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Abstract – Fluctuations in a fluid are strongly affected by the presence of a macroscopic gradient
making them long-ranged and enhancing their amplitude. While small-scale fluctuations exhibit
diffusive lifetimes, moderate-scale fluctuations live shorter because of gravity. In this letter we
explore fluctuations of even larger size, comparable to the extent of the system in the direction of
the gradient, and find experimental evidence of a dramatic slowing-down of their dynamics. We
recover diffusive behavior for these strongly confined fluctuations, but with a diffusion coefficient
that depends on the solutal Rayleigh number. Results from dynamic shadowgraph experiments
are complemented by theoretical calculations and numerical simulations based on fluctuating
hydrodynamics, and excellent agreement is found. Hence, the study of the dynamics of non-
equilibrium fluctuations allows to probe and measure the competition of physical processes such
as diffusion, buoyancy and confinement, i.e. the ingredients included in the Rayleigh number,
which is the control parameter of our system.

Copyright c© EPLA, 2015

The physics of systems out of thermodynamic equi-
librium is instrumental in several research areas such
as physics of fluids, soft matter, astrophysics, statistical
physics, biology, metallurgy and many others [1,2]. As an
example, we consider in this letter a binary liquid mix-
ture subjected to a steady temperature gradient parallel
to gravity, i.e. in the stable Rayleigh-Bénard configura-
tion. Two component liquids experience separation in the
presence of temperature differences due to different affini-
ties of molecules to “heat” [3]. A phenomenon referred to
as thermodiffusion or Soret effect that will induce a steady
concentration gradient in the system. This so-called solu-
tal Rayleigh-Bénard setting, allows for a very refined con-
trol of density profiles within the system and the ability
to investigate intimate properties of fluids like molecular
interactions [4–6].

Any full description of non-equilibrium systems must
include spontaneous fluctuations, whose nature is quite

(a)E-mail: fabrizio.croccolo@univ-pau.fr

different from fluctuations around equilibrium states
mainly due to the former long-ranged nature [7–9], not
restricted to the proximity of critical points [10]. Non-
equilibrium fluctuations are instrumental in understand-
ing transport phenomena like mass diffusion [11], as
well as fluctuation-induced, or Casimir, forces [12–14].
In our non-equilibrium problem, the coupling between
spontaneous velocity fluctuations and the macroscopic
gradient results in giant non-equilibrium concentration
fluctuations (c-NEF) in the quiescent state [9,15]. Gravity
quenches the intensity (statics) of fluctuations with length
scales larger than a characteristic (horizontal) size 2π/q⋆

s

related to the dimensionless solutal Rayleigh number Ras

of the system [15,16]:

Ras = −βs�g · �∇c

νD
L4; | Ras |= (q⋆

sL)4, (1)

where βs = ρ−1(∂ρ/∂c) is the solutal expansion coefficient,
ρ the fluid density, �g the gravity acceleration, c the con-
centration (mass fraction) of the denser component of the
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fluid, �∇c the concentration gradient, D the mass diffusion
coefficient, ν the kinematic viscosity, and q⋆

s a character-
istic solutal wave vector. This number is the equivalent
for the concentration of the Rayleigh number for the tem-
perature and describes the competition of opposite forces
like buoyancy, diffusion and boundaries. It is also known
that, in addition to gravity, the presence of boundaries fur-
ther suppresses the intensity of c-NEFs with length scales
larger than the confinement length L in the direction of
the gradient [9,17].

