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We consider a horizontal binary-liquid layer that is subjected to a stationary temperature gradient while still being maintained in a stable
quiescent state without any convection. In such a thermal nonequilibrium state the Soret effect induces concentration fluctuations. In the
present paper we show how the finite height of the liquid layer will affect the long-range nature of these nonequilibrium concentration
fluctuations at very small wave numbers. Estimates of the wave numbers where light-scattering or shadowgraph experiments will be affected
by finite-size effects are presented.
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Estudiaremos una capa horizontal de un liquido binario sometido a un gradiente estacionario de temperatura mientras el estado de reposo del
liquido es estable, lejos de cualquier inestabilidad convectiva. En dicho sistema, el efecto Soret inducird fluctuaciones de la concentracién.
En el presente trabajo mostraremos como la altura finita de la capa liquida afectard ala naturaleza de largo alcance de Ias fluctuaciones de no
equilibrio de la concentracién, cuando el nimero de onda de dichas fluctuaciones es muy pequefio. Ademds presentaremos valores estimados

del nimero de onda para el que los efectos de tamafio finito afectaran a los experimentos de dispersion de la luz o shadowgraph.
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This paper is dedicated to Professor Leopoldo Garcia-Colin Scherer on the occasion of his 70th birthday.

1. Introduction

In this paper we consider a binary liquid system located be-
tween two horizontal plates with different but constant tem-
peratures. A temperature gradient in a liquid mixture induces
a concentration gradient through the Soret effect [1-5]. Many
studies reported in the literature have been concerned with
the effect of Soret-induced concentration gradients on the
convective Rayleigh-Bénard instability [6-11]. However, it
turns out that there are also interesting fluctuation phenomena
present when the liquid mixture is in a hydrodynamically
quiescent stable state, far away from any convective instabi-
lity.

A central feature in the development of nonequilibrium
statistical mechanics during the past decades has been the
discovery that long-range dynamic correlations are present
in fluids that consist of molecules with short-range inter-
actions [12,13]. Originally it was thought that a fluid in a
nonequilibrium state would proceed to thermodynamic equi-
librium in two distinct stages: first a microscopic Kinetic
stage with time scale of the order of the interval between
successive molecular collisions, which for liquids is of the
same order as the duration of the molecular collisions, af-
ter which local equilibrium is established; second a macros-
copic stage during which the fluid evolves in accordance with
the hydrodynamic equations [14]. In this picture no mecha-

nism exists for the appearance of long-range dynamic corre-
lations away from a macroscopic convective instability. The
first indication that long-range dynamic correlations can ap-
pear was provided when experiments showed that the ther-
mal conductivity of fluids diverges at the vapor-liquid crit-
ical point [15, 16]. This observation contradicted the classi-
cal theory of Van Hove who had assumed that the slowing
down of the fluctuations near the critical point had only a
thermodynamic origin [17,18]. In evaluating the randomiz-
ing nature of molecular collisions one must make a distinc-
tion between quantities like mass, momentum and energy that
are conserved in a binary collision on the one hand and non-
conserved quantities on the other hand. The fast modes asso-
ciated with nonconserved quantities do indeed decay during
a short kinetic stage, but the slow modes associated with con-
served quantities persist well beyond the times between suc-
cessive collisions; a coupling between these modes can re-
sult in long-range (mesoscopic) dynamic correlations [19].
The same mode-coupling effects, responsible for the dy-
namics of the long-range critical fluctuations [20—22] turned
out to account also for the presence of long-time tails in
the Green-Kubo correlation functions for the transport coef-
ficients [23-25] earlier noticed in computer simulations of
molecular dynamics [26, 27].

In the earlier 80's it became apparent that fluids in non-
equilibrium states would exhibit dramatic long-range fluctua-

¢ e

C v

S et e et



FINITE-SIZE EFFECTS ON SORET-INDUCED NONEQUILIBRIUM CONCENTRATION FLUCTUATIONS IN BINARY LIQUIDS 15

tions due to mode-coupling effects. Specifically, Kirkpatrick,
Cohen and Dorfman derived the appropriate expressions for
the temperature and the viscous fluctuations in a one-
component fluid subjected to a stationary temperature gra-
dient using mode-coupling theory [28], indicating that
nonequilibrium fluctuations would enhance and modify the
Rayleigh spectrum of scattered light [29]. Subsequently, it
became apparent that the same expressions could be obtained
on the basis of Landau’s fluctuating hydrodynamics, which
is also based on the assumption that only the nonconserved
quantities decay rapidly over a molecular time scale [30-35].
Physically, the presence of a temperature gradient V7T leads
to nonequilibrium fluctuations because the stationary tem-
perature gradient causes a coupling between the component
of the velocity fluctuations parallel to the gradient and the
temperature fluctuations with a wave vector perpendicular
to the gradient. Velocity fluctuations parallel to the gradient
are probing regions with different local equilibrium tempera-
tures, thus causing a nonequilibrium contribution to the tem-
perature fluctuations. Since both the temperature and the vis-
cous (transverse velocity) fluctuations do not propagate, but
decay diffusively, the nonequilibrium contributions cannot
depend on whether the temperature gradient is in the positive
or negative direction and, hence, they depend on the square of
the temperature gradient. Moreover, each mode contributes a
factor g2, so that the intensity of the nonequilibrium fluc-
tuations becomes inversely proportional to the fourth power
of the wave number ¢ of the fluctuations. The dependence
of the intensity of the nonequilibrium fluctuations on (VT')2
and on ¢* has been confirmed by light-scattering experi-
ments [36-39]. The presence of such long-range fluctuations
in fluids in nonequilibrium states causes a serious difficulty in
the further development of irreversible thermodynamics as,
e.g., studied by Garcia-Colin and coworkers [40-43].

In the case of a liquid mixture, a temperature gradient VT
is accompanied by a concentration gradient Ve through the
Sorct effect. Just as a temperature gradient causes a coupling
between the temperature fluctuations with wave vector q per-
pendicular to the temperature gradient and the transverse-
velocity fluctuations in the direction of the temperature gra-
dient, so will a concentration gradient cause a coupling be-
tween the concentration fluctuations with wave vector g per-
pendicular to the concentration gradient and the transverse-
velocity fluctuations in the direction of the concentration gra-
dient. Hence, in a liquid mixture subjected to a temperature
gradient not only nonequilibrium temperature and viscous
fluctuations will be present, but also nonequilibrium concen-
tration fluctuations as first pointed out by Law and Nieu-
woudt [44, 45], and as also analyzed by Velasco and Garcia-
Colin [46] and by Segre and Sengers [47]. The intensity of
the nonequilibrium concentration fluctuations should be pro-
portional to the square of the concentration gradient Ve and
again inversely proportional to the fourth power of the wave
number q. The case of nonequilibrium concentration fluctua-
tions in a colloidal suspension in the presence of a concen-
tration gradient has been considered by Schmitz [48]. Vailati

and Giglio [49] have extended the theory to treating the ef-
fect of time-dependent concentration profiles on the structure
factor of a binary liquid.

