
EPJ E
Soft Matter and 
Biological Physics

your physics journal

EPJ .org

Eur. Phys. J. E (2015) 38: 99 DOI 10.1140/epje/i2015-15099-x

Non-equilibrium concentration fluctuations in
binary liquids with realistic boundary conditions
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Abstract. Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-
equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables.
In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary con-
centration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with
large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of
the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of
the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium
fluctuations responsible for a non-equilibrium Casimir effect.

1 Introduction

It has been well established, both theoretically and exper-
imentally, that thermal fluctuations in fluids in the pres-
ence of a temperature gradient and/or a concentration
gradient are spectacularly long range [1–3]. Specifically,
the intensity of the temperature and concentration fluc-
tuations in non-equilibrium (NE) fluids varies with the
wave number q of the fluctuations as q−4 which means
that in real space the correlations extend over the size
L of the system [4]. As a consequence, the spatial spec-
trum of these NE fluctuations is strongly affected by finite-
size effects due to the presence of boundaries, especially
for small wave numbers accessible in shadowgraph exper-
iments. Hence, for the interpretation of NE shadowgraph
experiments [5–12] and for the validation of computational
studies [13–17] of NE fluctuations, an assessment of the
impact of the boundary conditions of the fluctuating hy-
drodynamic variables on the NE fluctuations is necessary.

A procedure for solving the fluctuating hydrodynam-
ics equations to obtain the intensity of the NE concentra-
tions fluctuations has been developed by two of us, but
with artificial boundary conditions for the fluctuations at
the walls adopted for mathematical convenience [18]. For
the case of realistic boundary conditions, we subsequently
obtained an approximate solution in terms of a Galerkin
approximation [19].

In liquid mixtures there are two diffusion modes that
are linear combinations of heat and mass diffusion and a

a e-mail: jmortizz@fis.ucm.es

viscous mode [20,21]. Important parameters are the Lewis
number, that is the ratio of the thermal diffusivity DT and
the mass diffusion coefficient D, and the Schmidt num-
ber, that is the ration of the kinematic viscosity ν and D.
In liquid mixtures both Lewis and Schmidt numbers are
commonly larger than unity, implying that temperature
and viscous fluctuations decay much faster than concen-
trations fluctuations. Hence, in dealing with liquids one
often adopts an approximation of large Lewis and Schmidt
numbers, Le ≫ 1 and Sc ≫ 1. This approach is particu-
larly convenient when the focus is on concentration fluctu-
ations at time scales when temperature and viscous fluc-
tuations are fully decayed [3,22]. For Le ≫ 1 and Sc ≫ 1
we were able to obtain an exact expression for the au-
tocorrelation function of the intensity of the NE concen-
tration fluctuations in the presence of realistic boundary
conditions, but that required a tedious numerical evalua-
tion of the decay rates (eigenvalues) of the modes of the
hydrodynamic operator, yielding some analytical results
only in the long-wavelength limit [23]. Subsequently, the
procedure was extended to study the dynamics of the NE
concentration fluctuations and good agreement with ex-
perimental measurements was obtained, although again a
tedious numerical evaluation of the appropriate eigenval-
ues was required [24].

NE concentration fluctuations are not only affected by
finite-size effects, but also by the presence of gravity. In
this paper, as in some earlier work [18], we focus our at-
tention specifically on the finite-size effects. We have been
able to obtain relatively compact analytic expressions for
both the dynamic and static autocorrelation function of



Page 2 of 9 Eur. Phys. J. E (2015) 38: 99

the NE concentration fluctuations that do require only
minimal numerical work. Our results are not only rele-
vant to past and future experimental studies of NE con-
centration fluctuations at low gravity [10,25], but also for
certain aspects of Earth-bound non-equilibrium phenom-
ena, like a NE Casimir effect [26–28], as well as for the
interpretation of numerical simulations of non-equilibrium
fluctuating hydrodynamics in mixtures [16,17,29].

We shall proceed as follows. The equations for the ap-
propriate fluctuating variables and boundary conditions
are specified in sect. 2. The concentration gradient in-
duces a coupling between concentration fluctuations and
wall-normal velocity fluctuations along the direction of the
concentration gradient [3, 30, 31]. The equation for these
velocity fluctuations is solved in sect. 3. Inserting this so-
lution in the equation for the concentration fluctuations
we obtain the correlation functions for the NE concen-
tration fluctuations in sect. 4. In sect. 5 we analyze the
spatial dependence of the intensity of the NE concentra-
tion fluctuations needed for an understanding of Casimir
forces induced by the NE concentration fluctuations [28].
Our results are summarized and discussed in sect. 6.

