) for δpzz.

where c is the speed of sound [32], and, hence, we neglect
these contributions, having adopted the incompressible-
flow assumption, eq. (2), in formulating the relevant fluc-
tuating hydrodynamics equations.

It is interesting that the shear-induced pressure δp0

given by eq. (16) for small Re caused by the finite-size ef-
fects increases with L at a constant shear rate γ = U/L,
but decreases with L at a constant velocity U . This is
similar to the fluctuation-induced pressure in a liquid sub-
jected to a temperature gradient that increases with L
at a constant temperature gradient ∇T = ΔT/L, but
decreases with L at a constant temperature difference
ΔT [26]. However, the difference is that in the case of
a temperature gradient the nonequilibrium Casimir pres-
sure is rigorously proportional to (∇T )2 and no higher-
order gradient terms appear that cause a crossover to a
nonanalytic dependence on the gradient [26].

4 Interpretation of long-ranged pressure
contributions

Attempts to determine the shear-induced pressure ten-
sor in the absence of boundary conditions have been

made by Kawasaki and Gunton [10] and by Yamada and
Kawasaki [11]. While they did find that the shear-induced
pressure varies with the shear rate as γ3/2, the numerical
values of the coefficients are substantially different from
the values found by us as shown in table 1.

Ernst et al. [12] have determined the traceless part of
the shear-induced pressure tensor using a kinetic-theory
approach. Our results for the traceless part of the shear-
induced pressure tensor are in perfect agreement with
those obtained by Ernst et al. as shown in table 2. In
appendix A we have also obtained the coefficient V ∞

xz =
+0.00916 for the off-diagonal pressure element δpxz in
eq. (15), again in perfect agreement with the result ob-
tained by Ernst et al. as shown in table 2. The magnitude
of this fluctuation-induced contribution to the shear vis-
cosity is negligibly small as shown by Ernst et al. [12].
It is, therefore, not further discussed in this paper. Wada
and Sasa [13] have only determined the wall-normal com-
ponent of the shear-induced pressure tensor. They find
V ∞

zz = +0.0106 in the absence of boundary conditions
in perfect agreement with our result, but their value
V 0

zz = +0.0002763 for periodic boundary conditions dif-
fers from our result exactly by a factor 2.

To estimate the magnitude of the shear-induced pres-
sure enhancement we consider water, which is the liq-
uid commonly used in Couette-flow experiments [31,33–
39]. The smallest gap width thus far employed is about
1.5mm [33]. The possible experimental plate velocities
U may be up to 0.5m s−1 [40]. A gap width of 1mm
(L = 0.5mm) and plate velocities U = ±0.5m s−1 (γ =
1000 s−1) imply Re ≈ 280, which is still below the critical
Reynolds number for the onset of turbulence [31]. Substi-
tuting ν = 8.93 × 10−7 m2s−1 for the kinematic viscosity
of water at 298.15K [41] into eqs. (19) and (20) we obtain
the estimates

δp∞ = 6 × 10−9 Pa and δp0= 2 × 10−9 Pa, (21)

i.e., the shear-induced pressure enhancement is some-
where between 10−9 and 10−8 Pa. It is interesting to com-
pare this shear-induced pressure enhancement with those
in a liquid layer with the same gap width, either from
critical fluctuations δp ∼= −2 × 10−11 Pa (from ref. [42],
corrected for a sign error) or from nonequilibrum temper-
ature fluctuations caused by the presence of a temperature
gradient (25K/mm) δp ∼= 5 × 10−4 Pa [26]. We see that
the shear-induced pressure enhancement is many orders
of magnitude smaller than the Casimir pressures induced
by the presence of a temperature gradient. One reason is
that temperature fluctuations decay more slowly than ve-
locity fluctuations and, hence, are more strongly impacted
by the presence of a temperature gradient. Another rea-
son is that the shear-induced pressure enhancement has a
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kinetic origin, while the pressure enhancement from a tem-
perature gradient has a potential origin that in liquids is
several orders of magnitude larger.

