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Abstract. The definitions of thermodiffusion and Soret coefficients for a binary mixture include a concen-
tration prefactor x(1−x), when mole fraction x is used, or w(1−w), when mass fraction w is used. In this
paper the physical reasons behind this choice are reviewed, emphasizing that the use of these prefactors
makes the thermodiffusion and the Soret coefficients invariant upon changing in the concentration repre-
sentation, using either mole fraction or mass faction. Then, it is shown how this invariance property can
be extended to ternary mixtures by using appropriate concentration prefactors in matrix form. The paper
is completed with some considerations about alternative definitions of thermodiffusion coefficients, binary
limits of the concentration triangle, selection of the dependent concentration in a ternary mixture, use of
molar concentrations and, finally, extension to multi-component mixtures.

1 Introduction

Thermodiffusion, also referred to as thermal diffusion,
Ludwig-Soret effect or simply Soret effect [1], is a trans-
port phenomenon that generically exists in non-isothermal
multi-component mixtures. The presence of a tempera-
ture gradient ∇T induces not only a heat flow, but also a
matter flow. In the theoretical framework of linear non-
equilibrium thermodynamics [2–5] thermodiffusion is a
coupled transport phenomenon whose magnitude is, in a
first approximation, proportional to ∇T .

For isotropic1 binary mixtures, one single concentra-
tion variable is required to specify the composition. For
the purpose of this paper it is important to clearly distin-
guish between the various possible ways of specifying the
composition of a mixture, thus, x shall be used to denote
mole fraction, w for mass fraction (both dimensionless)
and c for molar concentration (units of mol m−3). The last
one will be considered in sect. 7. The relationship between
mass w and mole x fractions is given by

w =
xM1

xM1 + (1 − x)M2
, (1)

� Contribution to the Topical Issue “Thermal Non-Equilib-
rium Phenomena in Soft Matter”, edited by Fernando Bresme,
Velisa Vesovic, Fabrizio Croccolo, Henri Bataller.

a e-mail: jmortizz@ucm.es
1 The content of this paper only refer to isotropic fluids.

where M1 and M2 are the molecular weights of com-
ponents 1 and 2 of the mixture, respectively (units of
kg mol−1).

In these isotropic binary systems, thermodiffusion is
quantified by a single scalar thermodiffusion coefficient,
DT (units of m2 s−1 K−1). When using x as concentra-
tion variable, the total mole flux (including Fickean and
thermodiffusion contributions) is given by [2–4]:

J(x) = −ct [D ∇x + x(1 − x)DT ∇T ] , (2)

where the scalar quantities ct = c1 + c2, and D represent,
respectively, the total molar concentration and the single
Fick diffusion coefficient of a binary mixture. In eq. (2)

J(x) = ctx {u1 − [xu1 + (1 − x)u2]} (3)

represents the species-1 mole diffusion flux (units of
mol m−2 s−1) relative to the mole-average velocity. In
eq. (3), the vector fields u1 and u2 are the velocities of
species 1 and 2 in any inertial reference frame (labora-
tory). Notice Galilean invariance in the definition (3) of
J(x).

When a binary mixture is subjected to a steady tem-
perature gradient, it follows from eq. (2) that, because
of matter balance, thermodiffusion will cause composition
separation. After some transient, a non-equilibrium steady
state is reached where J(x) vanishes and a constant (in
time) concentration gradient is established. In isotropic
fluids the applied temperature gradient and the induced
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concentration one are always parallel (or antiparallel). Be-
cause of the pioneering research by Charles Soret (1879,
see [6]), a so-called Soret coefficient ST (units of K−1) is
typically introduced as proportional to the ratio of these
steady concentration and temperature gradients, namely,

x(1 − x)ST ∇T = −∇x. (4)

On comparing eq. (2) with eq. (4) for parallel (or antipar-
allel) temperature and concentration gradients, one ob-
tains

ST =
DT

D
. (5)

The substitution of eq. (5) into eq. (2) allows to quantify
thermodiffusion, even in the non-steady case, in terms of
ST , an option preferred by some authors. Others [7] intro-
duce a thermal diffusion ratio, kT = ST /T = DT /(DT ),
instead of DT or ST

Note, for binary mixtures, the presence of a concentra-
tion prefactor x(1 − x), both in the definition (2) of the
thermodiffusion coefficient and in the definition (4) of the
Soret coefficient. There are various reasons for introducing
this prefactor.