2 Fluctuating variables and boundary

conditions

We consider a layer of a binary fluid mixture bounded
by two plane-parallel walls separated by a distance L and
located at z = ± 1

2
L. The plates are maintained at differ-

ent temperatures, so that a stationary temperature gra-
dient ∇T = (∇T ) ẑ exists, with ẑ the unit vector in the
wall-normal direction. As a consequence of the Soret ef-
fect, a stationary concentration gradient ∇c = (∇c) ẑ will
also appear, where c is the concentration in mass fraction
of one of the components of the mixture. We shall fur-
ther consider that all relevant thermophysical properties
of the mixture are constant (do not depend on tempera-
ture or concentration) so that both ∇T and ∇c are uni-
form. This physical situations is usually referred to as the
Rayleigh-Bénard problem for a binary mixture [22, 32].
In the absence of gravity, the stationary state described
above is stable. Finally, consistent with the Le ≫ 1 ap-
proximation, we assume the separation ratio of the mix-
ture ψ = −β∇c/α∇T to be positive [22, 33] (the most
common case). Here α = −1/ρ(∂ρ/∂T )c,p is the ther-
mal expansion coefficient and β = 1/ρ(∂ρ/∂c)T,p the so-
lutal expansion coefficient, with ρ the mass density of the
mixture.

Fluctuating hydrodynamics, originally developed for
dealing with spontaneous thermodynamic fluctuations in
equilibrium [34–36], can also account for fluctuations
around the stationary gradient specified above [3, 30]. In
the most general case, as in equilibrium [36], there will
be coupled pressure, temperature, concentration and ve-
locity fluctuations, so that some simplifications are desir-
able. If δv are the velocity fluctuations, one first assumes,
as usual for dense fluids, that they are divergence-free:
∇ · δv (incompressible flow). This assumption allows us
to neglect the sound modes [30]. Next, we adopt here a

large Lewis number approximation (Le ≫ 1) that decou-
ples temperature and concentration fluctuations. Hence,
one has to consider only the coupling of concentration and
wall-normal velocity fluctuations [18, 23, 33]. The Le ≫ 1
approximation was first proposed to simplify the linear
stability analysis of the Rayleigh-Bénard problem in bi-
nary fluids [22, 32], demonstrating its validity for posi-
tive separation ratios. Subsequently, it was used for sim-
plifying the associated fluctuating-hydrodynamics prob-
lem [18, 23, 33]. It has been successfully employed in nu-
merical simulations [15], for reproducing light-scattering
experiments in binary mixtures [24] and, more recently,
in ternary mixtures [17, 37]. We note that for the most
common liquid mixtures, Le is of the order 10–103.

The fluctuating hydrodynamics equations for our prob-
lem have been presented in some previous publications, to
which we refer for details and physical background [18,
23, 33]. For our purpose here we find it convenient to use
the working equations of ref. [23] in dimensionless form.
Hence, we introduce dimensionless space, time and con-
centration variables by

r̃ = r/L, t̃ =
tD

L2
, δc̃ =

δc

∇cL
. (1)

In terms of these dimensionless variables, and in the ab-
sence of gravity, the fluctuating hydrodynamics equations
for a binary fluid mixture in the Le ≫ 1 limit become [23]

1

Sc
∂t(∇

2δvz) = ∇4δvz − F1(r, t), (2a)

∂tδc = ∇2δc − δvz + F2(r, t), (2b)

where Sc = ν/D is the Schmidt number and

F1(r, t) = −
L2

ρνD
{∇ × ∇ × (∇ · δΠ)}z ,

F2(r, t) = −
L

ρD∇c
∇ · δJ . (3)

We note that in eqs. (2)-(3), for simplicity, tildes in dimen-
sionless variables have been suppressed. From here on, ev-
erything will be in terms of dimensionless variables, except
where explicitly the opposite is stated.

As in our previous work [23], to further simplify
eqs. (2) we also assume the Schmidt number to be large,
Sc ≫ 1. Hence, in practice, the left-hand side (LHS) of
eq. (2a) will be taken as zero. As Le ≫ 1, Sc ≫ 1 is also
a good approximation for typical liquid mixtures. This
approximation amounts to assuming that viscous fluctua-
tions decay very fast in the time scale set by the diffusion
time, see eq. (1).