The role played by the different physical mechanisms
(diffusion, buoyancy, confinement) on the dynamics of the
fluctuations has received comparatively little attention. It
is known that gravity accelerates the dynamics of c-NEFs
with (horizontal) length scales larger than 2π/q⋆

s [18,19].
However, this means that fluctuations of a larger size
decay faster, which is a rather non-intuitive behavior [20]
and cannot be extrapolated to zero wave number. To in-
vestigate these open issues further, we have developed a
new shadowgraph machine and used two different state-
of-the-art CCD detectors with slightly different pixel size
able to measure at wave vectors down to qmin = 8.9 cm−1

and 6.2 cm−1, respectively. Hence, we explored an en-
tire new range of wave numbers, smaller than ever before,
and discovered a dramatic slowing-down in the dynamics
of c-NEFs. We interpret this slowing-down as caused by
confinement, whose role on the dynamics of c-NEFs has
not been investigated so far. Our work demonstrates that
the study of the dynamics, rather than the intensity, of
non-equilibrium fluctuations gives deep insights into the
competition of physical processes such as diffusion, buoy-
ancy, and confinement.

Typically, the dynamics of fluctuations is character-
ized in terms of an intermediate scattering function (ISF
or, equivalently, a normalized time correlation function)
f(q, t), with f(q, 0) = 1. This function describes how
a spontaneous fluctuation of a thermodynamic variable
decays in time. In first approximation, the ISF can be
modeled by a single exponential, with decay time τ(q)
depending on the fluctuations’ wave number q, or length
scale in the horizontal directions (perpendicular to gravity
and gradient). Available theories accounting for the simul-
taneous presence of diffusion (d) and gravity (g) [18,19],
but not for confinement, predict for a stable configuration
(Ras < 0):

τ(q̃)

τs

∣

∣

∣

∣

d+g

= τ̃(q̃)|d+g =
1

q̃2

(

1 − Ras

q̃4

) , (2)

where the wave vector is expressed in dimensionless form
q̃ = qL, and τs = L2/D is the typical solutal time it
takes diffusion to traverse the thickness of the sample.
Equation (2) implies different behaviors for the decay
times of small-scale and large-scale fluctuations, namely,
τ̃(q̃)|d = 1/q̃2 for q̃ ≫ q̃⋆

s , and τ̃(q̃)|g = −q̃2/Ras for
q̃ ≪ q̃⋆

s . Hence, small length scale fluctuations decay

Fig. 1: (Color online) Experimental cell: two sapphire windows
are kept at different temperatures T0+ΔT/2 (the top, red one)
and T0 − ΔT/2 (the bottom, blue one) while the sample fluid
(colored pattern) is contained by an O-ring (black circles) at
a thickness L precisely defined by three plastic spacers (gray
rectangles).

diffusively and evolve slower the larger the scale. Buoy-
ancy effects, for wave numbers smaller than q⋆

s , lead to a
non-diffusive decay of fluctuations [20]. Separating these
two regimes, the decay time of c-NEFs exhibits a maxi-
mum at q̃⋆

s , as clearly shown by eq. (2). The existence
of this maximum, which identifies the most persistent
fluctuation in the system if confinement is neglected, has
been experimentally demonstrated in a number of experi-
ments on c-NEFs both with a pure concentration gradient
(isothermal mass diffusion) [20,21] or with a concentra-
tion gradient induced by the Soret effect [11,22,23]. Our
purpose here is to go beyond these previous investiga-
tions, into a q-range where confinement effects are to be
expected.

To observe c-NEFs we used the thermal-gradient cell
sketched in fig. 1: Two sapphire windows kept at fixed
vertical distance contain the fluid sample while being ther-
mally controlled by two Peltier elements with a central
hole. The entire system allows a quasi-mono-chromatic
parallel light beam pass through in the direction of the
temperature gradient. Further details of the thermal gra-
dient cell can be found elsewhere [11,24]. A stabilizing
temperature difference of ∆T = 20K (with an average
temperature of T0 = 298K) is applied to a horizontal layer
of tetralin and n-dodecane at 50% weight fraction. The
sample thickness can be varied by using different plastic
spacers and sealing O-rings, and for this work three thick-
nesses L = 0.7, 1.3 and 5.0mm (and a constant lateral
extent of R = 13.0mm) were used. At the steady state
of the Soret separation, the solutal Rayleigh numbers are
Ras = −4 × 104, −2 × 105 and −1 × 107, respectively1.