The divergence of the intensity of nonequilibrium fluc-
tuations for small wave numbers, i.e., for large wavelengths
cannot go on indefinitely. For very small wave numbers the
dependence of the nonequilibrium fluctuations on ¢ will be
affected by the presence of gravity even when the liquid is
in a stable nonconvective state. The effects of gravity on
the nonequilibrium fluctuations, both in one-component li-
quids and in liquid mixtures have been analyzed by Segré
et al. [47,50] for the case of negative Rayleigh numbers.
For nonequilibrium concentration fluctuations in a binary li-
quid mixture, the effects of gravity have been further evaluat-
ed by Sengers and Ortiz de Zdrate [51]. It turns out that
for negative Rayleigh numbers gravity has a damping effect
on the nonequilibrium fluctuations, causing the ¢~* diver-
gence in the intensity of these fluctuations to become satu-
rated at small ¢ and to approach a finite plateau in the li-
mit ¢ — 0. This gravitationally induced crossover behavior
for very small q has been observed experimentally by Vailati
and Giglio [52, 53].

In addition, when the product gL becomes of orderunity,
one must expect that the nonequilibrium fluctuations will
be affected by the finite height L of the liquid layer sub-
Jected to the temperature gradient. Finite-size effects on the
nonequilibrium temperature and viscous fluctuations in a
one-component liquid have recently been studied by Ortiz de
Zirate et al. [54, 55]. It is the purpose of the present paper to
analyze finite-size effects on the nonequilibrium concentra-
tion fluctuations in a liquid mixture, a problem which so far
has not been treated in the literature. .

A complete derivation of the contributions from nonequi-
librium fluctuations should be based on the linearized hydro-
dynamic equations supplemented with random-noise terms
as was done by Law and Nieuwoudt [44] and by Segré and
Sengers [47]. However, since in liquid mixtures temperature
fluctuations decay much faster than concentration fluctua-
tions, one can obtain a very good approximation for the con-
tribution of the nonequilibrium fluctuations to the structure
factor by starting from a simplified set of linearized Boussi-
nesq equations as we have demonstrated in a recent review
on the subject [51]. Physically it means that we can neglect
any coupling of the concentration fluctuations with the tem-
perature fluctuations through the imposed temperature gradi-
ent and only consider the coupling between the concentration
fluctuations and the transverse-velocity (viscous) fluctuations
through the concentration gradient induced by the Soret ef-
fect.

We shall proceed as follows. In Sec. 2 we formulate the
linearized Boussinesq equations for a binary liquid and esta-
blish our notation for the fluctuating quantities. In Sec. 3 we
introduce some approximations into the linearized Boussi-
nesq equations as earlier proposed by Schechter and Ve-
larde [7,56] for simplifying the analysis of the convective
instability in a two-component liquid. In Sec. 4 we show
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how the well known expression for the contribution of the
nonequilibrium concentration fluctuations in a binary liquid
subjected to a stationary temperature gradient can be reco-
vered from the simplified set of linearized Boussinesq equa-
tions when supplemented with random-noise terms. In Sec. 5
we then evaluate the modifications needed to account for the
boundary conditions due to the presence of two horizontal
planes confining the liquid layer to a finite height L. In Sec. 6
we consider the consequences of any finite-size effects on the
nonequilibrium concentration fluctuations for the interpreta-
tion of light-scattering or shadowgraph experiments. Some
concluding remarks are presented in Sec. 7.

2. The linearized Boussinesq equations for a
binary liquid

The system we are considering in this paper is a binary liquid
bounded by two horizontal planes separated by a distance L.
Across this liquid layer a stationary temperature gradient is
established by maintaining the two horizontal planes at diffe-
rent temperatures; VT, represents the magnitude of the tem-
perature gradient which is assumed to act in the Z-direction
perpendicular to the bounding planes. As a consequence of
the Soret effect, a stationary concentration gradient also de-
velops in the system with magnitude Vc¢,. The relationship
between the concentration gradient V¢, and the temperature
gradient VT, is given by:

Ve, = —c(1 = ¢)SpVTy, ()]

where S is the Soret coefficient and c is the (average) con-
centration expressed as weight fraction (w/w) of component 1
of the mixture. Equation (1) defines the Soret coefficient S
of component | in component 2. For isotropic mixtures S,
is a scalar quantity and the induced concentration gradient
is parallel to the imposed temperature gradient but, depend-
ing on the sign of Sz, can have the same or the opposite di-
rection. When S is positive, concentration and temperature
gradients have opposite directions, with component [ migrat-
ing to the colder region. When S is negative, concentration
and temperature gradients have the same direction, with com-
ponent | migrating to the warmer region. Note that, because
of conservation of mass, when S of component 1 in compo-
nent 2 is positive, then S of component 2 in component 1
is negative and viceversa. In this paper, c designates the con-
centration of component 1.

We want to study small fluctuations around the conduct-
ing state, i.e., fluctuations around the quiescent and stable
state of the fluid. We do not consider any fluctuations in the
pressure p related to propagating modes that leads to Bril-
louin scattering. The appropriate set of equations for our
problem are the linearized Boussinesq equations for a binary
system [7, 8,10, 57], which read

a VZ _ 2 2 62 ?
E( w) =vV(V'w)+g &5_’_6_1;2 [af — BT, (@)
%f— = D, V%6 — wVT,, 3)

and

r . a

%? =D [VZP + vazo} —wVe,, )
where 0(r,t) represents the local fluctuation of the tempe-
rature (6T), w(r,t) denotes the local fluctuations of the
z-component of the velocity (du,), and I'(r,t) denotes the
local fluctuation of the concentration of component 1 of the
mixture (dc). The fluctuations 6(r,t), w(r,t) and T'(r,t)
depend on the position r(z,y,z) and on the time ¢. The
coefficient v i§ the kinematic viscosity, D,, the thermal dif-
fusivity, p the density, and A the thermal conductivity of the
mixture, while D represents the binary diffusion coefficient
and g the gravitational acceleration constant. The symbol
a = —p~1(8p/dT), . represents the thermal expansion co-
efficient and, similarly, § = p_l(ap/ac)pyT represents the
concentration expansion coefficient. Note that 3 is positive
when component 1 is the heavier component and J is nega-
tive when component | is the lighter component. Finally, 9
is the dimensionless separation ratio, which is defined by

W =c(l— c)STg. )

The parameter 1 is the ratio of the density gradient fV¢,
produced by the concentration gradient to the density
gradient —aVT, produced by the temperature gradient;
¥ = —(BVc,)/(@VTy).

By adopting Egs. (2)-(4) we assume that all thermophy-
sical properties of the binary liquid depend only weakly on
temperature or concentration so that the variation of these
properties as a function of z is negligibly small; in practice
this is a very good approximation [37]. For the same reason,
in Eq. (5) the concentration ¢ of component 1 represents an
average value in the liquid layer; replacing the local concen-
tration by an average concentration is only questionable for
extremely dilute solutions [7].

The Boussinesq approximation assumes the liquid to be
incompressible [58], so that the coefficient D,, in Eq. (3)
can indeed be identified with the thermal diffusivity At /pc,,
where ¢, is the specific isobaric heat capacity. As usual, the
Dufour effect has been neglected in Egs. (2)-(4), since it is
relevant only in binary gas mixtures and in liquids near the
vapor-liquid critical point [57]. In addition, and following
the usual literature [58], to eliminate the hydrostatic-pressure
gradient from the equations we find it convenient to consider
Eq. (2) for V2w by taking a double curl in the equation for
the fluctuating fluid velocity du.