First, the prefactor forces the thermodiffusion-induced
flux (and corresponding concentration gradient in steady-
state) to vanish in the two pure-component limits, i.e.,
for x → 0 and x → 1. The prefactor is expected to carry
most of the concentration dependence of thermodiffusion,
so that DT or ST only depend weakly on x. Indeed, in
many cases, a linear dependence on x is sufficient to rep-
resent ST over the entire range of concentration, x ∈ [0, 1].

Second and most fundamentally, the prefactor makes
the values of DT and ST invariant under change in the
representation of concentration (and associated diffusion
frame of reference). Indeed, the differentiation of eq. (1)
shows that

∇x

x(1 − x)
=

∇w

w(1 − w)
, (6)

so that the numerical value of ST will be identically the
same, independently of whether, for a steady state, it is
computed like in eq. (4) with concentrations in mole frac-
tion x, or by

w(1 − w)ST ∇T = −∇w, (7)

with concentrations in mass fraction w. Moreover, since
for a binary mixture J(x) is related to the mass diffusion
flux in the center-of-mass (barycentric) frame of reference,
by [8]:

J(x)

ct x(1 − x)
=

J(w)

ρt w(1 − w)
, (8)

one concludes that the numerical values of DT (and D)
will be identically the same, independently of whether
they are defined by eq. (2) in the mole-average frame of
reference, or from

J(w) = −ρt [D ∇w + w(1 − w)DT ∇T ] (9)

in the barycentric frame of reference.

In eqs. (8) and (9), the species-1 mass diffusion flux
(units of kg m−2 s−1) relative to the center-of-mass veloc-
ity is

J(w) = ρtw {u1 − [wu1 + (1 − w)u2]} , (10)

while ρt = ρ1 + ρ2 is the total mass density of the binary
mixture. By solving eqs. (3) and (10) for the velocities ui,
eq. (8) immediately follows.

The invariance of both ST and DT upon change in the
reference frame is a quite convenient property, not only
theoretically but also from a practical or experimental
point of view. It makes life easier for scientists obtaining
DT or ST values in binary mixtures, either experimentally
or by computer simulations. They can continue to use their
favorite concentration representation, in mole fraction [9–
13] or in mass fraction [14–17], while comparison between
values obtained by different teams is direct, not requiring
any conversion or number manipulation.

Some authors [1] have stressed another interesting con-
sequence of the use of concentration prefactors, i.e., the
interpretation of DT as a thermophoretic mobility. Indeed,
for a dilute mixture, when there are a few and well sep-
arated molecules of species-1, one can take ∇x � 0 in
eq. (2). Then, comparison with eq. (3) gives for the drift
velocity:

u1 − u2 = −DT ∇T. (11)

The same result is obtained by comparing eqs. (9)
and (10).

Historically, the concentration prefactor in its current
form, x(1 − x) or w(1 − w), first appeared in the Enskog
formula (1917) for the separation of isotopes by thermal
diffusion. It was later adopted for arbitrary binary mix-
tures, in particular2 through the 1942 work by Sybren
de Groot [18]. Interestingly, as a reason for introducing
x(1 − x), De Groot quotes yet another nice property,
namely, invariance of ST (or DT ) under permutation of
components (it simply changes sign, see sect. 6). Other
authors at that time were using proportionality to con-
centration, which breaks all invariance properties (see also
sect. 7) and does not allow the direct interpretation of DT

as a mobility.
In more recent decades, and also partly due to the

impulse given since 1994 by the International Meeting on
Thermodifussion (IMT) series of conferences [19], research
in thermodiffusion has progressed significantly. Measur-
ing Soret coefficients of binary mixtures now has become
routine, and the various alternative experimental tech-
niques used by different groups have progressed to a level
where agreement is readily reached, and the experimen-
tal dataset of reliable DT and/or ST values for different
binary mixtures has increased steadily [19,20]. Maybe for
these reasons the interest of the community has moved
lately towards ternary mixtures, as a first step towards
truly multi-component mixtures. Also, the establishment
of large international collaborations associated with space

2 I owe this information to a personal communication by Ali-
aksandr Mialdun.
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science3, like DCMIX [21] or SCCO-SJ10 [22,23], has un-
doubtedly helped to switch the community focus towards
ternaries and, in general, to complex mixtures like in
NEUF-DIX [24].