As pointed out above, an important difference between
the giant Casimir pressures in liquids subjected to a tem-
perature gradient [26] and the Casimir pressures in the
presence of shear, is that the former are orders of mag-
nitudes larger than the shear-induced Casimir pressures
given by eq. (21). Hence, while in the case of a temperature
gradient short-range contributions can be neglected, this
is no longer obvious in the case of shear-induced pressures
enhancements. To estimate a possible contribution from
short-range correlations, we note from nonequilibrium sta-
tistical mechanics that δp = κγ2, where κ is a nonlinear
Burnett coefficient. These nonlinear Burnett coefficients
are known to diverge as L → ∞ [43]. Just as in the case of
a temperature gradient [26], we may decompose this Bur-
nett coefficient as the sum of a finite short-range contri-
bution κ(0) and a long-range contribution Lκ(1), yielding
a short-range (SR) and a long-range (LR) contribution to
the shear-induced pressure enhancement

δp = δpSR + δpLR, (22)

where δpSR = κ(0)γ2 and δpLR = Lκ(1)γ2. Comparing
with eq. (20), we note that the shear-induced Casimir
pressure, discussed in the previous section, arises from the
same long-wavelength hydrodynamic modes that cause
the nonlinear Burnett coefficient κ to diverge. A complete
kinetic theory for the nonlinear Burnett coefficients of real
fluids is not available, but it is possible to get an order-
of-magnitude estimate for the SR contribution by extend-
ing the theory of Enskog for the transport properties of
a dense gas of hard spheres to the quadratic level [44].
Starting from an expression for the pressure tensor of a
gas of hard spheres provided by Dufty [45] and retain-
ing only the collisional-transfer contribution, which is the
dominant one at high densities, we obtain

δpSR
∼= ρσ2nσ3 7π

45
χγ2, (23)

where σ is the hard-sphere diameter, n the number den-
sity, and χ the value of the radial distribution function
at contact between the spheres. Since for liquid water ρ =
nm = 103 kg m−3, m = 3×10−26 kg, σ = 3×10−10 m [41],
and estimating χ ∼= 5 for a dense liquid, we then con-
clude from eq. (23) that for water with L = 0.5mm and
U = 0.5m s−1 (γ = 1000 s−1),

δpSR
∼= 2 × 10−10 Pa. (24)

On comparing eq. (24) with eq. (21) we see that the
SR contribution to the induced-pressure enhancement is
somewhat smaller than the LR contribution to the shear-
induced pressure enhancement, but it is not negligible
even at a gap width as large as L = 0.5mm. The SR
contribution becomes even more important at smaller val-
ues of L. From eq. (23) it follows that, for a fixed veloc-
ity U , δpSR will increase as L−2, while δpLR, due to the
long-range velocity fluctuations, will only increase either

as L−3/2 for large values of Re in accordance with eq. (19)
or even less as L−1 for small values of Re in accordance
with eq. (20).

5 Computer simulations and nanoscale
contributions

A number of computer simulations of model fluids un-
der shear have been reported in the literature [18–24] in
an attempt to check a possible dependence of the shear-
induced pressure enhancements on γ3/2 in eq. (15), pre-
dicted in the absence of boundary conditions. Investiga-
tors have either claimed to have found agreement [18,19]
or disagreement [20–25] with the prediction of eq. (15).
However, there are two problems with the manner in
which these simulation results have been interpreted. The
first problem is that the computer simulations probe
small nanoscale lengths at extremely large shear-rates
γ ≈ 1011–1012 s−1. In addition to the contributions from
the short-range fluctuations discussed in the previous sec-
tion, at these small lengths and high shear rates, there
are some other molecular-scale contributions to the calcu-
lated shear-induced pressure enhancements. The second
problem is that, even in the absence of short-range corre-
lations, in confined liquid layers the dependence on γ3/2,
which is obtained in the absence of boundary conditions,
will never be observed under laminar-flow conditions, as
was also explained in sect. 4.