In Egs. (2)-(4) we presented the linearized version of the
Boussinesq equations for a binary liquid. Neglecting the non-
linear terms is only justified when the liquid layer is in a
quiescent conductive stable state. The linear stability of the
binary Boussinesq equations has been studied by many in-
vestigators [7,9, 59]. As is well known, the stability of the
quiescent state depends on the values of the dimensionless
Rayleigh number Ra, and of the dimensionless separation ra-
tio, 1 [7]. In this paper, we shall focus our attention on the
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finite-size effects on the structure factor of the liquid mixture
and not consider gravity effects, which have been evaluated in
other publications [47, 50]. The approximation g = 0 implies
neglecting the bouyancy term in Eq. (2), making the Rayleigh
number of our problem to be zero. As is discussed in the rele-
vant literature [7], for Ra = 0, the quiescent state is stable in-
dependent of the value of the separation ratio. Consequently,
by adopting the g — 0 limit of the Boussinesq equations, the
conducting state will always be stable. In this situation the
set of differential equations [Eqs. (2)—(4)] describes correctly
the spatial and temporal evolution of the fluctuations around
the quiescent state of the liquid.

3. Linearized Boussinesq equations for small
Lewis number ‘

In order to determine the contribution from concentration
fluctuations to the structure factor of a binary liquid mixture,
it is convenient to make a nurnber of additional approxima-
tions to the standard Boussinesq equations [51]. First of all, to
a good approximation the decay rates of the viscous fluctua-
tions, the temperature fluctuations and the concentration fluc-
tuations can be directly identified with vq?, D,; ¢> and Dg?,
respectively [38]. Furthermore, the diffusion coefficient D is
in practice much smaller than the kinematic viscosity v and
the thermal diffusivity D,,. Thus, the viscous and thermal
fluctuations decay much faster than the concentration fluctua-
tions. Moreover, because of the dependence of the refractive
index on the concentration, the intensity of light scattered by
the concentration fluctuations is usually appreciably larger
than that from the viscous or the temperature fluctuations.
Hence, in many cases one can readily determine the concen-
tration fluctuations with Rayleigh scattering independently
from the much faster decaying viscous and temperature fluc-
tuations {38, 39, 60,61]. As elucidated in a recent review of
the subject [51], to deal with the concentration fluctuations
we shall retain only the more relevant physical terms in the
Boussinesq equations [Egs. (2)—(4)] by adopting an approxi-
mate set of linearized equations earlier considered by Velarde
and Schechter [56] for a convective-instability analysis.

The Velarde-Schechter approximation consists of scaling
the distances by the finite height of the layer, L, and the time
by the diffusional time 7, = L2?/D, and then perform a se-
ries expansion of the full Boussinesq equations in terms of
the Lewis number Le = D/D,, . It is worth noting that for
regular liquid mixtures Le is a small quantity (~ 1073). In
this series expansion only terms of order zero in Le are re-
tained. To clarify this approximation scheme, we first switch
to dimensionless variables, using L as the length scale and 7,
as the time scale [56]

. wL t~~£
w—Dv "’L27
. T ~ 6
A G_LVTO’ ©

Multiplying Eq. (2) by L3/(DD,, ), Eq. 3) by L/(VT,D,;),
and Eq. (4) by L?/D, we obtain in terms of dimensionless
variables

ot
o? o2 =
—RaSc(a~2 4 agz) (0+ ACOF), ™
Le% = V26 — Lew, €]
or = . Saa
o= (VT — A¢,V20) — wAc,, 9
where Pr = VV/Dth is the Prandtl number and where

Ac, = LV¢, is a dimensionless concentration difference. If
we now take the limit Le — 0 of the equations, we ob-
tain (r,t) = 0; thus to zeroth order in Le, the tempera-
ture fluctuations can be neglected. Reverting the equations for
w(r,t) and I'(r, t) to dimensional form, taking at this point
the g — 0 limit (neglecting the buoyancy term), and supple-
menting the equations with the corresponding random-noise
terms, we finally obtain [51]:

0=vV*(Vw) + %{V x [Vx(V-6T)]},, 10

‘2—1; = DV’T — wVc¢, + V4J. (11
The primary physical meaning of Eqs. (10) and (11) is that
for small values of the Lewis number we can neglect any
coupling between the concentration fluctuations and the tem-
perature fluctuations and retain only the coupling between
concentration fluctuations and viscous (transverse-velocity)
fluctuations through the Soret-induced stationary concentra-
tion gradient V¢, in Eq. (11). As a consequence, the imposed
temperature gradient VT, will appear in the final expression
for the nonequilibrium structure factor, in this small-Lewis-
number approximation, only through the induced concenta-
tion gradient, Eq. (1). Hence, our derivation will be equally
valid when the concentration gradient V¢, does not result
from an imposed temperature gradient, but arises from any
other cause, as in the case of an isothermal free-diffusion pro-
cess [49].

Equations (10) and (11) are the starting point for the ana-
lysis of the concentration fluctuations to be performed in this
paper. For this purpose, the Velarde-Schechter approxima-
tion to the full linearized Boussinesq equations have been
supplemented with random-noise terms representing the con-
tributions from rapidly varying short-range fluctuations, in
accordance with the standard fluctuating-hydrodynamics ap-
proach [44,62-64]. As discussed in the Introduction, these
random-noise terms represent the rapidly decaying noncon-
served degrees of freedom, to be distinguished from the
conserved degrees of freedom described by the hydrody-
namic evolution equations. Thus in Eq. (10) we have intro-
duced 6T (r,t) as a random stress tensor following [62, 63]
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and in Eq. (11) we have introduced 6J(r, t) as a random so-
lute flux following [44, 64]. Since in the approximation we
are using for the hydrodynamics of the system, the tempe-
rature fluctuations do not couple to concentration or viscous
fluctuations, we do not need to consider a random heat flux.
The subscrint z in Eq. (10) indicates that this random-noise
term is to be identified with the Z-component of the vec-
tor between curly brackets. This procedure of supplementing
the random Boussinesq equations for a binary system with
random-noise terms has previously been used by Schopf and
Zimmermann to study the influence of noise close to the con-
vective instability [65].

Finally, we mention that the small-Lewis-number appro-
ximation adopted by us, has also been widely employed in
the literature to simplify the stability analysis of a binary
mixture [7, 56,66, 67]. As discussed in the relevant publica-
tions {7,56], the Le — 0 approximation has several short-
comings; in particular, it does not describe correctly the situ-
ation with Ra > 0 and ¢ < 0, missing the interesting Hopf
bifurcation and codimension-two instability point. But as

|

as commented earlier, we restrict ourselves here to the limit
g — 0, in which case the Le — 0 approximation is adequate
to describe the concentration fluctuations, as will be shown
below.

4. Calculation of the “Bulk’ Structure Factor

Before evaluating any finite-size effects on the nonequili-
brium concentration fluctuations, we first review the deriva-
tion of their contribution to the “bulk” structure factor, i.e.,
the structure factor in the absence of any boundary condi-
tions [51]. For this purpose we apply a temporal and spatial
Fourier transform to Eqgs. (10) and (11), so as to obtain

(_Vutf iw +0Dq2) [11:}((:} 3))] = [gggg] - (1)

In Egs. (12), F; and F, represent Langevin random-noise
terms, which are related to the Fourier transforms of the ran-
dom stress tensor dT(w,q) and of the random solute flux
8J(w, q) by

[Fl(w,q)] B [ip‘l{tf [a-6T(w,q)], —g.a-[a-6T(w,q)] }} a3

FZ(w7 q)

In this paper we identify the structure factor S(w,q) as
the function that determines the intensity of the scattered
Rayleigh light as a function of the frequency w and the scat-
tering vector ¢ arising from concentration fluctuations only.
Consequently, this structure factor S(w, g) is related to the
autocorrelation function (I'*(w, q) - I'(w’, q@')) of the concen-
tration fluctuations by

2
(I (@, @) - T, q)) = (6—) S(w,q)

on T
x(2m)*6(w — w')é(q — q'), (14)

where (On/dc),, 1 represents the effect of the concentration
dependence of the refractive index n on the light-scattering
intensity.