2 Soret coefficients for ternary mixtures

In a ternary mixture there are two independent concentra-
tions, x1 and x2 in mole fraction, while x3 = 1−x1−x2 is a
dependent concentration. Also, concentrations w1 and w2

in mass fraction are often used, related to mole fractions
by

w1 =
x1M1

x1M1 + x2M2 + (1 − x1 − x2)M3
,

w2 =
x2M2

x1M1 + x2M2 + (1 − x1 − x2)M3
, (12)

with M3 being the molecular weight of the third compo-
nent of the mixture. Associated with the two independent
concentrations there are also two independent diffusion
fluxes. Hence, two independent Soret, ST,1 and ST,2, or
thermodiffusion, DT,1 and DT,2, coefficients are needed to
describe thermal diffusion in ternary systems.

Note that the step from binary to ternary systems is
not trivial and, for diffusion, requires the introduction of
a Fick diffusion matrix D instead of the single scalar Fick
diffusion coefficient D needed for a binary mixture [8]. As-
sociated with the matrix description of diffusion several
complications appear, like the frame dependence of diffu-
sion matrices, that are difficult to grasp experimentally.
Indeed, very few experimental papers in ternary or multi-
component mixtures contain any reference to the frame in
which their diffusion matrices are measured.

There has been some confusion in the literature con-
cerning the concentration prefactor in the definition of
Soret and thermodiffusion coefficients [25]. For instance,
Shevtsova et al. [26] adapted for ternaries a proposal by
Kempers [27] and used a prefactor x1(1− x1) for the first
Soret coefficient, and a prefactor x2(1−x2) for the second,
a choice followed by some other authors [28]. On the other
hand, Ghorayed and Firozabaadi [29] proposed to use pref-
actors x1x3 for the first Soret and x2x3 for the second.
Because of these inconsistencies, in the first experimental
benchmark on thermodiffusion in ternary systems [30] it
was decided to introduce new Soret coefficients S′

T,i simply
defined as the ratio between concentration (in mass frac-
tion) and temperature gradient, without any prefactors.
A similar approach was adopted when reporting the re-
sults of the SCCO-SJ10 space mission [23]. Similarly, new

3 DCMIX (Diffusion Coefficients Measurement in ternary
mIXtures), SCCO-SJ10 (Soret Coefficients for Crude Oil at
ShiJian-10) and NEUF-DIX (Non-Equilibrium Fluctuations
during Diffusion in compleX liquids) are space missions spon-
sored by the European Space Agency (ESA) in collaboration
with Roskosmos in the case of DCMIX, and with the Chinese
Space Administration (CSA), in SCCO-SJ10 and NEUF-DIX.

thermodiffusion coefficients, D′
T,i, defined without concen-

tration prefactors, have been introduced [30]. Notice that
none of the options mentioned above retain for ternaries
the properties, enumerated in sect. 1, which make the defi-
nition eq. (4) of Soret coefficients, or the definition eq. (2)
of thermodiffusion coefficients, so convenient for binary
mixtures.

The main purpose of this paper is to show how to
introduce a concentration prefactor in the definition of
thermodiffusion and Soret coefficients for a ternary mix-
ture that retains all the convenient properties that the DT

of eq. (2) or the ST of eq. (4) have for binaries. The in-
convenience is that such a prefactor has to be in the form
of a matrix.

It is easier to start by considering Soret coefficients in
a steady state. Then, if one defines for a ternary mixture4[

x1(1 − x1) −x1x2

−x1x2 x2(1 − x2)

][
ST,1

ST,2

]
∇T = −

(
∇x1

∇x2

)
,

(13)
the resulting Soret coefficients, ST,1 and ST,2, are inde-
pendent of whether concentrations are expressed in mole
or mass fraction. Indeed, simple differentiation of eqs. (12)
shows that (see exercise 1.5 in ref. [8]):[

x1(1 − x1) −x1x2

−x1x2 x2(1 − x2)

]−1 (
∇x1

∇x2

)
=

[
w1(1 − w1) −w1w2

−w1w2 w2(1 − w2)

]−1 (
∇w1

∇w2

)
, (14)

similar to eq. (6) for binary mixtures. Note that the def-
inition of Soret coefficients given by eq. (13) is not only
frame invariant5, but it also cancels the two concentration
gradients at all pure-component limits which, for a ternary
mixture are three: Pure component-1, x1 = 1 and, thus,
x2 = 0. Pure component-2, x2 = 1 and, thus, x1 = 0. Pure
component-3, x1 = 0 and x2 = 0.