To apply a temperature difference by heating the fluid
mixture from above results in a linear temperature profile
across the sample in a thermal time τT = L2/κ, where κ
is the fluid thermal diffusivity. Due to the smaller value of
the mass diffusion coefficient, a nearly linear concentration

1ρ = 0.8407 g cm−3, D = 6.21 × 10−6 cm2s−1, ν = 1.78 ×

10−2 cm2s−1, ST = 9.5 × 10−3 K−1, βT = 9.23 × 10−4 K−1,
βs = 0.27, ψ = co(1 − co)ST βs/βT = 0.695, κ = 9.7 × 10−4 cm2s−1

from [25] and references therein.
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Fig. 2: (Color online) (a) Shadowgraph image I(x, t); (b) dif-
ference of normalized images Δim(x, Δt); (c) power spectrum
of (b) | Δim(q, Δt) |2; (d) structure function C(q, Δt) for three
different time delays, vertical lines stand for wave vectors used
in (e); (e) structure function C(q, Δt) for three different wave
vectors, vertical lines stand for delay times used in (d); (f) ISFs
for three different wave vectors: symbols are for experimental
data while lines show single-exponential modeling. All data
are for Ras = −2 × 105.

profile is generated by the Soret effect [1,26] in a much
larger solutal diffusion time τs = L2/D. Since our mix-
ture has a positive separation ratio, for negative Ras both
the temperature and the concentration profile result in a
stabilizing density profile [27].

Shadowgraphy [28–30]2 allows recording images whose
intensities I(x, t) contain a mapping of the sample
refractive-index fluctuations, over space and time, aver-
aged along the direction of the gradient. An example of
one of these images is shown in fig. 2(a). These intensity
patterns are generated at the sensor plane by the hetero-
dyne superposition of the light scattered by the sample
refractive-index fluctuations and the much more in-
tense transmitted beam (“local oscillator”). Quantitative
image analysis is performed by the differential dynamic
algorithm [11,20,21,31]. One first computes differences of
normalized images ∆im(x,∆t) as shown in fig. 2(b). These
difference images are then 2D-space-Fourier transformed

2The probing beam is a plane parallel beam of quasi-
monochromatic light as in previous setups [11,24]. After the sample
no collecting lens is used. A charged coupled device sensor (IDS,
UI-6280SE-M-GL) with a resolution of 2448 × 2048 pixels of 3.45 ×

3.45 µm2 is placed at a distance of z = (100 ± 10)mm from the de-
tector. Images are cropped to square resolution of 2048×2048 pixels.
In this arrangement the size of the image is dictated by the real size
of the CCD sensor, which is 7.066 mm. This fixes the minimum wave
vector to qmin = 8.89 cm−1.

in silico, fig. 2(c), to separate the contribution of light
scattered at different wave vectors. This procedure pro-
vides results similar to conventional light scattering, but
with a shadowgraph one can access much smaller wave
vectors. Quantitative image analysis yields the so-called
structure function:

C(q, ∆t) = 〈| ∆im(q,∆t) |2〉t,|q|=q =

〈| i(q, t) − i(q, t + ∆t) |2〉t,|q|=q, (3)

with i(q, t) = F [I(x, t)/〈I(x, t)〉x] the 2D-Fourier trans-
form of a normalized image I(x, t) and ∆t the time delay
between the pair of analyzed images. Examples of exper-
imental C(q, ∆t) are shown in fig. 2(d)–(e).

The physical optics theory of shadowgraphy relates the
structure function to the ISF as [11,20,21,31]:

C(q, ∆t) = 2A{T (q)S(q) | 1 − f(q, ∆t) | +B(q)}, (4)

where T (q) is the optical transfer function of the in-
strument (an oscillating function for a shadowgraph,
see [29,30]), S(q) the static structure factor of c-NEFs,
A an intensity pre-factor, and B(q) a background in-
cluding all the phenomena with time correlation func-
tions decaying faster than the CCD frame rate, such as
contributions due to shot noise and temperature fluctua-
tions. Hence, experimental ISF f(q, t) can be evaluated
via eqs. (3), (4) by fitting the structure function at fixed q
as a function of time assuming a simple exponential decay
form for the ISF. By this procedure one gets three quan-
tities TS, B and a representative decay time τ for each
wave vector. Results of the ISF for three different wave
vectors are shown in fig. 2(f) using the fitted values of TS
and B for normalization.