The correlation functions between the Langevin noise
terms F and F),, needed to calculate S(w, g) from Eq. (14),
can be obtained from the known correlation functions be-
tween the different components of the random stress tensor
and the random solute flux. In nonequilibrium fluctuating hy-
drodynamics it is assumed that the correlation functions of
these random-noise terms retain their local equilibrium va-
lues, which are short-ranged in space and in time [44, 68, 69].
As mentioned earlier, the conserved degrees of freedom ac-
tually develop long-ranged correlations in nonequilibrium
states, but the random stress tensor and the random solute flux
represent the nonconserved degrees of freedom, thus they are
expected to remain short-ranged, even out of equilibrium.
Upon substituting into Eq. (13) the expressions for the cor-

iq-dJ(w,q)

—
relation functions of 6T as, for instance, given by Egs. (3.12)
in Ref. 62, and from the correlation functions of 4J, as given
by [44, 64], we obtain [51, 54]

(F (0,0) - (') = 2k TS
x(2m)*8(w — ")5(q — 4,

D [ dc
Fi(w,q) - F(w',q)) =2k T—(—) 2
(F5(w,q) - Fy( ) B o \9n p,Tq

x (2m)*8(w — w')é(a - d'),
(F;(wv q) ) F2(wli q’» = (Fz*("-’, q) ) Fl((‘)lv ql)) :0: (15)

where ¢ = p, — p, is the difference between the chemical
potentials per unit mass of the two components of the mix-
ture, kg is Boltzmann’s constant, and g, represents the mag-
nitude of the wave vector q in the zy-plane, i.e., g7 = ¢2+¢2.
Note that the correlation functions between the random-noise
terms F); and F), are short ranged both in space and in
time, as they are represented by delta functions. Now, invert-
ing Eqs. (12) and using Egs. (14) and (15), we obtain for
the nonequilibrium structure factor of the binary liquid, in
the Le — 0 approximation

_ (Veo)® (O 4i] 2 Dg?
Sw,9) = Sp [1 2D \%c o7 3® | w? + D2g?’ (16)
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where S is the equilibrium static structure factor, given

by [70]
kT (0n\? (8
w23, o
14 €/ pT B/ o

Integration of Eq. (16) for Syg(w, q) over all frequencies w,
yields the static structure factor S(q) = 1/(27) [ S(w, q) dw

~2
S(@) = SE{l + SI%EZ—‘;} (18)
with § = ¢L and
. du (Ve,)2LA
0 __ g 0
Sne = <Bc)p,T vD (19)

In Egs. (18) and (19) we have introduced the finite height
of the liquid layer L to write the result as a function of di-
mensionless wave numbers so as to facilitate the comparison
with the finite-size calculation to be performed in next sec-
tion. We note that both the dynamic structure factor, given
by Eq. (16), and the static structure factor, given by Eq. (18),
have an equilibrium and a nonequilibrium contribution. For
the equilibrium contribution, as expected, we recover the well
known expression for the concentration fluctuations of a bi-
nary liquid in thermal equilibrium [70]. The dimensionless
product SI?,E(ﬁ /@® inside the brackets in Eqs. (16) and (18)
represents the modification (enhancement) to the Rayleigh
scattering due to the nonequilibrium concentration fluctua-
tions resulting from the presence of a concentration gradient.
The intensity of the nonequilibrium fluctuations is propor-
tional to the square of the concentration gradient (Vc,)? and
inversely proportional to the fourth power of the wave num-
ber ¢~ 4. This algebraic type of dependence on the wave num-
ber ¢ is now considered to be a general feature of fluctuations
in system in stationary nonequilibrium states [13, 71, 72].
For a further discussion of the theory of the “bulk”
nonequilibrium concentration fluctuations presented here, we
refer to a recent review [51]. The important point to be noted
for the purpose of the present paper is that the validity of
Eqgs. (16) and (18) has been verified by light-scattering expe-
|

2
o E-a) .
dz2 i
T 2
Ve, iw—D 72

) [r(w,q.,,a

riments in a polymer solution in the dilute and semi-dilute so-
lution regime where the theory should be applicable [60, 61].
In addition, the theory has also further been confirmed by
shadowgraph experiments performed in free-diffusion pro-
cesses {73,74]. As mentioned in Sec. 3, because of the
Le — 0 approximation, Egs. (16) and (18) are also applicable
to isothermal diffuston.

5. Modifications of the structure factor due to
finite-size effects

Equations (16) and (18) imply that the intensity of the non-
equilibrium fluctuations would diverge as ¢ — 0. However,
there are two other effects that have to be considered for very
small q. First, for fluctuations with very long wavelengths one
can no longer neglect the bouyancy term in Eq. (2). As com-
mented earlier, for negative Rayleigh numbers gravity causes
a long-wavelength damping of the non-equilibrium fluctua-
tions, causing the non-equilibrium enhancement to saturate
and reach a finite limit at ¢ — 0 [47,50-53]. Second, when
the wavelength of the fluctuations is no longer small com-
pared to the height L of the liquid layer, limitations due to the
boundary conditions imposed by the horizontal plates confin-
ing the liquid layer need to be taken into account. In a previ-
ous publication we have demonstrated how the effect of grav-
ity can readily be incorporated in the derivation of the con-
tribution of non-equilibrium concentration fluctuations to the
“bulk” structure factor described in Sec. 4 [51]. In the present
paper we focus our attention on the modification of Eq. (18)
for the intensity of the non-equilibrium concentration fluctua-
tions due to the presence of boundaries at z = Oandat z = L.
In doing so, we follow a procedure previously used for eval-
uating finite-size effects on the non-equilibrium temperature
and viscous fluctuations in a one-component liquid [54, 55].

As in Sec. 4, we again Fourier transform in time and space
but, to accomodate the effect of boundary conditions in the
z-direction we restrict the spatial Fourier transformation to
the z and y directions, parallel to the plates. We then deduce
from Eqgs. (10) and (1 1) the following set of linear differential
equations

w(w,q“,z) _

(20

Fl (wa q" ’ Z)
F.Z(w, q" 3 Z) ’

where F(w,q,,z) and Fy(w,q,,z) represent now partial transforms of the random-noise terms F; and F, in Eqs. (10)
and (11). They have complicated expressions as a function of the partial Fourier transform 6T (w, q,, 2) and 6J(w,q,, 2),
but the actual expressions are similar to those obtained for the problem of nonequilibrium fluctuations in a one-component lig-
uid presented in a previous publication [55]. As is often done in the literature [7, 9, 59], for the sake of simplicity, we assume
‘here stress-free boundary conditions for the vertical velocity and permeable walls for the concentration, so that
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Iw,q,,2) =0 at z2=0,L,
w(w,q,,2) =0 at z2=0,L,
2
——w(w,q,,z) =0 at z=0,L. Q@n

dz?
Note that these boundary conditions imply the absence of
any possible fluctuations in the concentration and velocity of
the fluid adjacent to the walls. The set of boundary condi-
tions [Egs. (21)] corresponds to a liquid bounded by two free
and permeable surfaces, which is rather unrealistic [59, 75].
For the case of a liquid confined between two rigid and imper-
meable surfaces, no-slip boundary conditions in the velocity

and zero value of the z derivative of the concentration are -

more appropriate [9, 59]. Nevertheless, for the sake of math-
ematical simplicity, we adopt here the boundary conditions
given by Egs. (21). We expect that the conclusions of this
work will be modified only quantitatively, not qualitatively,
_ for the more realistic no-slip impermeable boundary condi-
tions, as is the case for the nonequilibrium fluctuations in a
one-component liquid [55].