While the question of the binary limits of the ternary
concentration triangle will be addressed in detail later, in
sect. 5, one direct consequence of eq. (13) is that, when
x1 → 0 or x2 → 0, one of the Soret coefficients will ap-
proach the Soret coefficient for the corresponding binary
mixture, with the correct concentration prefactor as given
by eqs. (4) or (7). Thus, when one of the components is
dilute, there is no need of conversion factors to compare
Soret coefficients measured in a ternary mixture with bi-
nary tabulated values of ST .

As already mentioned, one disadvantage of eq. (13) is
the matrix character of the concentration prefactor, imply-
ing that Soret coefficient #1 will not only depend on the

4 Here, and in the rest of this paper, 2-vectors or 2 × 2 ma-
trices (always printed with straight brackets) represent linear
operators acting, either from R

3 or from R
3×R

3, into R
3×R

3,
i.e., on single or pairs of 3D-vectors in the real space (∇T ,

∇wi, J
(x)
i , etc.) to give pairs of 3D-vectors.

5 Al least in the mole-average and barycentric frames of ref-
erence. Some considerations about the volume-average frame
of reference follow in sect. 7.
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ratio of ∇x1/∇T , but on a linear combination of ∇x1/∇T
and ∇x2/∇T . Hence, in general, no Soret coefficient can
be unequivocally assigned to each one of the individual
components of the mixture. Although in sect. 5, when
discussing binary limits in more detail, the physical in-
terpretation of ST,i will be revisited, the mix-up of com-
ponents implied by eq. (13) is not fully alien to transport
in ternary mixtures. For instance, it is becoming common
to report experimental values for the eigenvalues of the
diffusion matrix [30], which, as the Soret coefficients of
eq. (13), cannot be unequivocally assigned to individual
components of the mixture.

3 Thermodiffusion coefficients for ternary
mixtures

The contents of sect. 2 refers to a steady state, in which
the total mass fluxes (containing both purely diffusive
and thermodiffusive contributions) vanish. However, as is
the case for binary mixtures, the frame-invariant expres-
sion (13) of Soret coefficients for a ternary mixture can also
be extended to transient situations, where mass fluxes are
not zero, by introducing frame-independent thermodiffu-
sion coefficients. To discuss thermodiffusion coefficients,
as in sect. 1 for binary systems, one has to distinguish be-
tween mole and mass fluxes and associated frames of refer-
ence [8]. For instance, the two independent mole diffusion
fluxes relative to the mole-average velocity are defined as

(
J(x)

1

J(x)
2

)
= ct

(
x1 [u1 − (x1u1 + x2u2 + x3u3)]

x2 [u2 − (x1u1 + x2u2 + x3u3)]

)
, (15)

in terms of the velocities of the three species, ui, mea-
sured in an inertial reference frame. For introducing frame-
independent thermodiffusion coefficients, it is convenient
to first consider this mole-average frame of reference. For
the general unsteady case, and inspired by eq. (13), one
expresses the mole diffusion fluxes of eq. (15) as

(
J(x)

1

J(x)
2

)
= −ct

{
D(x) ·

(
∇x1

∇x2

)
+ X ·

[
DT,1

DT,2

]
∇T

}
,

(16)
where X represents a shorthand notation for the matrix

X =

[
x1(1 − x1) −x1x2

−x1x2 x2(1 − x2)

]
, (17)

D(x) is the Fick diffusion matrix in the mole-average frame
of reference, and DT,1 and DT,2 are the frame-independent
thermodiffusion coefficients. The total molar density of the
mixture is expressed in this case as ct = c1 +c2 +c3. Next,
using eq. (14), one can rewrite eq. (16) as

(
J(x)