Equations (3) define dimensionless random forces ex-
pressed as spatial derivatives of the two fluctuating dis-
sipative fluxes: a random stress tensor δΠ(r, t) and a
random diffusion flux δJ(r, t). We note that, in fluctu-
ating hydrodynamics [3,30,34–36], the linear phenomeno-
logical relations, used to “close” the balance laws and to
obtain the hydrodynamic equations, need to be supple-
mented with fluctuating dissipative fluxes. In our case,
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a δΠ is added to Newton’s viscosity law, and a δJ is
added to Fick’s diffusion law. The statistical properties of
these fluctuating dissipative fluxes are given, in terms of
the dissipation matrix, by the so-called Fluctuation Dis-
sipation Theorem (FDT). Since the random diffusion flux
contributes only to equilibrium fluctuations, in what fol-
lows only the FDT for the random stress tensor will be
needed, which for the case of incompressible flow and in
terms of dimensional variables it explicitly reads [3, 23]

〈δΠij(r, t)δΠ∗

kl(r
′, t′)〉 = 2kBTη(δikδjl + δilδjk)

×δ(t − t′)δ(r − r′), (4)

where kB is Boltzmann’s constant and η the shear vis-
cosity. As previous investigators [39, 40] we assume that
a local version of the FDT continues to be valid in non
equilibrium, but we neglect the effects of nonhomogeneous
noise so that, in practice, temperature T in eq. (4) is iden-
tified with the average temperature in the layer.

Realistic boundary conditions are no-slip for the ve-
locity fluctuations and impervious wall for the mass flow.
For an incompressible fluid, and in terms of dimensionless
variables, they are [38]

0 = δvz = ∂zδvz, 0 = ∂zδc, at z = ±
1

2
. (5)

In the second of the boundary conditions above the limit
Le ≫ 1 is implicit, meaning that temperature fluctua-
tions are neglected and consequently the thermodiffusion
contribution to the mass flow.

Next, to solve eqs. (2) with the boundary condi-
tions (5), as usual [3,23,39,40], one applies Fourier trans-
forms in time and in the XY -plane, parallel to the walls.
Hence, in matrix form and for Sc ≫ 1, eqs. (2) become

[
(∂2

z − q2)2 0

1 iω + q2 − ∂2
z

] [
δvz

δc

]
=

[
F1(ω, q, z)

F2(ω, q, z)

]
, (6)

where ω is the frequency of the fluctuations and q is the
component of the wave vector of the fluctuations in the
horizontal plane (with corresponding wave number q). The
random forces Fi(ω, q, z) in eq. (6) are the Fourier trans-
forms of the random forces in eq. (3). To solve eq. (6) we
first separate its right-hand side (RHS) as [37]:

[
F1(ω, q, z)

F2(ω, q, z)

]
=

[
0

F2(ω, q, z)

]
+

[
F1(ω, q, z)

0

]
. (7)

This splits the solution of eq. (6) additively into two parts:
δc = δcE +δcNE that we distinguish with superscripts “E”
and “NE”. It is interesting to note that the random stress
tensor δΠ and the random diffusion flux δJ are uncorre-
lated, so that the random forces F1 and F2 in the RHS
of eq. (6) are uncorrelated too, see eq. (3). As a conse-
quence, the autocorrelation function of the concentration
fluctuations splits additively also into “E” and “NE” com-
ponents. Furthermore the “E” component of the autocor-
relation is the same as for the system in equilibrium, i.e.,
for ∇c = 0 (or the 1 were not present in the first column

of the hydrodynamic matrix of eq. (6)). From now on we
concentrate on the “NE” contribution to the concentra-
tion fluctuations to be determined from eq. (6), namely:

[
(∂2

z − q2)2 0

1 iω + q2 − ∂2
z

] [
δvz

δc

]
=

[
F1(ω, q, z)

0

]
, (8)

where, for simplicity, we dropped the superscript “NE”. Of
course, eq. (8) must be solved subjected to the boundary
conditions (5) in the wall-normal z-variable.