The first molecular dynamics (MD) simulations on a
3-dimensional sheared fluid consisting of a small num-
ber of Lennard-Jones (LJ) particles were performed by
Evans [18]. He found results that seemed, especially near
the triple point, to indicate a nonequilibrium (NE) pres-
sure enhancement that was proportional to γ3/2, but with
a coefficient that was much larger than the coefficient to
be expected from eq. (19). He noted a similarity with
the so-called molasses tail observed in MD simulations
of the equilibrium stress-tensor time-correlation function
that determines the shear viscosity [46]. It turns out that
in this time-dependent correlation function, again near the
triple point of LJ particles or near freezing of hard-sphere
particles, an apparent long-time tail proportional to 1/t3/2

appears, but with a coefficient, again, several orders of
magnitude larger than the theoretically expected long-
time tail coefficient. It was subsequently realized that this
so-called molasses tail was not due to long-wave length
mode-coupling (MC) effects, but was due to molecular-
scale MC effects related to structural relaxation in dense
fluids [47–50]. For a review of these molecular-scale MC
effects, the reader is referred to a forthcoming book of
Dorfman et al. [32]. The molecular-scale effects will not
only depend on the intermolecular potential adopted, but,
at a given density, also on the number of free paths sam-
pled, and, hence, on the number of particles used in the
simulations.

All subsequent molecular dynamics simulation stud-
ies currently available [19–24] have ignored the effects
of molecular-scale correlations that are dominant at
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nanoscales. Lee and Cumming [19,20] found an enhance-
ment ∝ γ3/2. But without checking the coefficient, they
assumed to have found agreement with both the results
of Evans [18] and with eq. (19), which is impossible as ex-
plained above. The more recent MD studies of Sadus and
coworkers [21–24] have found effective exponents for the
shear-rate dependence ranging from 1.5 to 2 without any
theoretical analysis of the results.

The theoretical expression, eq. (14), for the shear-
induced pressure enhancement follows from a solution of
the fluctuating hydrodynamics equations for the long-
range velocity fluctuations. Numerical solutions of the
fluctuating hydrodynamics equations have been obtained
some years ago with a direct simulation Monte Carlo
method [51,52] and, more recently, by Varghese et al. [25]
with a multiparticle collision dynamics method [53–55].
These approaches apply either to dilute gases [51,52] or to
a model fluid with an ideal-gas equation of state [25], but
have the merit of evaluating the Casimir pressure purely
mechanically, from momentum exchange in particle-wall
collisions. And indeed the simulated pressure enhance-
ments found by Varghese et al. [25] are of the same order
of magnitude estimated from either eq. (19) or eq. (20).
The calculated pressure enhancement obtained over about
one decade of the shear rate seems to scale as γ2 and not
as γ3/2. Indeed, in the confined liquid layers considered
by Varghese et al. the finite-size effects are expected to
be very significant and will cause a dependence of the
shear-induced pressure enhancements closer to γ2 as was
elucidated in sect. 4. For a quantitative analysis of these
type of simulation results we need to determine all three
crossover functions ϕii (i = x, y, z) in eq. (14). Such an
analysis of the simulation data is outside the scope of the
present paper. Moreover, to probe the predicted crossover
behavior it would be desirable to pursue these computa-
tions over a larger range of gap widths and shear rates.

6 Viscous heating

In the derivation of the shear-induced pressure enhance-
ments we have solved the fluctuating-hydrodynamics
equation assuming isothermal flow as is commonly done
in the statistical mechanics of shear flow [10–13]. That is,
possible viscous heating effects have been neglected. This
condition is commonly satisfied in computer simulations
by special dynamical rules keeping the temperature con-
stant [56] However, this is not a realistic assumption in
actual experimental situations.