Essentially for all the wave vectors accessible in the ex-
periments the ISF can be modeled by a single-exponential
function, but for direct comparison with theory and simu-
lations we extract effective experimental decay times as
the time needed to f(q, t) to decay to 1/e. Figure 3
presents these experimental decay times for the three Ras

investigated, the raw data in panel (a), and in dimen-
sionless form in panel (b). Note that data for the larger
Ras were obtained with a different CCD from the other
two sets of measurements. Figure 3(b) shows that for
almost all wave vectors smaller than q̃⋆

s = 4
√
−Ras, the

effective decay time departs from the theoretical descrip-
tion of eq. (2), shown as a dashed line. As the wave vector
decreases, the decay time presents a minimum for a dimen-
sionless wave vector q̃b

∼= 5, while for smaller wave vec-
tors the decay time recovers a diffusive behavior τ̃ ∝ q̃−2.
These conclusions are clear in fig. 3 except for the larger
Ras = −1 × 107, for which data from the two smaller q
were too noisy to fit.

To interpret these experimental findings and understand
the physical origin of the discovered slowing-down of large-
scale c-NEFs, we use a fluctuating hydrodynamics (FHD)
model [17] that incorporates gravity and confinement.
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Fig. 3: (Color online) Effective decay times: (a) log-log plot of
the experimental decay times τ as a function of wave vector q
for different Rayleigh numbers. (b) Same in terms of dimen-
sionless variables. In panel (b), filled red symbols are experi-
mental data, open blue ones are for calculations based on the
FHD model, and open-crossed black ones are from numerical
simulations. The dashed curves represent eq. (2) for q̃ > q̃b,
which accounts for gravity and diffusion only. The dotted lines
represent eq. (6) for q̃ < q̃b, which accounts for confinement.

FHD, based on original ideas by Onsager and Landau,
supplements dissipative fluxes with random contributions
so as to derive in a consistent way a fluctuating or stochas-
tic version of any thermodynamic or hydrodynamic prob-
lem [9]. Previous FHD investigations of our problem [17]
focused on the intensity (statics) of the c-NEFs. Here
we investigate the dynamics and were able to express
the theoretical dynamic structure factor as a series of
exponentials:

S(q)f(q, t) =
∞
∑

N=1

AN (q) exp

[

− t

τN (q)

]

, (5)

see [32] for further details. The decay times in eq. (5) are
the inverse of the eigenvalues ΓN (q) = 1/τN (q) discussed
in ref. [17]. The amplitudes AN are analytically related
to ΓN and q. The static structure factor discussed in [17]
is then S(q) =

∑

AN (q). In general, the ΓN can only
be computed numerically, however, in the limit q → 0, a
full analytical investigation is possible by means of power
expansions in q, and a clear hierarchy of well-separated
ΓN can be identified [17]. In that limit, the first am-
plitude in eq. (5) dominates, and f(q → 0, t) becomes
a single exponential in practice, with decay time due to

confinement (c):

τ̃(q̃ → 0)|c =
1

q̃2
(

1 − Ras

Ras,c

)

=
1

q̃2
(

1 − Ras

720

)

, (6)

where Ras,c = 720 is the critical solutal Rayleigh number
at which the convective instability appears in this sys-
tem [27]. Predictions from the asymptotic equation (6)
are shown in fig. 3(b) as dotted lines. Hence, the theory
shows a crossover from eq. (2) (not including confinement)
at large and intermediate q, to the confinement behaviour
of eq. (6) at small q, precisely the kind of behaviour ex-
perimentally observed. We estimate the wave number qb

corresponding to the minimum decay time by equating
eqs. (2) and (6). This gives q̃b = 4

√

Ras,c = 4
√

720 ∼= 5.2
independently of Ras, in further agreement with the ex-
perimental observations in fig. 3(b).