1

J(x)
2

)
=−ct

[
D(x) ·X·W−1

(
∇w1

∇w2

)
+X ·

[
DT,1

DT,2

]
∇T

]
,

where the matrix W is similar to X in eq. (17), but with
the concentrations expressed in mass fractions. Next, re-
calling the relationship between the mole diffusion fluxes
relative to the mole-average velocity, and mass diffusion
fluxes relative to the center-of-mass velocity [8]:(

J(w)
1

J(w)
2

)
=

ρt

ct
W · X−1 ·

(
J(x)

1

J(x)
2

)
, (18)

similar to eq. (8) for binary mixtures, it can be readily
shown that(

J(w)
1

J(w)
2

)
= −ρt

{
D(w) ·

(
∇w1

∇w2

)
+ W ·

[
DT,1

DT,2

]
∇T

}
,

(19)
where the total mass density is in this case ρt = ρ1 + ρ2 +
ρ3, and where

W−1 · D(w) · W = X−1 · D(x) · X. (20)

Of course, eq. (20) is just the standard relationship be-
tween Fick diffusion matrices in the barycentric and in the
mole-average frame of references and, taking into account
the different notations, it exactly reproduces eq. (3.2.11)
in the book by Taylor and Krishna [8].

On comparing eq. (16) with eq. (19) one sees that the
use of concentration matrix prefactors, X or W, makes
the thermodiffusion coefficients DT,i frame invariant6. As
was the case for binaries, the numerical values for DT,i

in eq. (16) and eq. (19) are exactly the same. Thus, the
contribution of thermodiffusion to the total diffusive fluxes
can be described in a frame-independent manner.

The relation between frame-invariant Soret and ther-
modiffusion coefficients can be readily obtained, either
from eq. (16) or eq. (19), as[

DT,1

DT,2

]
= X−1 · D(x) · X ·

[
ST,1

ST,2

]

= W−1 · D(w) · W ·
[
ST,1

ST,2

]
, (21)

which, by virtue of eq. (20), are two perfectly consis-
tent expressions. Substitution of (21) in either eq. (16)
or eq. (19) allows, as in binary mixtures, the use of ST,i

for characterizing thermodiffusion in transient states.
It is evident at this point that eq. (20) provides a route

to define frame-invariant diffusion matrices for ternary
systems, at the cost of re-writing Fick’s law and intro-
ducing concentration prefactors in it. However, this line
of research will not be further pursued here, leaving it for
a more specific work. It is worth mentioning anyway that
the use of eq. (20) to express the relation between Fick
diffusion matrices in different reference frames represents
a simplification when compared to the traditional way of

6 Al least in the mole-average and barycentric frames of ref-
erence. Some considerations about the volume-average frame
of reference follow in sect. 7.
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expressing it [8]. First of all, current eq. (20) is more com-
pact, as it requires fewer matrices. In addition, eq. (20)
clearly shows that in binary systems, where all matrices
reduce to scalars and the product is commutative, diffu-
sion becomes frame-independent; while in the ternary case
D(x) �= D(w). In the same line also notice that, for binary
mixtures, all matrices in eq. (21) reduce to scalars, and
eq. (5) is recovered.

The definition of frame-invariant Soret coefficients by
eq. (13) and of frame-invariant thermodiffusion coeffi-
cients, by either eq. (14) or eq. (19), is the main purpose
of the present work. In the remainder of this paper the
contents of sects. 2 and 3 are complemented with addi-
tional, somewhat more technical, discussions of a compar-
ison with other current definitions of thermodiffusion co-
efficients, binary limits, selection of dependent concentra-
tion, the usage of molar concentrations, and an extension
to multi-component mixtures.

4 Alternative definitions of Soret and
thermodiffusion coefficients

As mentioned at the beginning of sect. 2, there coexist cur-
rently in the literature alternative definitions of Soret and
thermodiffusion coefficients for ternary mixtures, none of
which has the frame-invariance properties of the ones pre-
sented here. Although it is a relatively simple exercise,
for practical purposes it is convenient to explicitly dis-
play the relations among these various definitions, which
is the purpose of this section. However, this exercise has
to be incomplete, due to the (relatively) large number of
competing definitions. Hence, to keep this discussion brief,
only the Soret and thermodiffusion coefficients without
any concentration prefactors, introduced by the ternary-
mixtures benchmark [30], will be explicitly discussed here.