For shear flow with the velocity gradient in the z di-
rection and the fluid velocity v0 in the x-direction, the
equation for the rate of change of the temperature is given
by [29]

�cp

[

∂T

∂t
+ v0 · ∇T

]

= λ∇2T + ηγ2, (25)

where cp is the isobaric specific heat capacity and λ the
thermal conductivity coefficient. In the stationary state

∂T/∂t = 0 and v0⊥∇T , so that eq. (25) reduces to

d2T

dz2
= −ηγ2

λ
, (26)

as indeed commonly used for non-isothermal plane Cou-
ette flow in the literature [57,58]. Subject to the boundary
conditions T (z = ±L) = T0, the solution of eq. (26) be-
comes

T (z) − T0 = +
η

2λ
γ2(L2 − z2). (27)

Mechanical equilibrium requires

dp

dz
=

(

∂p

∂ρ

)

T

dρ

dz
+

(

∂p

∂T

)

ρ

dT

dz
= 0, (28)

so that

dρ

dz
=

(

∂ρ

∂T

)

p

dT

dz
= −

(

∂ρ

∂T

)

p

ηγ2

λ
z. (29)

Integration of eq. (29) yields

ρ(z) = C −
(

∂ρ

∂T

)

p

ηγ2

4λ
z2. (30)

The integration constant C in eq. (30) is to be determined
by satisfying conservation of mass

1
2L

∫ +L

−L

dzρ(z) = ρ0, (31)

so that

ρ(z) − ρ0 =
(

∂ρ

∂T

)

p

ηγ2

2λ

(

1
3
L2 − z2

)

, (32)

where �0 is the density corresponding to T = T0. We note
that

p − p(ρ0, T0) =
(

∂p

∂T

)

ρ

(T − T0) +
(

∂p

∂ρ

)

T

(ρ − ρ0) =

(

∂p

∂T

)

ρ

[

(T − T0) −
(

∂T

∂ρ

)

p

(ρ − ρ0)

]

. (33)

Substitution of eqs. (27) and (32) into eq. (33) yields for
the resulting pressure enhancement ΔpVH ≡ p − p0

ΔpVH =
(

∂p

∂T

)

ρ

ηγ2

3λ
L2. (34)

To estimate the pressure enhancement caused by vis-
cous heating we consider again the same experimental con-
figuration previously considered in sects. 4 and 5: L =
0.5mm, U = 0.5m s−1 (γ = 1000 s−1). Using the known
thermophysical properties of liquid water at 25 ◦C [41] we
find from eq. (34)

ΔpVH = 70Pa, (35)
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which is ten orders of magnitude larger than any pressure
fluctuation induced enhancement given by eq. (21). Thus
any shear-induced pressure enhancement in experiments
will be completely dominated by the effect of viscous heat-
ing.

The same problem holds for the pressure enhance-
ments obtained by the currently available computer simu-
lations. As an example we consider here molecular dynam-
ics simulations reported by Lee and Cummings [19,20] and
by Marcelli et al. [21] for liquid argon at T = 135K and
� = 1418 kg m3. In terms of dimensional quantities we con-
clude from table I and fig. 2 in the paper of Marcelli et
al. [21]

δp = 0.146 × 10−16(γ · s)2 Pa, (36)

covering a range of shear rates from γ = 0.04×1012 s−1 till
γ = 1.00×1012 s−1. For γ = 0.5×1012 s−1 eq. (36) implies
δp = 3.7× 106 Pa, in reasonable agreement with the value
δp = 3.9 × 106 Pa from table 2 in the paper of Lee and
Cummings [20] for the same shear rate. As discussed in
sect. 4, experimental shear rates are at most 1000 s−1 at
which eq. (36) would suggest a pressure enhancement of
less than 10−10 Pa. On the other hand, using the known
thermophysical properties of liquid argon [59,60], we find
from eq. (34) for γ = 1000 s−1 and L = 0.5mm

ΔpVH = 73Pa, (37)

very similar to the value ΔpVH = 70Pa found in eq. (35)
for liquid water. Thus again, in actual experimental con-
ditions the shear-induced pressure enhancement is com-
pletely dominated by the effect of viscous heating.

