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In addition to the fast correlation for local stochastic motion, the velocity correlation function in a fluid enclosed
within the pore boundaries features a slow long time-tail decay. At late times, the flow approaches that of anincompressible
fluid. Here, we consider the motion of a viscous fluid, at constant temperature, in a rectangular semipermeable channel.
The fluid is driven through the rectangular capillary by a uniform main pressure gradient. Tiny pressure gradients
are allowed perpendicular to the main flux. We solve numerically the three-dimensional N&tog&es equations
for the velocity field to obtain the steady solution. We then set and solve the Langevin equation for the fluid velocity.
We report hydrodynamic fluctuations for the center-line velocity together with the corresponding relaxation times as
a function of the size of the observing region and the Reynolds number. The effective diffusion coefficient for the
fluid in the microchannel is also estimateldef = 1.43 x 10719 m2-s1 for Re= 2), which is in accordance with
measurements reported for a similar system (Stéis.; Callaghan, P. TPhysica B200Q 292, 296-301; Stepinik,

J.; Callaghan, P. TMagn. Reson. Imaging001 19, 469-472).

I. Introduction gradient spir-echo method (MGSEjto measure the diffusion
coefficient. In this work, we shall report the influence of
S'hydrodynamic fluctuations on the mean center-line velocity of
Y an incompressible fluid in a rectangular cross section micro-
capillary channel. With such an aim, we set and solve the coupled
Langevin equations for the three components of the fluid velocity.
We also report the relaxation time of the hydrodynamic
fluctuations as a function of the volume and Reynolds number.
In this first approximation to the problem, we consider the
temperature uniform and constant through the whole cell. As a

hydrodynamic and electrophoretic flow profiling in microchannel consequence, we neglect the hydrodynamic heat equation (energy

structures by single molecule fluorescence correlation s ectros-balance) In our development. This is justified, and as an example
copy (FCS) )\:vherge the flow measured showe daPoiseuiIIeF:aminarwe can consider that the heating effects in fluorescence correlation
f|O\?Vy rofiIe' Computer simulations of fluid hvdrodvnamics b spectroscopy (FCS) are negligible at the laser intensities used.
Aldepa dWa'n rp HOand Hagen et dire ea?/ed thge . tencey The steady-state differencAT, between the temperature of the
ran Inwrgnt-s gen fev S EXISTe solution at the center of the Gaussian beam and the ambient
of slow molecular motion, that appears as a long time tail of the : 61 15
. - . . temperature I\T < 10°° K.
velocity correlation function superposed on the fast exponential
decay of the propagating sound mode, which does not contribute
to the long time tail. At late times, the flow approaches that of . .
anincompressible fluid. This results were proved experimentally ~ The hydrodynamic equations relevant to our problem (see ref
by Stepisik and Callaghat?13who applied the NMR modulated ~ 16) are as follows:

Inrecentyears, with the advance of nanotechnology, there ha
beeninterestin the fabrication of nanoscale devices powerfed b
or constructed usirfgo-called “Brownian motors”. Also, a series
of pressure-sensitive microfluidic gates to regulate liquid flow
have been successfully fabricafedang and Kwok studied the
microfluid flow with hydrophobic channel walls with electro-
kinetic effects and Navier's slip conditidrOptical detection of
a single molecule in solution has become more and more
important>~” Lenne et af and also Gsch et aP reported

[I. Hydrodynamic Fluctuations
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O = —Poy + T 3 =1 Q)
o
Hydrodynamic equations need to be supplemented with boundary

conditions. Molecular forces always exist between a viscous is referred to as kinematic viscocity-§kg™1) (while 7 itself is

fluid and a solid surface. These forces cause the fluid layer just referred to as the dynamic shear viscocity).

at the surface to be at rest and as a consequence have to be The energy dissipated in anincompressible fluid due to viscous

considered as a boundary condition of the movement equations processes can be written (see ref 16) as

The velocity of the fluid is zero at the solid surfaces, and this

is the so-called no-slip boundary conditian= 0). This is not E dv; 3Uk & 10

our case of semipermeable walls to abandon the no-slip boundary diss 277f 3xk ax1 (10)

condition. For a recent review with a deep discussion on the

no-slip boundary condition, including microfluidics, see Lauga As already mentioned above, in this paper, we shall consider a

etall”and references therein. In any case, since we are interestegerfectly isothermal system, and this approximation neglects the

in bulk fluctuations here and our channel size is in the micrometer heating effects expressed by eq 10.