To search for a solution of Egs. (20) we represent
w(w,q,,2) and I'(w, q,, 2) as a series expansion in a com-
plete set of eigenfunctions satisfying the boundary conditions
[Egs. (21)]. Because of the simplicity of these boundary con-
ditions, an appropriate set of eigenfunctions is just given by
the Fourier sine basis in the [0, L] interval [58]. We thus as-
sume:

[w(w,q",z)} _ i [AN(w,qu)] sin (NIzrz). 22)

F(w,q",z) N=1 BN(“J1 q||)

oo 00

N=1 M=1

To deduce the coefficients Ay(w,q,) and By(w,q,)
from Eqgs. (20), we need to represent the random-noise terms
Fi(w,q,,2) and Fy(w, q,, 2) also as a Fourier sine series

Fl(quu:Z) > Fl N(waq") . (NWZ)
= ’ s , (23)
[FZ(w, q",z) FZYN(U), q") . L

where we have introduced the set of random functions
F, n(w,q,) and F, y(w,q,), whif:h are the projec.tions of
the random-noise terms onto the eigenfunction basis. They
are given by

FI,N(quu) _E/L
FZ,N(wy q") L 0
Representing the random-noise terms by Egs. (23), one read-

ily deduces from Egs. (20) expressions for the coefficients of
the Fourier series Ay (w, ¢,) and By (w, q;)

N=1

L

B (w,q",z):l sin (&) dz. (24)
F2(w, qll’ Z)

Fl,N(qu“)

AN(“’,‘I") = _N}?———z’ (25)
V(——-——L2 +qﬁ')
and
F (w7q ) - A (qu )VCO
BN(wi q") = 2N . Al ! (26)

Nzwz
[iw + D(—LZ——+ qﬁ)]

In this paper we are interested in the autocorrelation
function of the concentration fluctuations. It follows from
Eqgs. (22) that this function can be expressed as

(00 2) T, 0420 = 3 3 (Bion,) - By ') sin (T2 ) sin (222, @

To evaluate the autocorrelation function (B (w,q,) - By (w',q;)), it is necesary to evaluate the correlation functions

between the different projections of the random-noise terms, F) y(w,q,) and F, x(w,q,)- The autocorrelation function
(FY y(w,q;) - F} pr(w',q})) has been evaluated previously [54). For the purpose of the present paper we have evaluated
for the first time the autocorrelation (Fy y (w,q,) - F, 5r(w', qj})) as well as the cross correlations. However, the method of

evaluation is similar to the one implemented previously for the random heat flow instead of the random solute flow. For further
details of the procedure we refer to previous publications [54, 55]. Our final results are

F* [ = %% v2 2 2 N27T2 2 3 1 ’
( l,N(w) q“) . FI,M(w :q")) =2 BT;Zq.ll q, + _L2— 6N1W(27r) (5((4) —w )J(q" - q||)a
(Fin(w.qy) - Fy »(w',qp)) = (F3 y(w,qy) - Fy (W', qy)) =0,

. . D { dc 2(, N3z
(Fy n(w,qy) - Fypr(' ) = 2kBT—;)— (@) I <qg + TZT> Sy (27)*8(w — w')é(q, — q). (28)
R D,

In this evaluation we continue to assume, as in Sec. 4, that the correlation functions between the different components of the
random stress tensor and the random solute flux retain their equilibrium values. This assumption remains valid as long as L is
a macroscopic distance, much larger than the molecular distances in the liquid [54].
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Equation (14), relating the autocorrelation function of the concentration fluctuations to their contribution to the structure

factor now becomes {54, 62]:

2
([*(w,qy,2) - T q),2)) = (Z_Tcl)

T

S(w, (ln, Z, zl)(27r)36(w - w,)d(qn - q;|)' (29)

Substituting Egs. (26) and (27) into Eq. (29) and making use of Eq. (28), we obtain for the structure factor

. R N27r'2
2D q, + T

N e 2 (Veo)? (8p a
S(w,q“,z,z)—-SEZNX_:l 1+—71)—-(-5Z ot { NI
B (q,, + 12 )

with S again defined by Eq. (17).

N2g? 2
w? + D? <—L2 +q§)

Nn N=w
. (N7 Nz , 3
x31n(Lz)51n<Lz),(0)

We note that due to the cylindrical symmetry of the problem, the result depends only on the magnitude g, of the vector q,.
As in Sec. 4, we are interested here in the static structure factor representing the total intensity of the contribution from the
concentration fluctuations, which is obtained by integration over the frequency w: S(g,, 2,2') = 1/(2x) J S(w, q,,2,2") dw,

so that

S(q,,2,2') = Sg|6(z — 2) +5'0

with S'gE again defined by Eq. (19). As in Eq. (18) we
have again introduced a dimensionless wave number § such
that § = gL. As was the case in the absence of any boun-
dary conditions, the structure factor contains a contribu-
tion Spd(z — 2') from short-range equilibrium concentration
fluctuations and a contribution from long-range nonequilib-
rium concentration fluctuations, as further discussed below.

6. Consequences for light-scattering or
shadowgraph experiments

In this section we address the question whether the ef-
fects due to the finite height of the liquid layer can be ob-
served experimentally. For this purpose we consider the
two experimental techniques which, thus far, have been
sucessfully employed to observe nonequilibrium fluctua-
tions, namely, small-angle light scattering and shadow-
graphy. Small-angle light-scattering has been employed by
Sengers and coworkers [38,39,60,61] and by Giglio and
coworkers [52, 53, 76]. A schematic representation of such
a light-scattering experiment is shown in Fig. 1. The scat-
tering medium is a thin horizontal liquid layer bounded by
two parallel plates whose temperatures can be controlled
independently so as to establish an uniform temperature gra-
dient across the liquid layer. The temperature gradient can be
parallel or antiparallel to the gravity. The horizontal plates
are furnished with windows allowing laser light to propagate
through the liquid in the direction parallel to the gravity and
to the temperature gradient. Light scattered over an angle ¢
arises from fluctuations with a wave number g such that [70]

q = 2g sin (g) (32)

3D

Z g; sin (N72) sin (N7rz)
N 1 (][ +NZ7(2)

—

where g, is the wave number of the incident light inside the
scattering medium. To observe any nonequilibrium effects
one needs to observe the scattered-light intensity at small
wave numbers and, hence, at very small scattering angles.