7 Summary

Using nonequilibrium fluctuating hydrodynamics we have
demonstrated that the shear-induced nonequilibrium con-
tributions δpij to the pressure tensor resulting from
long-range velocity fluctuations satisfy a scaling relation,
eq. (14), in terms of a crossover function that for a given
set of boundary conditions depends only on the Re num-
ber. For large values of Re, the shear-induced pressure
contributions can be obtained from solutions of fluctuat-
ing hydrodynamics equations in the absence of boundary
conditions. In this limit we have corrected some results
for the nonequilibrium pressure enhancement previous re-
ported in the literature by Kawasaki and coworkers [10,
11], while we have found agreement with the value found
by Yamada and Kawasaki [11] and by Wada and Sasa [13]
for the wall-normal component of the nonequilibrium pres-
sure tensor. For the traceless part of the nonequilibrium
pressure tensor we have found complete agreement with
the results from kinetic theory previously obtained by
Ernst et al. [12].

However, we have found that for all values of Re cor-
responding to actual laminar-flow conditions finite-size ef-
fects are very significant and always need to be taken into
account. Thus the γ3/2 dependence on the shear rate γ
predicted by previous investigators [10–12] will never be
observed in practice due to these finite-size corrections.

Molecular dynamics computations, at least in dense
fluids, are strongly affected by molecular correlations at
nanoscales that have a different physical origin.

Unlike pressure enhancements resulting from either a
temperature gradient [26] or a concentration gradient [61],
the pressure enhancements caused by velocity fluctuations
are very small and negligible in practice.

Finally, we find that, in actual experiments, pressure
enhancements resulting from viscous heating are domi-
nant by many orders of magnitude. Hence, while computer
simulation of isothermal fluid flow may be useful to check
some predictions from statistical physics [25], they are ir-
relevant for the interpretation of experiments.
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Appendix A. Calculation in the absence of
boundary conditions (Re large)

For the calculations it is convenient to use dimensionless
variables with position r in terms of L, wave vector q in
terms of L−1, and velocity v in terms of Lγ. Then, all
the quantities of interest depend only on the Reynolds
number and a dimensionless strength of the thermal noise
given by [14]

S̃ =
kBT

ρL2

1
γ2L2

1
Re

. (A.1)

Large L and small L at a fixed shear rate γ correspond to
large Re and small Re, respectively. As explained in the
main text, for large L we can neglect the boundary condi-
tions and solve the fluctuating Orr-Sommerfeld and Squire
equations by applying a 3-dimensional Fourier transfor-
mation. We then obtain for the nonequilibrium (NE)
part of the equal-time correlation functions in momentum
space eqs. (7)–(9) with coefficients CNE

zz (q), WNE
zz (q), and
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BNE
zz (q) that are given by

CNE
zz (q)
S̃Re

= 2
qxq2

‖
q4

∫ ∞

0

dβ(qz + qxβ)e−Γ (β,q), (A.2)

WNE
zz (q)
S̃ Re

=
q2
y

q2
x

∫ ∞

0

dβ

[

dΓ

dβ

]2

[U(β,q)]2e−Γ (β,q), (A.3)

BNE
zz (q)
S̃ Re

=
q‖qy

q2qx

∫ ∞

0

dβ

[

dΓ

dβ

]2

U(β,q)e−Γ (β,q). (A.4)

with

Γ (β,q) =
2β

3Re
(q2

xβ2 + 3βqxqz + 3q2),

U(β,q) =
Re
2

[

atan
(

qz + βqx

q‖

)

− atan
(

qz

q‖

)]

,

= qxq‖

∫ β

0

[

dΓ (u)
du

]−1

du (A.5)

as given by eq. (39) and eq. (43b) in ref. [15], which are
exactly the same as eqs. (A.2) and (A.3) above, while the
new eq. (A.4) for the cross-correlation has been obtained
following the same techniques. In these equations q‖ is the
magnitude of the component of the wave vector q‖ in the
x-y plane, i.e., parallel to the plates.