Soret and thermodiffusion coefficients defined without
concentration prefactors [30] are frame dependent. To dis-
tinguish between the different families of coefficients, let
us introduce the notation: D

′(x)
T,i , D

′(w)
T,i , S

′(x)
T,i and S

′(w)
T,i .

Then, the following set of relations can be established:

[
DT,1

DT,2

]
= X−1 ·

⎡
⎣D

′(x)
T,1

D
′(x)
T,2

⎤
⎦ = W−1 ·

⎡
⎣D

′(w)
T,1

D
′(w)
T,2

⎤
⎦ . (22)

and

[
ST,1

ST,2

]
= X−1 ·

⎡
⎣S

′(x)
T,1

S
′(x)
T,2

⎤
⎦ = W−1 ·

⎡
⎣S

′(w)
T,1

S
′(w)
T,2

⎤
⎦ , (23)

In a similar fashion, relationships between the frame-in-
dependent DT,i and ST,i with other families of Soret and
thermodiffusion coefficients that various authors have in-
troduced in ternary mixtures [25–29], can be readily estab-
lished. For the sake of brevity, they will not be explicitly
displayed here.

5 Binary limits

As often in ternary mixtures, it is interesting to discuss
the frame-invariant thermodiffusion and Soret coefficients
in the three binary sides of the ternary concentration tri-
angle, i.e., when one of the components is dilute. Initially,
one has two degrees of freedom for the specification of
the coefficients ST,i and DT,i. However, consistency with
Soret coefficients measured in the corresponding binary
mixture, only leaves one degree of freedom over the three
sides of the concentration triangle. In particular, the fol-
lowing connections with the binary coefficients hold:

when x1 → 0,

⎧⎨
⎩

ST,2 → S
(3,b)
T,2 ,

DT,2 → D
(3,b)
T,2 ,

(24a)

when x2 → 0,

⎧⎨
⎩

ST,1 → S
(3,b)
T,1 ,

DT,1 → D
(3,b)
T,1 ,

(24b)

when x3 → 0,

⎧⎨
⎩

ST,1 − ST,2 → S
(2,b)
T,1 ,

DT,1 − DT,2 → D
(2,b)
T,1 ,

(24c)

where S
(j,b)
T,i , D

(j,b)
T,i , denotes the corresponding Soret or

thermodiffusion coefficient measured in the binary mix-
ture of i and j, with j being the dependent concentration.
As anticipated in sect. 2, the comparison with Soret and
thermodiffusion coefficients measured in binary mixtures
is direct and does not require the use of any conversion or
data manipulation.

It was in the dilute limit where the binary thermod-
iffusion coefficient has been interpreted as a mobility [1].
The chain of arguments leading to eq. (11) for binaries
can be, somehow, extended to ternaries. If we consider
a dilute system of well-separated species-1 and species-2
molecules into a large majority species-3 solvent, one can
take ∇x1 � 0 and ∇x2 � 0 in eq. (16). Then, comparing
with eq. (15) one arrives at

u1 − u3 = −DT,1 ∇T,

u2 − u3 = −DT,2 ∇T.
(25)

Hence, in the frame of reference where the solvent is at
rest (u3 = 0) and for dilute x1, x2 � 0, the coefficient
DT,1 represents the thermophoretic mobility associated
with the drift velocity of species-1 molecules. Similarly,
DT,2 represents the thermophoretic mobility associated
with the drift velocity of species-2 molecules. The same
arguments can be applied to the other two vertexes of the
concentration triangle.

To finalize this section it is worth mentioning that
eqs. (24) also provide a clue for a possible physical in-
terpretation of the Soret coefficients ST,1 and ST,2. Equa-
tion (13) would express thermodiffusion of 1 and 2 in the
presence of 3 as a linear combination of (1, 3) thermodif-
fusion with (2, 3) thermodiffusion; with ST,1 representing
thermodiffusion of 1 in 3, congruent with eq. (24b); and
ST,2 representing thermodiffusion of 2 in 3, congruent with
eq. (24a). The congruence of eq. (24c) within this picture
will be analyzed next.
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6 Choice of the dependent concentration

In a binary mixture one has two choices for the dependent
concentration and, thus, two possible Soret coefficients to
describe thermodiffusion. However, according to eq. (4),
one of these Soret coefficients is minus the other, so that
switching between them is quite straightforward.