From the electromagnetic theory [70] it follows that
the scattering intensity S(q) is obtained from an integra-
tion of the structure factor over the scattering volume, so
that [54, 62]

LL
1 i i ! 1
S(g,,q.) = Z//e_’ql(z—z')S(q",z,z)dzdz. (33)
00

In Eq. (33) it is assumed that the scattering volume extends
over the full height of the fluid layer as is the case in small-
angle light scattering from a thin liquid layer. In this situation
scattered light received in the collecting pinhole of the detec-
tor indeed arises from all the points illuminated by the laser
beam over the height of the liquid layer. From the Bragg con-
dition [Eq. (32) and the geometrical arrangement shown in
Fig. 1, we note that g, and ¢, in an actual light-scattering
experiment are not independent variables, because they are
related to the scattering angle, ¢, by

q, = qcos <§) = 2¢, sin (g) cos (g) X
g, =gsin (g) = 2q, sin? (%) (34)

Equation (34) shows that for small-angle experiments g, ~ ¢
and ¢, =~ 0 is a very good approximation. For actual small-
angle nonequilibrium light-scattering experiments, this ap-
proximation is always adopted.
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__g;:% { Temperature

j] gradient

q; Detector

Incident

light

FIGURE 1. Schematic representation of a low-angle nonequili-
brium light-scattering experiment. q; is the wave vector of the in-
cident light, q, is the wave vector of the scattered light. The mag-
nitude ¢ = |q; — qs| of the scattering wave vector is related to the
scattering angle ¢ by q = 2qo sin (¢/2), where qq is the magnitude
of the wave vector q; of the incident light inside the liquid. For cla-
rity, the magnitude of the scattering angle ¢ has been exaggerated.

Recently, nonequilibrium concentration fluctuations have
also been investigated by quantitative shadowgraph tech-
niques [73, 74, 77]. The experimental arrangement is similar
to the one depicted in Fig. 1, but instead of using a laser
beam, an extended uniform monochromatic light source is
employed to illuminate the sample. Then many shadowgraph
images of a plane perpendicular to the temperature gradient
are obtained with a CCD (Charged Coupled Device) detec-
tor, which measures a spatial distribution of intensity I(x),
where X is a two-dimensional position vector in the imaging
plane. For each image a shadowgraph signal is defined by

. I(x) — Ip(x)
(X)) = —5—F—~—" (35)
where I,(x) is the blank intensity distribution, when there

are no fluctuations in the index of refraction of the sample. In
practice, I(x) is calculated by averaging over many shadow-

graph images, so that fluctuations cancel out and the re-
sulting I(x) contains only contributions coming from non-
uniform illumination of the sample. From physical and
geometrical optics, it can be demonstrated that the modu-
lus squared of the two-dimensional Fourier transform of the
shadowgraph signal, |i(q)|?, after azimuthal averaging can
be expressed as [73, 74, 78]

|i(q)l2 (q) = T(q)s(q“ =4q,9, = 0)1 (36)

where the overline indicates an azimuthal average, in which
case the result depends only on the magnitude of the two-
dimensional Fourier vector q. The symbol T'(q) represents
an optical transfer function, which can be derived from the
optical arrangement used to produce the shadowgraph pic-
tures; it includes contributions from the response of the CCD
detector and the dependence of refractive index on concen-
tration [73, 74, 78]. Therefore, an analysis of the spectrum of
the shadowgraph pictures can be employed to experimentally
determine the structure factor of the fluid in the plane ¢, = 0.

It is interesting to note the equivalence between small-
angle light-scattering and shadowgraph techniques, in the
sense that both methods give us S(g, = ¢,q, = 0), where
for light scattering g is the scattering wave vector as given by
Eq. (32), while for shadowgraph techniques ¢ is the modulus
of the two-dimensional Fourier vector in the imaging plane;
in both cases the observed Sxg(g) depends only on the mag-
nitude of the wave vector g. As noted by Bodenschatz et al.,
what it is actually measured in these experiments is a kind of
vertical average of the fluctuations [79].

If we substitute Eq. (31) into Eq. (33), using the small-
angle approximation ¢, ~ ¢, ¢, ~ 0, perform the summation
of the series in Eq. (31) and the double integration in Eq. (33),
we obtain [54]

5(@) = Sg{1+ SkeSxe(@}, 37

where S’gE was defined previously by Eq. (19), and whe-
re Syg(@) is a dimensionless normalized nonequilibrium en-

__ 1 hancement, which includes the finite-size effects, given by
~ 1 7?[ cosh (§) — 1] + sinh (§)[7§ — 15sinh (¢ ’
4§ sinh ()[ cosh (q) + 1]

Equation (38) constitutes our final result for the contribu-
tion from the nonequilibrium concentration fluctuations to
the structure factor in the small-angle approximation, q, =~ g.
The term inside the square bracket in Eq. (38) accounts
for the finite-size effects as can be seen by comparing it
with Syg(g) = 1/g* deduced by applying the small-angle
approximation toEq. (18) for the “bulk” structure factor.

The normalized nonequilibrium concentration-fluctua-
tions enhancement Sy (g), given by Eq. (38), is plotted in
Fig. 2 as a solid curve on a double-logarithmic scale for the
case L = 0.1 cm, which is typical height of fluid layers in
experiments [38,61, 73, 74]. A simple inspection of the solid
curve in Fig. 2 shows that for large values of the wave num-

—

ber ¢, the term inside the brackets in Eq. (38) approaches
unity and we recover the g~% dependence of the nonequi-
librium enhancement in the absence of finite-size effects.
However, such dependence on ¢g~* cannot go on indefinitely
with decreasing wave numbers and, as shown in Fig. 2, the fi-
nite size of the system causes a crossover to a ¢ dependence
of the nonequilibrium enhancement at very small wave num-
bers. For ¢ — 0, the nonequilibrium enhancement becomes

q—)O 17 )

S\'E(Q) 20160

(39
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FIGURE 2. Double-logarithmic plot of the wave-number depen-
dence of the normatized nonequilibrium concentration-fluctuation
contribution Syg. The solid line is Sy taking into account finite-
size effects, but neglecting gravity, as given by Eq. (38), for a liquid
layer with a height L = 1 mm. The dashed line is S taking into
account gravity effects, but neglecting gravity, as given by Eq. (41),
for a “roll-off” scattering wave number ggo = 400 cm™1. g is the
crossover scattering wave number as defined by Eq. (40).

indeed compensating the divergent g~* dependence when
finite-size effects are neglected and causing an asymptotic de-
pendence on g2, as shown in Fig. 2. From Eq. (39) we may
define a characteristic wave number

_ (20160\'/°1 _3.25 “0)
= \"17 L~ L

which, for L = 0.1 cm, corresponds to g, ~ 33 cm~!. From
Fig. 2 we see that S’NE(q) exhibits a maximum at ¢ ~ q,,
so that ¢, may be interpreted as a “crossover” wave number
separating the g—* dependence and the g? dependence of the
nonequilibrium enhancement.

It is worth observing that the existence of a maximum
at ~ ¢, (numerically we find the position of the maximum
at about ~ 2.222/L = 0.68¢, ), indicates that, even in the
absence of gravity, the simple presence of a temperature gra-
dient selects a particular length scale in the system for which
nonequilibrium fluctuations are maximally enhanced. This
length scale becomes macroscopically evident above the con-
vective instability, where spatiotemporal patterns with a par-
ticular length scale appear.