As explained in the main text, from eqs. (A.2)–(A.4)
one can readily obtain also the correlation functions in
momentum space for the stream-wise and span-wise com-
ponents of the velocity fluctuations yielding eqs. (12)
and (13) with coefficients CNE

xx (q) and CNE
yy (q), that are

related to the coefficients CNE
zz (q), WNE

zz (q), and BNE
zz (q)

by

CNE
xx (q) =

q2
xq2

z

q4
‖

CNE
zz (q) +

q2
y

q4
‖
WNE

zz (q)

+2
qxqyqz

q4
‖

BNE
zz (q), (A.6)

CNE
yy (q) =

q2
yq2

z

q4
‖

CNE
zz (q) +

q2
x

q4
‖
WNE

zz (q)

−2
qxqyqz

q4
‖

BNE
zz (q). (A.7)

As discussed in sect. 2, integration of eqs. (A.2), (A.6),
and (A.7) for q ∈ R

3 yields the diagonal elements of
〈δvδv〉NE in real space and for large Re.

As an example, we consider here the computation of
V ∞

zz . In terms of dimensionless units

S̃ Re V ∞
zz (Re)

3
2 =

1
(2π)3

∫

R3
CNE

zz (q)dq. (A.8)

To evaluate the coefficient V ∞
zz , after substitution of

eq. (A.2) into eq. (A.8), we adopt spherical coordinates for
the integration over q. We first integrate over the magni-
tude q of the vector q, which can be done analytically and
yields the prefactor (Re)3/2. A second integration over the
polar angle can also be performed analytically taking ad-
vantage of the symmetry properties of the integral. The

final double integral, over the azimuthal angle and over
the parameter β, can be simplified but not performed an-
alytically and has been evaluated numerically

V ∞
zz =

√
3

32π3
Γ

(

1
4

)2 ∫ ∞

0

dβ

β
3
2

∫ π

0

(β + cos θ)(sin θ)
9
2

(β2 + 3β cos θ + 3)
3
2
dθ,

� 0.0106, (A.9)

which is the value quoted in table 1 of the main text. The
other coefficients, V ∞

xx and V ∞
yy , have been evaluated in a

similar fashion from eqs. (A.6) and (A.7). The resulting
values are

V ∞
xx = +0.0847, V ∞

yy = +0.0173, (A.10)

also shown in table 1, where a detailed discussion and
comparison with the literature is presented.

Appendix B. Calculation for periodic
boundary conditions (Re small)

Strictly speaking, the main result of appendix A, namely,
that the intensity of the velocity fluctuations (and associ-
ated pressure) is proportional to (γ)3/2, only applies for
spatial points that are very far from the boundaries. In
practice, since nonequilibrium fluctuations have a long
spatial range, their intensity will be strongly affected by
the boundary conditions [6]. To illustrate how this inten-
sity changes due to confinement, we consider in this ap-
pendix periodic boundary conditions (PBC) that are com-
monly adopted in computer simulations.

According to eq. (A.8), the computation of the in-
tensity of the velocity fluctuations in real space with-
out boundary conditions involves an integration over
wave vectors q ∈ R

3, in particular over the wall-normal
z-component qz ∈ (−∞,∞). Following previous au-
thors [13], we perform a calculation for PBC in the z-
direction by allowing the qz to take only values which are
multiples of Nπ (in dimensionless units), i.e., qz = Nπ
with N = ±1,±2,±3, . . . Alternatively, this approach can
be understood as approximating the integral over qz as a
series. For instance, in the case of CNE

zz (q), one approxi-
mates the qz integral on the right-hand side of eq. (A.8)
as

1
(2π)

∫ ∞

−∞
CNE

zz (q‖, qz)dqz �

1
(2π)

[

π

L

∞
∑

N=1

[

CNE
zz

(

q‖,
Nπ

L

)

+ CNE
zz

(

q‖,−
Nπ

L

)]

]

.