3 Wall-normal velocity fluctuations

We start by solving the velocity equation, the first of
eqs. (8). As in previous works, the solution is conveniently
expressed in a series of eigenfunctions [4, 19,23,40]

δvz(z) =

∞∑

N=1

CN WN (z), (9)

where the hydrodynamic modes WN (z) are the solutions
of the eigenvalue problem

(∂2
z − q2)2WN (z) = Γ 2

N WN (z), (10)

subject to the boundary conditions

WN (z) = ∂z WN (z) = 0, at z = ±
1

2
. (11)

In eqs. (10)-(11) we have used the fact that the eigenprob-
lem (10) has an infinite numerable set of solutions WN (z)
with distinct eigenvalues Γ 2

N that are real and positive
numbers. Although we have explicitly calculated the so-
lution to eqs. (10)-(11) in terms of hyperbolic functions,
including the numerical solution, for each q, of an alge-
braic equation to obtain Γ 2

N , we shall not present it here.
It is very technical and, as clarified below, we only need
the trace of the differential operator in the LHS of eq. (10)
with boundary conditions (11). As happens in many prob-
lems in physics of fluids [41,42], the trace of the hydrody-
namic operator can be computed without detailed discus-
sion of the hydrodynamic modes.

Indeed, independently of the details of WN (z), it fol-
lows that

∫ 1/2

−1/2

dz WM (z)
[
(∂2

z − q2)2WN (z)
]

=

∫ 1/2

−1/2

dz
[
(∂2

z − q2)2WM (z)
]
WN (z), (12)

obtained upon integration by parts and use of the bound-
ary conditions (11). As a consequence, the WN (z) form an
ortogonal set, namely

∫ 1/2

−1/2

dz WM (z)WN (z) = DN δNM . (13)
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Hence, from eqs. (10) and (13), the coefficients CN in the
series expansion (9) can be readily evaluated, resulting in

CN =
F1,N (ω, q)

DN (q)Γ 2
N (q)

, (14)

with

F1,N (ω, q) =

∫ 1/2

−1/2

dz WN (q, z)F1(ω, q, z). (15)

This procedure solves the first of eqs. (8) with the appro-
priate boundary conditions.

However, we are interested only in the two-point cor-
relation function 〈δvz(z) δv∗

z(z′)〉. By using eq. (9) it can
be expressed as a double series of hydrodynamic modes
WN (z). From eq. (14) it follows that the coefficients of
this double series are related to the correlation matrix
〈F1,N (ω, q)F ∗

1,M (ω′, q′)〉. This correlation matrix, in turn,

can be calculated from the definition of F1(r, t), eq. (3),
and the FDT for the random stress δΠ(r, t), eq. (4). This
last calculation has been already presented in detail pre-
viously [3, 42]. Here we simply quote the final result

〈F1,N (ω, q)F ∗

1,M (ω′, q′)〉 = FNM (q)(2π)3 δ(ω − ω′)

×δ(q − q′), (16)

with

FNM (q) = 2F̃ q2

∫∫ 1/2

−1/2

dz dz′
[
D2

z WN (q, z)
]
W ∗

M (q′, z′),

= 2F̃ q2Γ 2
N (q)DN (q)δNM . (17)

where, in the second line of eq. (17), we used eqs. (10)

and (13). In eq. (17) D2
z = (∂z − q2)2, while the symbol F̃

denotes a dimensionless prefactor

F̃ =
kBT

ρνDL
. (18)

Now combining all the information above we are able to
obtain an explicit expression for the wall-normal velocity
autocorrelation function. In view of eq. (16) one has

〈δvz(ω, q, z)δv∗

z(ω′, q′, z′)〉 = V (q, z, z′)(2π)3δ(ω − ω′)

×δ(q − q′), (19)

with

V (q, z, z′) =

∞∑

N=0

2F̃ q2

DN (q)Γ 2
N (q)

WN (q, z)WN (q, z′), (20)

where we use the fact that the eigenvalues and eigenfunc-
tions are real and positive. It is interesting to note that
the autocorrelation V (q, z, z′) in eq. (19) does not depend
explicitly on the frequency ω. This is a consequence of the
Sc ≫ 1 approximation, which neglects the inertial term
in the starting equations, that is, the LHS of eq. (2a)
is assumed to be zero [23, 24]. If the temporal deriva-
tive of the velocity fluctuations were retained in the LHS

of eq. (2a) [15], the wall-normal velocity autocorrelation
would depend explicitly on ω.

As in previous publications [41, 42], the sum of the
series (20) can be performed analytically. Indeed, applying
the operator (∂2

z −q2)2 at the two members of eq. (20) one
has

(∂2
z − q2)2 V (q, z, z′) = 2F̃ q2 δ(z − z′). (21)

Notice that, since δ(z − z′) as a function of z satisfies the
boundary conditions (11), it can be expanded in a series
of eigenfunctions WN (z), namely

δ(z − z′) =

∞∑

N=0

1

DN (q)
WN (q, z)WN (q, z′), (22)

independent of q, from which eq. (21) follows. Hence, if
one solves eq. (21) subject to the boundary conditions

V (q, z, z′) = ∂z V (q, z, z′) = 0, at z = ±
1

2
, (23)

which follows from eq. (11), we obtain an analytic expres-
sion for V (q, z, z′) presented in appendix A (see eq. (A.3)).