As mentioned earlier, not only the finite size of the sys-
tem, but also gravity will cause deviations from the ¢=4 de-
pendence of the nonequilibrium enhancement. These effects
were first analyzed by Segre and Sengers [47], who predicted
that the g~ divergence will saturate to a constant value in-
dependent of g for small wave numbers. This prediction has
been confirmed experimentally [52, 53]. The most recent pre-
sentation of gravity effects can be found in Ref. [51], where
the problem is studied starting from the linearized fluctuating
Boussinesq equations in the small Lewis number approxima-

tion. From Egs. (14) and (15) in Ref. [51], we find that the
structure factor of a fluid subjected to a temperature gradient,
accounting for the effects of gravity but neglecting finite-size
effects, can be rearranged in a form like Eq. (37) such that:

G0
5(@) = Selt + ReSe(@) = Se{1+ =B @D
9" +dro
Due to the presence of gravity, there is a slight difference be-
tween the dimensionless nonequilibrium enhancement SR
in Eq. (41) and S% as defined by Eq. (19). But in practice,
this small difference can be neglected. From Eq. (41), we ob-
serve that the gravitationally induced saturation of the g~*
divergence occurs at a “roll-off” wave number g, which is
given by [51, 52]

vT 1/4
Tno = (%ﬁ) . @

while ¢, = gzoL. To facilitate the comparison between
gravity and finite-size effects, we have added in Fig. 2, as
a dashed curve, the function Syp(g) as given by Eq. (41).
For this plot in Fig. 2 we have employed g,, = 400 cm™!,
which is the value calculated by Vailati and Giglio [52] for
a critical mixture of aniline and cyclohexane subjected to
a temperature gradient VT, = 163 Kem~!. From Fig. 2
we conclude that, depending on the size of the system and
the applied temperature gradient, finite-height effects may be
equally important as deviations from the g—* behavior due to
gravity. Therefore, for the interpretation of actual small-angle
light-scattering experiments both effects should be taken into
account simultaneously.

From the plots in Fig. 2 it can be also concluded that
quenching of the g—* divergence as a result of finite-size ef-
fects is even stronger than that caused by gravity, making
the nonequilibrium contribution to the scattering function to
vanish as ¢ — 0. The conclusion that this crossover from
the g—* to the ¢> dependence as a result of the finite size of
the system occurs at wave numbers around ¢,, ~ /L seems
intuitively plausible. The observation that the nonequilibrium
concentration fluctuations vanish as ¢ — 0 is a consequence
of the imposed condition of the absence of concentration and
velocity fluctuations at the boundaries.

Small-angle nonequilibrium scattering experiments so far
performed in liquid mixtures have probed wave numbers
down to ¢ = 100 cm~! [52]. At such wave numbers devia-
tions from the g—* divergence are likely caused by a mixture
of gravity and finite-size effects. Shadowgraph experiments
performed with binary liquids [73,74] have probed wave
numbers of a similar magnitude. But for one-component li-
quids close to the convective instability, shadowgraph expe-
riments probing even smaller wave numbers have been re-
ported [80] (down to § ~ 2). In fluctuations near the
convective instability inclusion of both boundary conditions
and gravity is essential [81]. Although this topic is beyond
the scope of the present paper, we note that such experi-
ments {80] do show a maximum enhancement of non-equili-
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brium structure factor at a nonzero value of the wave num-
ber g.

7. Concluding remarks

In this paper we have evaluated the structure factor in a hori-
zontal layer of a binary liquid with finite height L, subjected
to a vertical stationary concentration gradient induced by a
temperature gradient through the Soret effect. Rayleigh scat-
tering or shadowgraph experiments probe index-of-refraction
fluctuations that, in the small-Lewis-number approximation,
arise from concentration fluctuations. We have elucidated
how the well known ¢—* dependence of the nonequilibrium
enhancement of the structure factor in a nonequilibrium situ-
ation is quenched by the finite height of the system yielding
a crossover to a ¢°> dependence at very small values of the
wave number g of the fluctuations. This means that the simple

presence of a temperature gradient selects a particular length
scale in the system, for which fluctuations are maximally en-
hanced. We find that for liquid mixtures the deviations from

“the g—* behavior due to the finite size of the system could

be just as important as deviations caused by the presence of
gravity. Therefore, for a quantitative interpretation of low-
angle light scattering or shadowgraph experiments, it is im-
portant to account for both gravity and finite-size effects si-
multaneously.

Acknowledgements

The research at the University of Maryland is supported by
the Chemical Sciences, Geosciences and Biosciences Divi-
sion of the Office of Basic Energy Sciences of the US De-
partment of Energy under Grant No. DE-FG-02-95ER14509.

1. HIV. Tyrrell, Diffusion and Heat Flow in Liquids, (Butter-
worths, London, 1961).

2. SR. de Groot and P. Mazur, Non-Equilibrium Thermodyna-
mics, (North-Holland, Amsterdam, 1962).

3. D.D. Fitts, Noneguilibrium Thermodynamics, (McGraw-Hill,
New York, 1962).

4. R. Haase, Thermodynamics of Irreversible Processes, (Addi-
son-Wesley, Reading, Massachussets, 1969).

5. J.-L. Lin, W.L. Taylor, and W.M. Rutherford, in Measurement
of the Transport Properties of Fluids, edited by W.A. Wakeham,
A. Nagashima, and J.V. Sengers, (Blackwell Scientific, Oxford,
1991), pp. 323.

6. R.S. Schechter, L. Prigogine, and J.R. Hamm, Phys. Fluids 15
(1972) 379.

7. R.S. Schechter, M.G. Velarde, and J.K. Platten, in Advances in
Chemical Physics. edited by L. Prigogine and S.A. Rice, (Wiley,
New York, 1974), Vol. 26, pp. 265.

8. JK. Platten and G. Chavepeyer, in Advances in Chemical
Physics, edited by L Prigogine and S. Rice, (Wiley, New York,
1975), Vol. 32, pp. 281.

9. J.X. Platten and J.C. Legros, Convection in Liquids, (Springer,
Berlin, 1984).

10. M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65 (1993)
851.

11. St. Hollinger and M. Liicke, Phys. Rev. E 57 (1998) 4138.

12. E.G.D. Cohen, Physica A 194 (1993) 229.

13. J.R. Dorfman, T.R. Kirkpatrick, and J.V. Sengers, Annu. Rev.
Phys. Chem. 45 (1994) 215.

14. N.N. Bogoliubov, in Studies in Statistical Mechanics I, part
A, edited by J. de Boer and G.E. Uhlenbeck, (North-Holland,
Amsterdam, 1962), pp. 5.

15. 1.V. Sengers and A. Michels, in Proceedings of the 2nd Sym-
posium on Thermophysical Properties, edited by J.F. Masi and
B.H. Tsai, (American Society of Mechanical Engineers, New
York, 1962), pp. 434.

16. 1.V. Sengers, in Critical Phenomena, National Bureau of Stan-
dards Miscellaneous Publication 273, edited by M.S. Green and
J.V. Sengers (U.S. Governement Printing Office, Washington,
DC, 1966), pp. 165.

17. L. van Hove, Phys. Rev. 95 (1954) 1374.

18. B.U. Felderhof, J. Chem. Phys. 44 (1966) 602.

19. L.S. Garcia-Colin, J. Stat. Phys. 20 (1979) 19.

20. L.P. Kadanoff and J. Swift, Phys. Rev. 166 (1968) 89.
21. K. Kawasaki, Ann. Phys. 61 (1970) 1.

29. K. Kawasaki, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M.S. Green, (Academic, New York,
1976), Vol. 5A, p. 165.