(B.1)

Then, the calculation without boundary conditions of ap-
pendix A corresponds to taking the limit L → ∞ in
eq. (B.1), while the calculation for PBC corresponds to
taking L = 1 in eq. (B.8), thus forcing CNE

zz (q‖, qz) to be,
in real space, periodic in the z-direction. Note that, to
obtain the actual intensity of fluctuations, eq. (B.1) still
needs to be integrated over q‖ ∈ R

2.
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Upon substituting eq. (A.2) into eq. (B.1), and either
eq. (A.6) or eq. (A.7) in the corresponding expressions for
CNE

xx and CNE
yy , the intensities of the velocity fluctuations

can be evaluated for arbitrary Re, and the crossover func-
tions ϕii(Re) of eq. (2) computed. The resulting series and
integrals cannot be evaluated analytically in general, but
can be studied numerically. As an example of these calcu-
lations we explicitly consider again the case of [CNE

zz ]PBC.
Use of eq. (B.1) (with L = 1) for substituting the qz inte-
gral on the right-hand side of eq. (A.8), after performing
analytically the integral over qy and changing variables in
the remaining qx and β integrals, results in

[

CNE
zz (Re)
S̃ Re

]

PBC

=
2Re
8π

∞
∑

N=1

F

(

N2π2

Re

)

, (B.2)

with the function

F (u) =
∫ ∞

0

dβ

∫ ∞

−∞
dqx exp

[

−2β2qx

3u

(

qxβ

u
+ 3

)]

×1 − erf(
√

1 + q2
x

√
2β)

√

1 + q2
x

{

2
(

1 +
qxβ

u

)

×
[

qx +
β

3

(

2β2qx

u2
+ 3

β

u
+ 6qx

)]

− β

u

}

, (B.3)

where the integrals in eq. (B.3) are perfectly converging
for any u �= 0 and, correspondingly, the function F (u)
is analytic. Notice that the summand in eq. (B.2) is the
same for ±N . In addition, because of the structure on the
right-hand side of eq. (B.2), the large Re limit results in

[

CNE
zz (Re)
S̃ Re

]

PBC

Re→∞−−−−→ (Re)
3
2

8π

∫ ∞

−∞
F (u2)du

� 0.0106(Re)3/2, (B.4)

which is equivalent to having performed the full integral
over qz of the original CNE

zz (q‖, qz) of eq. (B.1) and, thus,
reproduces eq. (A.9) of appendix A. As mentioned in the
main text, the calculation without boundary conditions is
equivalent to the calculation for PBC in the limit of very
large Re.

From eqs. (B.2) and (B.3) it is clear that, for arbitrary
Re only a numerical calculation is possible. However, in
the limit Re → 0 some analytical progress is feasible. Since

F (u) u→∞−−−−→ 1
24u

+ O

(

1
u2

)

, (B.5)

one readily obtains

[

CNE
zz

S̃ Re

]

PBC

Re→0−−−−→ Re2

576π
+ O(Re4). (B.6)

The other two components of the main diagonal velocity
correlations in real space, [CNE

xx ]PBC and [CNE
yy ]PBC, can

be treated in a similar way. For large Re we recover the
results of appendix A, while a power series expansion for

Re → 0 yields
[

CNE
xx

S̃ Re

]

PBC

Re→0−−−−→ Re2

256π
+ O(Re4), (B.7)

[

CNE
yy

S̃ Re

]

PBC

Re→0−−−−→ Re2

768π
+ O(Re4). (B.8)

These small Re power series expansions can be alterna-
tively obtained by simply changing the integration vari-
able to β′ = β/Re in the original eqs. (A.2)–(A.4), and
expanding the resulting integrand in powers of Re. As
discussed in sect. 3, the condition Re → 0 corresponds
to small system size and is more appropriate for the in-
terpretation of computer simulations [55]. The numbers
multiplying the Re2 terms in eqs. (B.6)–(B.8) yield, for
PBC, the V 0

ii coefficients quoted in eq. (18), while the
value quoted in eq. (20) is

1
3

[

1
256π

+
1

768π
+

1
576π

]