4 Non-equilibrium concentration fluctuations

To solve the second of eqs. (8) for the concentration fluctu-
ations with the appropriate boundary conditions, we fol-
low an equivalent approach to the one in the previous
section for the wall-normal velocity fluctuations. That is,
we expand δc in a series of eigenfunctions of the differen-
tial operator ∂2

z − q2 subject to the boundary conditions.
In this case this approach is quite simple since the eigen-
functions are trigonometric functions. Hence, one has

δc(ω, q, z) =
−A0

iω + q2
− 2

∞∑

N=1

AN cos(2Nπz)

iω + q2 + 4N2π2

−2
∞∑

N=0

BN sin[(2N + 1)πz]

iω + q2 + (2N + 1)2π2
, (24)

with

AN (ω, q) =

∫ 1/2

−1/2

dz δvz(ω, q, z) cos(2Nπz),

BN (ω, q) =

∫ 1/2

−1/2

dz δvz(ω, q, z) sin[(2N + 1)πz]. (25)

From eq. (24) we see that the autocorrelation function
〈δc(ω, q, z)δc∗(ω′, q′, z′)〉 of the NE concentration fluc-
tuations is directly related to 〈δvz(ω, q, z)δv∗

z(ω′, q′, z′)〉,
the autocorrelation function of the wall-normal velocity
fluctuations discussed in the previous section. In view of
eq. (19), the result can be cast in the form

〈δc(ω, q, z)δc∗(ω′, q′, z′)〉 = S(ω, q, z, z′)(2π)3 δ(ω − ω′)

×δ(q − q′), (26)
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where S(ω, q, z, z′) is a double series of trigonometric func-
tions. For generic z and z′, the explicit expression for
S(ω, q, z, z′) is quite lengthy, so that we present it explic-
itly in appendix B, see in particular eq. (B.2). Fortunately,
for practical applications, one does not need the general
S(ω, q, z, z′), but some particular values and/or integrals
that allow for more compact expressions.

In light-scattering [3,21,31] or shadowgraph [24,43] ex-
periments one commonly studies the NE fluctuations with
the wave vector in the horizontal direction. The struc-
ture factor S(ω, q) that is measured in such experiments
is given by a double integration over the thickness of the
layer of the S(ω, q, z, z′) of eq. (26), namely

S(ω, q) =

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

dz′ S(ω, q, z, z′). (27)

Integrating eq. (B.2) for S(ω, q, z, z′), one readily observes
that only the first term of the series (that does not depend
on z or z′) gives a non-zero contribution to S(ω, q). Hence,
one simply has

S(ω, q) =
2F̃

ω2 + q4

[
1

q2
+

4(1 − cosh q)

q3(q + sinh q)

]
. (28)

Applying double inverse Fourier transforms to eq. (26),
and taking into account eq. (27), one obtains the inten-
sity S(q) of the equal-time NE concentration fluctuations
observed in experiments

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

dz′ 〈δc(t, q, z)δc∗(t, q′, z′)〉 =

S(q)(2π)2 δ(q − q′). (29)

Integration of eq. (28) over the frequency ω yields a com-
pact exact analytic expression for S(q)

S(q) =
1

2π

∫
∞

−∞

dω S(ω, q)

= F̃

[
1

q4
+

4(1 − cosh q)

q5(q + sinh q)

]
. (30)

From eq. (30) we obtain at large q ≫ 1

S(q) ≃
F̃

q4
−

4F̃

q5
+ . . . , (31)

whose first term contains the typical S(q) ≃ q−4 behav-
ior of NE temperature and concentration fluctuations dis-
cussed in many publications [1,30,44]. For this particular
problem of NE concentration fluctuations induced by the
Soret effect, the q−4 behavior was first found by Law and
Nieuwoudt [30] without gravity and by Segré and Sen-
gers [44] with gravity. In the limit q → 0, S(q) from
eq. (30) reaches a finite limit, namely

S(q) ≃
F̃

720
−

F̃ q2

15120
+ O(q4), (32)

in agreement with ref. [23] for a solutal Rayleigh number
equal to zero (no gravity).