23. Y. Pomeau and P. Résibois, Phys. Rep. 19 (1975) 63.

24. M.H. Emst, E.H. Hauge, and J.M.J. van Leeuwen, J. Stat. Phys.
15 (1976) 7, 23.

25. W.W. Wood, J. Stat. Phys. 57 (1989) 675.
96. B.J. Alder and T. Wainwright, Phys. Rev. Lett. 18 (1967) 988.
27. B.J. Alder and T. Wainwright, Phys. Rev. A 1 (1970) 18.

28. TR. Kirkpatrick, E.G.D. Cohen, and J.R. Dorfman, Phys. Rev.
A 26 (1982) 995.

29. E.G.D. Cohen, Kinam 3 A (1981) 39.

30. D. Ronis and L Procaccia, Phys. Rev. A 26 (1982) 1812.

31. R. Schmitz and E.G.D. Cohen, J. Stat. Phys. 40 (1985) 431.
32. L L’Heureux and I. Oppenheim, Physica A 148 (1988) 503.
33. R. Schmitz, Phys. Rep. 171 (1988) 1.

34. B.M. Law and J.V. Sengers, J. Stat. Phys. 57 (1989) 531.

35. 1.V. Sengers and B.M. Law, in Lectures on Thermodynamics
and Statistical Mechanics, edited by M. Lépez de Haro and C.
Varea, (World Scientific, Singapore, 1990), pp. 201.

Rev. Mex. Fis. 48 S1 (2002) 14 - 25

i LT

[PRPS—T™



36.

37.

38.

39.

40.
41.

42.

43.

44.

45.
46.

47.
48.
49.
50.

51.

52.

53.

54.

5.

56.
a7.

58.

FINITE-SIZE EFFECTS ON SORET-INDUCED NONEQUILIBRIUM CONCENTRATION FLUCTUATIONS IN BINARY LIQUIDS 25

B.M. Law, P.N. Segre, R.W. Gammon, and J.V. Sengers, Phys.
Rev. A 41 (1990) 816.

P.N. Segré, R.-W. Gammon, J.V. Sengers, and B.M. Law, Phys.
Rev. A 45 (1992) 714.

PN. Segré, R.W. Gammon, and J.V. Sengers, Phys. Rev. E 47
(1993) 1026.

W.B. Li, PN. Segreé, R W. Gammon, and J.V. Sengers, Physica
A 204 (1994) 399.

L.S. Garcia-Colin et al. J. Stat. Phys. 37 (1984) 465.

R. Garibay-Jiménez and L.S. Garcia-Colin, Physica A 130
(1985) 616.

L.S. Garcia-Colin, in AIP Conference Proceedings 94, CAM
Physics Meeting, edited by A. Zepeda, (American Institute of
Physics, Woodbury, New York, 1995), pp. 709.

L.S. Garcia-Colin, Mol. Phys. 86 ( 1995) 697.
B.M. Law and J.C. Nieuwoudt, Phys. Rev. A 40 (1989) 3880.
J.C. Nieuwoudt and B.M. Law, Phys. Rev. A 42 (1990) 2003.

R.M. Velasco and L.S. Garcia-Colin, J. Phys. A: Math. Gen. 24
(1991) 1007.

PN. Segré and I.V. Sengers, Physica A 198 (1993) 46.
R. Schmitz, Physica A 25 (1994) 206.
A. Vailati and M. Giglio, Phys. Rev. E 58 (1998) 4361.

P.N. Segre, R. Schmitz, and J.V. Sengers, Physica A 195 (1993)
31. :

I.V. Sengers and J.M. Ortiz de Zérate, in Thermal Nonequili-
brium Phenomena in Fluid Mixtures, edited by W. Kohler and
S. Wiegand, (Springer, Berlin, 2001), in press.

A. Vailati and M. Giglio, Phys. Rev. Lets. 77 (1996) 1484,

A. Vailati and M. Giglio, Prog. Colloid. Polym. Sci. 104 (1997)
76.

J.M. Ortiz de Zérate, R. Pérez Cordén, and J.V, Sengers, Phy-
sica A 291 (2001) 113.

J.M. Ortiz de Zirate and L. Mufioz Redondo, Euro. Phys. . B
21 (2001) 135.

M.G. Velarde and R.S. Schechter, Phys. Fluids 15 (1972) 1707.

St. Hollinger, M. Liicke, and H.W. Miller, Phys. Rev. E 57
(1998) 4250.

$. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,
(Clarendon, Oxford, 1961).

59

60.
61.
62.
63.
64.

65.
66.
67.
68.

69.
70.
71.

72.
73.

74.
75.
76.

77.
78.
79.

80.

81.

. M. Liicke et al., in Evolution of Spontaneous Structures in
Dissipative Continuous Systems, Lecture Notes in Physics,
edited by EH. Busse and S.C. Miiller, (Springer, Berlin, 1998),
Vol. 55m, pp. 128.

W.B. Li et al., Phys. Rev. Lett. 81 (1998) 5580.
WB.Lietal.,J Chemn. Phys. 112 (2000) 9139.

R. Schmitz and E.G.D. Cohen, J. Stat. Phys. 39 (1985) 285.
P.C. Hohenberg and J.B. Swift, Phys. Rev. A 46 (1992) 4773.

C. Cohen, JW.H. Sutherland, and J.M. Deutch, Phys. Chem.
Ligquids 2 (1971) 213.

W. Schépf and W. Zimmermann, Phys. Rev. E 47 (1993) 1739.
M.C. Cross and K. Kim, Phys. Rev. A 37 (1988) 3900.
V. De Giorgio, Phys. Rev. Let1. 41 (1978) 1293.

L.D. Landau and E.M. Lifshitz, Fluid Mechanics, (Addison-
Wesley, Reading MA, 1959).

D. Ronis, I. Procaccia, and J. Machta, Phys. Rev. A 22 (1980)
714,

B.J. Berne and R. Pecora, Dynamic Light Scattering, (Wiley,
New York, 1976).

G. Grinstein, D.-H. Lee, and S. Sachdev, Phys. Rev. Lett. 64
(1990) 1927.

G. Grinstein, J. Appl. Phys. 69 (1991) 5441.

D. Brogioli, A. Vailati, and M. Giglio, Phys. Rev. E 61 (2000)
RI. 8

D. Brogioli, A. Vailati, and M. Giglio, J. Phys.: Condens. Mat-
ter 12 (2000) A39.

P. Manneville, Dissipative Structures and Weak Turbulence,
(Academic Press, San Diego, 1990).

P. Cicuta, A. Vailati, and M. Giglio, Phys. Rev. E 62 (2000)
4920.

A. Vailati and M. Giglio, Nature 390 (1997) 262.
JR. de Bruyn et al., Rev. Sci. Instrum. 67 (1996) 2043.

E. Bodenschatz, W. Pesch, and G. Anlers, Annu. Rev. Fluid
Mech. 32 (2000) 709.

M. Wy, G. Ahlers, and D.S. Cannell, Phys. Rev. Lett. 75 (1995)
1743.

J.M. Ortiz de Zarate and J.V. Sengers, Physica A 300 (2001) 25.

Rev. Mex. Fis. 48 S1 (2002) 14 - 25



	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12