In a ternary mixture the situation is more complicated
since one has three choices for the dependent concentra-
tion, meaning three different possible pairs of Soret coeffi-
cients. However, only one of these pairs is independent. To
establish the relationships between these different Soret
pairs one uses x1 + x2 + x3 = 1 to deduce from eq. (13):[
x1(1 − x1) −x1x3

−x1x3 x3(1 − x3)

][
ST,1 − ST,2

−ST,2

]
∇T = −

(
∇x1

∇x3

)
,

and[
x2(1 − x2) −x2x3

−x2x3 x3(1 − x3)

][
ST,2 − ST,1

−ST,1

]
∇T = −

(
∇x2

∇x3

)
.

To summarize the expressions above, it is convenient to
adopt the nomenclature S

(j)
T,i with superscript j designat-

ing the component of the ternary mixture whose con-
centration is considered as the dependent variable; and
subscript i, like in eq. (13), associates S

(j)
T,i with the cor-

responding independent concentration at the right-hand
side of eq. (13). Then, for instance, the two independent
Soret coefficients used so far become S

(3)
T,1 (associated with

component 1) and S
(3)
T,2 (associated with component 2).

Adopting this nomenclature, the two precedent equations
imply:

S
(2)
T,1 = S

(3)
T,1 − S

(3)
T,2, S

(2)
T,3 = −S

(3)
T,2,

S
(1)
T,2 = S

(3)
T,2 − S

(3)
T,1, S

(1)
T,3 = −S

(3)
T,1.

(26)

The four eqs. (26) mean that, of the initially three different
pairs of Soret coefficients, only one pair is independent. It
is also interesting to note the consistency with eq. (24c)
and with the situation in binaries, where exchange of inde-
pendent concentration implies a sign change in the Soret
coefficient.

Since there are more Soret coefficients, the relation-
ships among them, eqs. (26), are a bit more complicated
than in the case of binaries. However, simple “circular”
relations like

S
(3)
T,1 + S

(2)
T,3 + S

(1)
T,2 = 0,

S
(3)
T,2 + S

(1)
T,3 + S

(2)
T,1 = 0,

(27)

hold, which would be certainly very useful when inter-
changing the order of components in a ternary mix-
ture. Alternative proposals to describe the Soret effect
in ternary mixtures using the D′

T,i of sect. 4 or thermal
diffusion ratios [31] cite as an advantage the existence of
“circular” relationships equivalent to the current eqs. (27).

Similarly to what was done explicitly here for Soret co-
efficients, it is also possible to discuss relations between the
various thermodiffusion coefficients obtained by swapping
the components of the mixture. They are quite similar to
eqs. (26), (27), and are not going to be explicitly displayed
here.

7 Molar concentrations

It is also quite common to express the concentrations
of components in a mixture as mole per unit volume,
ci = ctxi. However, because typically ct depends on tem-
perature, this choice introduces complications when tem-
perature gradients are present, and has not been the
most popular for the description of thermodiffusion. As
an illustration of these complications consider that, for a
non-isothermal binary mixture, one has that in general
∇(c1 + c2) �= 0, in contrast with concentrations in mole
or mass fraction where ∇(x1 + x2) = ∇(w1 + w2) = 0
always.

In spite of these difficulties, some books or reviews
present the theory of thermodiffusion in binaries in terms
of molar concentrations [5,32], as well as some experimen-
talists report on binary Soret coefficients using these con-
centration units [33,34]. However, a detailed examination
shows that in these works [5,32–34] it is implicitly as-
sumed: i) That the dependence of ct on temperature can
be neglected. ii) That the concentration x of the “solute”
is very low, so that 1 − x � 1. In that case, multiplying
eq. (4) for a binary mixture by ct, one obtains [5,32]:

cST ∇T = −∇c. (28)

Equation (28) shows that, with the restrictions mentioned
above, Soret coefficients can be defined in a binary mix-
ture in terms of molar concentrations, and that they are
equal to the more general definitions of eq. (4) or eq. (7),
in terms of mole fraction or mass fraction, respectively.
Regarding transient states, within the same approxima-
tions above, thermodiffusion coefficients in terms of molar
concentration have also been defined [5]. In this case, the
relevant diffusion flux is in the volume-average frame of
reference [8].