range, the choice of boundary conditions would not affect our  A. Discretization of the Langevin Equation for the Velocity.

results. To numerically solve eq 8, we need to perform a discretization.
The (deviatoric) stress tensor and the heat flow are related toThis is achieved by multiplying both members by and

the velocity by the Newton viscosity law and the Fourier law, performing the integration in the intervalt(+ At), namely

respectively. However, when fluctuations are present, there also

appear local stresses and spontaneous energy fluxes disconnecteg, — ft+At (v-V)v dt — 1 IHN Vpdt +

from those gradients. The “random” contributions to the

dissipative fluxes will be designed Iy andg. The fluctuating AL t+At 0S
phenomenological laws then read as v [T Vvt + ‘f % dt (11)
, oy; 8Uk
Uik:n&k ax 6Iva +§0 Vvts, (4) or
. _ — C
4= —«VT+g 5) AV = —(V-V)VAL — %me FIVAALE AW (12)

The term inside the brackets in eq 4 cancelsifer k. The
constantsy and ¢ are called viscocity coefficients ¢(&#m—2)
where both are positives, and(W-m~1-K~1) is the thermal
conductivity. As a consequence of eq 4, the quardiity/ox, in
the momentum balance (eq 2) can be written as

where the discretization of the stochastic forcing term has been
performed by employing eq 48 of the Appendix, where the
coefficientsC; and the “Wiener’s incremeniAW(t) are defined

and the discretization of the random force is justified in more

detail.
30, S, At the limit At — dt, the mean value§/-V)v = (v -V)v, Vp
£ =nAv + (C + -n) V(V-v) + %, (6) ~ Vp, and VA = V2, while AW(t) = dW(t). From the

developments in the Appendix, we need to recall here that the
so that eq 2, for a viscous fluid in movement, can be expressed‘Wiener’s process” i(t) is just a Gaussian stochastic process

as a single vectorial equation: of width o = (dt)/2 At each pass of the integration, we then have
to draw dMt) and normalize the result properly. That is to say,
p[@ n (V'V)V] _ if Rgis an aleatory number, with a Gaussian distribution, centered
ot in Rs = 0 and width 1, then we can write at each integration step
Sy dW(t) = (dt)*?Rs. To conclude the discretization process, eq 12

—Vp+yAv + (C +3 ) V(Vev) + = o, 7 is transformed in the corresponding Euler's equation, giving the
temporal evolution of the velocity, namely
When the fluid can be considered as incompressible,¥en 1
= 0. As a consequence, the equation of movement of any™!=y"— (V“V)\"dt — =Vpdt +
incompressible viscous fluid is simply given by p

C
yWA  dt + — ; dt’? R, (13)

v 1 Sk

5 —(v-V)v — —Vp + 77Vzv o (8)
P % The relaxation time, of the hydrodynamic fluctuations is then
This equation, without the last term, is the Navi&tokes U 5
equation. The first term in the right-hand side expresses 7 = cLP (14)
convection, the second term represents pressure variations, the G

third term represents the viscous forces, and the fourth one

represents fluctuations. We observe that, for an incompressiblewhereUc_ is the center-line velocity (see below). From now

fluid, only one viscosity coefficient appears in the equation of on, the averages..llare over the realizations of the stochastic

motion. As most of the fluids can be considered as (nearly) process.

incompressible, the shear viscosity coefficienis the only In this paper, we shall be concerned with the evaluation of
relevant one in practice. The ratio several statistical parameters. A first basic quantity will be the
variance of the velocity, namely

(17) Lauga, E.; Brenner, M. P.; Stone, H.lAandbook of Experimental Fluid
Dynamics Foss, J., Tropea, C., Yarin, A., Eds.; Springer-Verlag: New York, 2 _ 2
0 P pring 9 0,2 = N()°’0- m(H)A (15)
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d = 2bc

“h+c (20)

After having introduced all the previous quantities, we write
the dimensionless version of eq 8 as

5
%,

N o o L o2
= —(V-V)V' — Vp +Rev%/ +

at' (21)