All results presented so far are in terms of the dimen-
sionless variables defined in eq. (1). In terms of dimen-
sional variables our primary result, the NE structure fac-
tor given by eq. (28), becomes

S(ω, q) =
kBT

ρ

(∇c)2

νDq4

2Dq2

ω2 + D2q4

[
1 +

4(1 − cosh q̃)

q̃(q̃ + sinh q̃)

]
,

(33)
where q̃ = qL. In obtaining eq. (33), eq. (1) for dimension-

less concentration and eq. (18) for F̃ , were used.
It is interesting to observe, either in eq. (28) or in

eq. (33), that in the absence of gravity the NE concen-
tration fluctuations have a single decay time, even when
boundary conditions are included in the calculation. This
is in contrast with the situation when gravity is not ne-
glected, for which a series of exponentials is obtained for
the NE time correlation function [24]. The physical rea-
son behind this difference is that gravity affects the decay
time of NE concentration fluctuations, not only the ampli-
tude, as first discussed by Segrè and Sengers [44]. That in
microgravity NE concentration fluctuations have a single
decay time, even at very small q, as predicted by eqs. (28)
or (33), has indeed been observed experimentally [9].

The exact result of eq. (30) supersedes a Galerkin ap-
proximation proposed some years ago [19] which, in the
limit of zero gravity, was used for the analysis of micro-
gravity experiments [10, 13]. Comparison of the two ex-
pressions shows that both share the same asymptotic limit
for large q, while the Galerkin approximation [19] overes-
timates the exact small q limit of eq. (32) by ≃ 30%.

5 Correlations relevant for the NE Casimir

effect

Because of their spatially long-ranged nature, it has been
recently proposed that NE fluctuations will induce forces
(Casimir forces) somewhat similar to the Casimir forces
appearing at equilibrium critical points. To evaluate these
NE Casimir forces [26–28] one expands the pressure up to
second order in the fluctuating fields, so that the result-
ing fluctuation-induced force becomes proportional to the
mean square intensity of the NE fluctuations in real space.
For the case of a binary mixture [28], the mean square in-
tensity of concentration fluctuations that is relevant to
Casimit forces, can be related to the structure factors dis-
cussed in this paper by first considering S(q, z), obtained
from the two-points S(ω, q, z, z′) of eq. (26), upon inte-
gration over the frequency ω and substitution of z = z′,
namely

S(q, z) =
1

2π

∫
∞

−∞

dω S(ω, q, z, z). (34)

This quantity is related to the equal-time mean square NE
concentration fluctuation at a single spatial point:

〈δc(r, t)2〉NE = 〈δc(z)2〉 =
1

4π2

∫
∞

0

2πq S(q, z) dq, (35)
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Fig. 1. Intensity of the NE concentration fluctuations S(q, z),
relative to the value of the structure factor S(q), as a function
of z for three wave numbers q. In the limit q → 0, S(q, z) and
S(q) become identical. The deviations increase with increasing
q, but since the contributions for large q fall off as 1/q4, S(q)
is a reasonable first approximation in practice.

obtained by applying inverse Fourier transforms in the two
frequencies and in the two (2D) wave vectors to eq. (26).
Notice that 〈δc(r, t)2〉NE is both stationary (it does not de-
pend on t) and translationally invariant in the XY -plane,
i.e., in a direction parallel to the bounding walls (it does
not depend on the coordinates x, y of the point r). It only
explicitly depends on the coordinate z of the point r.

From eq. (B.2) for S(ω, q, z, z′), an explicit expression
for S(q, z) can be readily obtained, namely

S(q, z) = S(q) + 2

∞∑

N=0

∞∑

M=1

ANM cos(2Nπz) cos(2Mπz)

q2 + 2N2π2 + 2M2π2

+2

∞∑

N,M

=0

BNM sin[(2N + 1)πz] sin[(2M + 1)πz]

q2 +
π2

2
[(2N + 1)2 + (2M + 1)2]

,

(36)

with matrices ANM (q) and BNM (q) defined by eqs. (B.3)
and (B.4), respectively, and S(q) being the “experimental”
static structure factor given by eq. (30). Equation (36) for
S(q, z) is a long expression that can only be simplified
marginally. Hence, we continue our discussion of S(q, z)
graphically.