Solving eq. (28) leads to the so-called exponential de-
pletion law [35], which is the starting point of many ex-
perimental works reporting Soret coefficients, in particular
of macromolecules, biomolecules or colloidal particles [33–
36]. In these cases the assumptions mentioned in the previ-
ous paragraph typically hold. Notice that the term ther-
mophoresis is often used to refer to thermodiffusion in
these colloidal or macromolecular systems with low “sol-
vent” concentration.

Regarding ternary mixtures it is not the intention of
this paper to go into the details, but one can convince
oneself readily that, within the same approximations men-
tioned above for binary mixtures, Soret or thermodiffusion
coefficients can be defined on the basis of molar concentra-
tions that will be numerically the same as those of eq. (13).
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8 Extension to multi-component mixtures

So far this work has been restricted to a explicit discussion
of ternary mixtures, mainly because of the recent exper-
imental interest on thermodiffusion in these systems [21–
23]. However, the ideas presented here can be readily gen-
eralized to multi-component mixtures. Indeed, for a n-
component mixture one can define (n−1)×(n−1) matrices
X and W as

Xij = xiδij − xixj , Wij = wiδij − wiwj , (29)

with i, j ∈ {1, n − 1} being the independent components,
while xn or wn are the dependent concentrations, and δij

the Kronecker deltas. Then, a little bit of algebra shows
that eq. (14) holds in general, namely:

X−1 ·

⎛
⎜⎜⎜⎜⎝

∇x1

∇x2

...
∇xn−1

⎞
⎟⎟⎟⎟⎠ = W−1 ·

⎛
⎜⎜⎜⎜⎝

∇w1

∇w2

...
∇wn−1

⎞
⎟⎟⎟⎟⎠ ; (30)

as well as eq. (18)

⎛
⎜⎜⎜⎜⎜⎜⎝

J(w)
1

J(w)
2

...

J(w)
n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=
ρt

ct
W · X−1 ·

⎛
⎜⎜⎜⎜⎜⎜⎝

J(x)
1

J(x)
2

...

J(x)
n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (31)

Hence, matrices X and W can be used to define frame-
independent Soret and thermodiffusion coefficients for
multi-component systems in an exactly similar fashion as
explicitly elucidated in this paper for ternary mixtures. In
particular, eqs. (16), (19) and (20) hold in general, for an
arbitrary number of components, which opens the way to
a description of thermodiffusion in a frame-independent
way for the most general case.

9 Summary and conclusions

It was shown how, by introducing appropriate concen-
tration prefactors in matrix form, X or W as given by
eq. (29), it is possible to define frame-independent ther-
modiffusion and Soret coefficients for ternary and multi-
component mixtures. Invariance is exact when switching
between barycentric and mole-average frames of reference
while, for the volume frame of reference (molar concen-
trations), invariance only holds in the dilute limit and ne-
glecting thermal expansion. Also in the dilute limit, frame-
invariant thermodiffusion coefficients can be interpreted as
thermophoretic mobilities, and related to the drift velocity
under a temperature gradient of each type of molecules.

As a corollary of the present developments, nice and
compact expressions have been presented for switching be-
tween different representations of concentration gradients,

eq. (14); diffusion fluxes, eq. (18); and diffusion matri-
ces, eq. (20). These expressions involve the same matri-
ces, X or W, introduced in eq. (29) and in the definition
of the frame-invariant coefficients. It has also been sug-
gested how, eventually, frame-independent diffusion ma-
trices might be defined.
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6. J.K. Platten, P. Costesèque, Eur. Phys. J. E 15, 235
(2004).

7. A. Vailati, M. Giglio, Phys. Rev. E 58, 4361 (1998).
8. R. Taylor, R. Krishna, Multicomponent Mass Transfer

(Wiley, New York, 1993).
9. P.S. Belton, H.J.V. Tyrrell, Z. Naturforsch. 26, 48 (1971).

10. S. Wiegand, H. Ning, R. Kita, J. Non-Equilib. Thermodyn.
32, 193 (2007).

11. H. Cabrera, F. Cordido, A. Velásquez, P. Moreno, E. Sira,
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