For arbitrary values of q, the decay times τN (q) and
corresponding amplitudes can only be evaluated numer-
ically. We have performed a numerical investigation for
the experimental Ras [32], yielding similar results in the
three cases. For very large q̃ � 50, all decay times col-
lapse to the bulk value, τ̃N ≃ q̃−2, and the ISF is approx-
imately a single exponential. As already commented, for
very small q̃ � 0.3 the first mode dominates in amplitude
and a single-exponential decay is again recovered, with de-
cay time given by eq. (6). For intermediate 0.6 � q̃ � 30,
the second mode leads in amplitude but having a smaller
decay time means that the two lower modes play a sig-
nificant role and the theoretical ISF shows signatures of
a double-exponential decay. Indeed, data from simula-
tions show such signatures in the predicted wave vector
range. However, such signatures were not detected in the
experiments due to limited range, frame acquisition rate,
and insufficient signal-to-noise ratio. In fig. 2(e) we re-
ported three examples of experimental ISFs for different
wave vectors, with single-exponential modeling.

Regardless of the multiple exponential character, a sin-
gle effective theoretical decay time τeff(q) can be defined
by f(q, τeff) = 1/e. In fig. 3(b) we show results for the-
oretical τeff(q), computed via eq. (5) from the numerical
decay rates and amplitudes as open blue symbols. All the
features seen in the experimental data are well reproduced
by the theory. Noticeably the slowing-down observed for
small wave numbers is clearly related to confinement, since
this is the only ingredient added to the “bulk” theory of
eq. (2).

The FHD theory [17] assumes that viscous dissipation
dominates, and neglects the effect of fluid inertia; this is
justified by the fact that in all liquids momentum diffu-
sion is much faster than mass diffusion, i.e., the Schmidt
number Sc = ν/D is very large. While neglecting inertial
effects is a good approximation at most wave numbers of
interest, it is known that, depending on Ras, it fails at
sufficiently small wave numbers due to the appearance of
propagative modes [33] (closely related to gravity waves)
driven by buoyancy. In order to confirm that the observed

60013-p4



Fluctuations in confinement

slowing-down is due to confinement and not to inertia we
have performed FHD numerical simulations [34,35] that
account for inertial effects and confinement, see [32] for
further details. Data points from a numerical simulation
with fluid parameters matching the experimental ones are
also displayed in fig. 3 as open-crossed black symbols. The
excellent agreement of this dataset with experimental and
theoretical results, shows that inertia effects are not rele-
vant in our experiments. We note, however, that for thick-
nesses L � 5mm the simulations do show oscillatory time
correlation functions (propagative modes) at the smallest
wave numbers [35], but this range is not accessible in the
experiments reported here.

We conclude that, although confinement has a moder-
ate damping impact on the intensities of large-scale non-
equilibrium concentration fluctuations [17], in the presence
of gravity, it strongly affects their dynamics. Our current
findings are in contrast to the case of diffusion in micro-
gravity where the coupling to velocity fluctuations greatly
enhances the intensity of the c-NEFs but does not alter
their Fickian diffusive dynamics [36,37].

Although the focus of this letter is on the dynamics and
we leave for future publications a full discussion of the stat-
ics, we note that the minimum q̃b in τeff corresponds to a
minimum in the intensity of fluctuations S(q). Hence, the
current results might be interpreted as a kind of de Gennes
narrowing [38]. In analogy to diffusion in colloids, where a
competition between interparticle interactions and hydro-
dynamic effects exists, here we have competition between
gravity and confinement.

Interestingly, we find that the dimensionless wave num-
ber where confinement coexists with gravity is related to
the critical solutal Rayleigh number Ras,c = 720 where
the convective instability first appears [27]. This is a sig-
nature of the Onsager regression hypothesis stating that
the dynamics of the fluctuations contains all of the signa-
tures seen in the deterministic dynamics, which is known
to be controlled by the Rayleigh number.
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