Figure 1 shows the intensity of the NE concentration
fluctuations S(q, z) of eq. (36), relative to the value of the
structure factor S(q) of eq. (30), as a function of z for three

Fig. 2. NE 〈δc(z)2〉 as a function of z evaluated from eqs. (35)-
(36) (red line) together with NE 〈δT (z)2〉 for rigid boundaries
(blue line) as evaluated in previous work [27] for Pr = 6. For
an easy comparison both curves are normalized independently,
so that the average value in the layer is, for each case, equal to
unity. Note that 〈δT (z)2〉 vanishes at the walls, while 〈δc(z)2〉
does not. The arrows represent the approximation (37) for
〈δc2〉wall.

wave numbers q, as indicated. One first observes that,
just as for temperature fluctuations in a one-component
fluid [27], S(q, z) has an inhomogeneous spatial distribu-
tion that reaches a maximum at mid-layer. However, we
stress that, in contrast to the case of NE temperature
fluctuations, S(q, z) for the NE concentration fluctuations
does not vanish at the walls, z = ± 1

2
. The reason is that to

establish a uniform temperature gradient, in experiments
the fluid layer is confined between thermally conducting
plates [21,31,44], so that the temperature fluctuations, in
contrast to the concentration fluctuations, must vanish at
the walls of the plates [4, 45].

Upon substitution of eq. (36) into eq. (35), one can
obtain an explicit expression for the intensity of NE con-
centration fluctuations 〈δc(z)2〉. The resulting integrals in
q do not admit a compact analytical expression, so that
we also discuss this quantity graphically. In fig. 2 the red
curve represents the quantity 〈δc(z)2〉 computed by eval-
uating numerically the q-integral in eq. (35). It is interest-
ing to compare it with the intensity 〈δT (z)2〉 of the NE
temperature fluctuations in a one-component fluid that
was investigated in an earlier publication [27] for realistic
rigid boundary conditions. Actually, 〈δT (z)2〉 depends on
the Prandl number Pr [45]; the blue curve in fig. 2 shows
〈δT (z)2〉 for Pr = 6 [27]. For easier comparison we normal-
ized the two quantities independently, so that the average
value through the layer (area below the curve) is, in each
case, equal to unity. Figure 2 shows the main conclusion of
this section: The different boundary condition (vanishing
gradient vs. vanishing function) causes different behaviors
at the walls, NE temperature fluctuations vanish while
NE concentration fluctuations do not. We also emphasize
that 〈δc(z)2〉 reaches a non-zero value at the walls with a
non-zero slope, although maybe not completely evident in
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fig. 2 because, due to numerical limitations, only a finite
number of modes was added.

To finalize, it is interesting to evaluate the layer-
average square of concentration fluctuations, that is the
quantity actually relevant for Casimir forces [28]. Upon
substitution of eq. (30) into eq. (35) one obtains:

〈δc2〉 =
F̃

2π

∫
∞

0

q

[
1

q4
+

4(1 − cosh q)

q5(q + sinh q)

]
dq,

= 3.11 × 10−3 F̃ , (37)

in terms of dimensionless variables. To revert the result to
physical dimensions one has to use eq. (1) for dimension-

less concentration and eq. (18) for F̃ , so that

〈δc2〉 = 3.11 × 10−3 kBT

ρνD
L(∇c)2. (38)

We have indicated with arrows the result (38) in fig. 2,
with the same normalization as 〈δc(z)2〉. One observes a
small difference between the actual value of 〈δc2〉wall and
the value given by eqs. (37)-(38).

6 Summary and conclusions

In this paper we have investigated NE concentration fluc-
tuations in a binary fluid mixture in the absence of gravity.
We adopted a realistic setting where a stationary concen-
tration gradient is induced, through the Soret effect, by
maintaining the two bounding plates of a fluid layer at
different temperatures. No-slip boundary conditions were
used for the velocity fluctuations and no-flow for the con-
centration fluctuations. An approximation of large Lewis
and Schmidt numbers was adopted, which means that
both temperature and velocity fluctuations decay much
more rapidly than the concentration fluctuations, so that
the slow dominant mode is a pure concentration mode.
This is a good approximation for dense liquid mixtures,
while more questionable for rarefied gases.

With all the features described in the previous para-
graph, we have been able to obtain exact relatively com-
pact analytical expressions for both the dynamic structure
factor, eq. (28), and the static structure factor, eq. (30),
that would be observed in heterodyne low-angle light scat-
tering or shadowgraph experiments. These expressions will
be useful for the interpretation of experimental results, in
particular in microgravity conditions as well as for com-
puter simulations of NE concentration fluctuations [12].