∼= 0.000737. (B.9)

A value of V 0
zz = 1/1152π has been reported by Wada and

Sasa [13] which differs from our result, eq. (B.6), exactly
by a factor of 2. This difference may be related to the
fact that, congruent with the fluid-mechanics literature,
we took the size of our layer as 2L. However, Wada and
Sasa [13] have provided only little details about their cal-
culation for PBC, so that an ultimate explanation is not
available. Equations (B.7) and (B.8) for the other two V 0

ii
coefficients are presented here for the first time.

It is interesting to note that, of the three terms con-
tributing to CNE

xx (q) in eq. (A.6) or to CNE
yy (q) in eq. (A.7),

the dominant contribution at Re → 0 comes from the
one associated with vorticity fluctuations. And indeed, the
vorticity term is the only one contributing to either V 0

xx

or V 0
yy. The proportionality to Re2 at small Re is also

obtained when rigid boundary conditions are adopted for
the velocity [14,15], in which case an exact solution is
not readily feasible [16,17] and in practice we have set-
tled for only a low-order Galerkin approximation [14,15].
Here, for PBC, the coefficients multiplying the Re2 terms
in eqs. (B.6)–(B.8) are exact.

Appendix C. Crossover between small and
large Re behavior

We have also evaluated numerically [CNE
zz ]PBC from

eq. (B.2) for all Re numbers between 1 and 1600 and the
corresponding crossover function ϕzz introduced in eq. (2).
The results are presented in fig. 3, where the upper panel
shows [CNE

zz ]PBC and the lower panel ϕzz as a function of
Re. The convergence of the series (B.2) is very slow, par-
ticularly for large Re, and up to N = 60 terms have been
added to obtain the values presented in fig. 3. Added as
thin lines in the upper panel are the two asymptotic lim-
its, large and small Re, as given by eqs. (B.4) and (B.6),
respectively. We see in the upper panel how [CNE

zz ]PBC
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Fig. 3. The red curves represent, as a function of the Reynolds
number, the intensity of wall-normal velocity fluctuations, CNE

zz

(upper panel) and the corresponding crossover function, ϕzz

(lower panel) evaluated numerically from eqs. (B.2) and (B.3).
The two thin lines in the upper panel indicate asymptotic lim-
its at small Re, eq. (A.8), and at large Re, eq. (B.4). In the
lower panel the asymptotic limit for large Re (i.e., ϕzz = 1) is
indicated.

crosses over continuously and smoothly between the two
analytic asymptotic limits. The asymptotic limit for large
Re (i.e., ϕzz = 1) is indicated in the lower panel.

We emphasize that all results in these appendices
have been obtained from fluctuating hydrodynamics equa-
tions linearized in the fluctuating velocity: the so-called
stochastic Orr-Sommerfeld and Squire equations speci-
fied in sect. 2. The nonlinear part of the advection term,
responsible for transition to turbulence, has been ne-
glected from the outset. Hence, our results only pertain
to Reynolds numbers (Re < 350) for which plane Couette
flow is stable [31]. From the information in the lower panel
of fig. 3 we see that for all Reynold numbers corresponding
to laminar flows the crossover function ϕzz is substantially
less than unity. Hence the prediction that δp should vary
as γ3/2 in the absence of boundary conditions will never be
observed in practice. Taking into account finite-size cor-
rections will be essential in the analysis of data for the
shear-induced pressure enhancement in laminar flow.
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6. J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctu-
ations in Fluids and Fluid Mixtures (Elsevier, Amsterdam,
2006).

7. J.F. Lutsko, J.W. Dufty, Phys. Rev. A 32, 3040 (1985).
8. J.F. Lutsko, J.W. Dufty, Phys. Rev. E 66, 041206 (2002).
9. J.V. Sengers, J.M. Ortiz de Zárate, J. Non-Newton. Fluid
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