We completed the paper studying the total intensity of
the NE concentration fluctuations as a function of the dis-
tance to the walls. We demonstrated the important result
that, due to the different boundary condition, the inten-
sity of concentration fluctuations does not vanish at the
walls, in contrast to the case of temperature fluctuations.
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Appendix A. Explicit expression for the

wall-normal velocity autocorrelation function

A particular solution of eq. (21) is

Vp(q, z, z′) =

F̃

2

[
|z − z′| cosh(q|z − z′|) −

1

q
sinh(q|z − z′|)

]
. (A.1)

The general solution of the homogeneous problem corre-
sponding to eq. (21) (i.e., by taking the RHS equal to
zero) is

Vh(q, z, z′) = A0 cosh qz + A1 sinh qz + A2z cosh qz

+A3z sinh qz, (A.2)

where the coefficients Ai will be, in general, arbitrary func-
tions of z′ and q. Adding eqs. (A.1) and (A.2), and im-
posing the four boundary conditions (23), the coefficients
Ai(q, z

′) are uniquely determined. We thus obtain an ex-
plicit expression for V (q, z, z′), namely

V (q, z, z′) =
F̃

q2−sinh2 q

{
q2

[
zz′−

1

4
−

A2

q3

]
cosh[q(z−z′)]

+A2(z − z′) sinh[q(z − z′)]

+q sinh q

[
zz′ +

1

4
+

A1

q2 sinh q

]
cosh[q(z+z′)]

−A1(z − z′) sinh[q(z − z′)]

}
+ Vp(q, z, z′),

(A.3)

where

A1(q) =
sinh q + q cosh q

2
, A2(q) =

q + sinh q cosh q

2
.

(A.4)
We have checked, by numerically evaluating the decay
rates ΓN and the modes WN (z) solving eq. (10), for two
different values of q, that indeed eq. (A.3) is equal to the
sum of the series (20).

Appendix B. Explicit expression for the

concentration autocorrelation function

Here, we explicitly present the double trigonometric series
for the two-point autocorrelation function S(ω, q, z, z′) of
the NE concentration fluctuations, introduced in eq. (26).
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We first note that there is a slight simplification, since for
the function V (q, z, z′) of eq. (A.3):

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

dz′ V (q, z, z′) cos(2Nπz)

× sin[(2M + 1)πz] = 0 (B.1)

for any pair of integers N , M . Thus, S(ω, q, z, z′) reads
explicitly

S(ω, q, z, z′) =

2F̃

ω2 + q4

[
1

q2
+

4(1 − cosh q)

q3(q + sinh q)

]

+
∞∑

N=1

2AN0(q) cos(2Nπz)

(−iω + q2)(iω + q2 + 4N2π2)

+
∞∑

N=1

2AN0(q) cos(2Nπz′)

(iω + q2)(−iω + q2 + 4N2π2)

+
∞∑

N=1

∞∑

M=1

4ANM (q) cos(2Nπz) cos(2Mπz′)

(iω + q2 + 4N2π2)(−iω + q2 + 4M2π2)

+

∞∑

N=0

∞∑

M=0

4BNM (q) sin[(2N+1)πz] sin[(2M+1)πz′]

[iω+q2+(2N+1)2π2][−iω+q2+(2M+1)2π2]
.

(B.2)

The non-zero coefficients of the double trigonometric se-
ries (B.2) are

ANM (q) =

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

dz′ V (q, z, z′) cos(2Nπz)

× cos(2Mπz),

=
q2F̃ δNM

(q2 + 4N2π2)2

+
8q5F̃ (1 − cosh q) cos(Nπ) cos(Mπ)

(q + sinh q)(q2 + 4N2π2)2(q2 + 4M2π2)2
,

(B.3)

and

BNM (q) =

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

dz′ V (q, z, z′) sin[(2N + 1)πz]

× sin[(2M + 1)πz],

=
q2F̃ δNM

(q2 + (2N + 1)2π2)2

+
8q5F̃ (1 + cosh q) cos(Nπ) cos(Mπ)

(q − sinh q)[q2 + (2N + 1)2π2]2[q2 + (2M + 1)2π2]2
.

(B.4)
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Phys. Rev. E 89, 022145 (2014).

28. T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers,
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(Springer, Berlin, 2002) pp. 121–145.

34. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon,
London, 1959) 2nd revised English version, 1987.

35. R.F. Fox, G.E. Uhlenbeck, Phys. Fluids 13, 1893 (1970).
36. J. Foch, Phys. Fluids 14, 893 (1971).
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