‘ CJ, ) r or, if we split eq 21 in the three scalar equations corresponding
to each componenikyy,z) of the velocity (1,v,w), we have
T buffer

Figure 1. Schematic drawing of the channel.

deU' = —U'd U — Vo, U — WU — d,p' +

_ _ _ - Re VAU + &(')C, (22)
Another quantity of central interest is the average position, namely

Ot = —U00 — Vo0 — W — ap +

t
B(H)C= Of) v(t) did] (16) Re V2 + E()C. (23)
The corresponding variance of the position is QW = —UJW — I W — Wa,W — 3,0 +
71 ! !
0.2 = B(H)*— B3 a7) Re VW + &(t)C,, (24)

At the steady statelu' = 9y’ = 9,w' = 0.
To perform the numerical calculation, eq 21 can be written
as

Associated tooy, an effective diffusion coefficient can be
defined as the long time limit (i.e., after transients due to initial
conditions have died out):

52 vl =y — (v vV dt — Vp' dt +
Dy = mE’ (18) Re 'vA/"dt' + C(dt')?R, (25)

. . . Correspondingly, eq 14 can be written as
B. Equations for a Rectangular Cross Section Pipel. The

SystemWe consider anincompressible viscous fluid of kinematic (Rey)z (thz p)z
iscosit d uniform density driven i ect lar pi == =
viscosityv and uniform density driven in a rectangular pipe T a.C 28/C

with rectangular cross section with the size along xhexis ’
(width b) being much larger than the size along ytasxis (height where we have used egs 14, 19, and 52. We shall also need the
dimensionless consta@t, which reads as

¢). The length of the pipe is denoted byA schematic drawing
of the channel is shown in Figure 1. The flow is driven by a

(26)

uniform pressure gradieri;p = K, along the pipe and parallel 2 _ oli2pn—112 12 —-5/6 42
to the z axis. The system is subjected to thermal noise at the ¢ = cd, = 2@ T DkeTn) (AV) Ch (27)
constant temperature Furthermore, we assume tiny pressure p(vRe)3’2 p(vR@3/ 2

gradients perpendicular to thdirection withd,p = ayp= 1029, . ) ) o
causing small axial fluid fluxes. In this sense, we can consider With 7;, the dimensionless relaxation time, relatedXcy
our system as a semipermeable pipe. The existence of these ) o
lateral fluxes allows the coupling of the three components of the 7, =C (28)
velocity field, and the nonexistence of them renders only one .
equation. Also, these fluxes are common in experimental systems IIl. Numerical Methods
as in pervaporation in channels; see, for instance, ref 18. Since all variables have been rendered dimensionless in the
2. The EquationsTo simplify the working equations, all ~ previous section, from here on we shall omit the primes in all
variables will be rendered dimensionless usipgnd the center- the symbols. We start our numerical calculation by the corre-
line velocity Uc. (both defined below). Hence, time will be  sponding discretization of eq 25, which proceeds in various steps.
measured in units af,Uc. "1, pressure will be measured in units ~ First, we write the vectorv(-V)v" dt in its components as
of pUc 2, the pressure gradient will be measured in units of
pUct?dh~2, energy will be measured in units pBlc,2d:3, and Ud,U + o U + wo,u
forces will be measured in units lc 2dy2. In addition, the (V V)V dt = [udw + vdw + Wi | dt (29)
viscosityn will be measured in units gfUc dn and the random ud,w + vow + wo,w
force dusk will be measured in units gfUc %dy 2.
The Reynolds number is the parameter governing the dynamicsNext, the first component of eq 29 is discretized as

of the system and is defined by u:j,k(u?+1j,k 3 uin—lj,k) 4

1dt
Re= M (19) 2 dx Vs — Wioap) (30)
' W (W et — Ujicd)
andd, is the hydraulic diameter, which for a rectangular cross
section pipe is and analogously, for the other components. The vecReH"

dtis treated in a similar fashion. First, itis splitin its components
(18) Villaluenga, J. P. G.; Cohen, Y. Membr. Sci2005 260, 119-130. as
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VA" Table 1. Simulations Parameterd
Ri VA" dt = % -y (31) Re Ty, UoL (m-s?) —K (10F x N-m™9)
e Y 2 24 0.025 1.875
. . . 4 12 0.050 3.750
the first component is discretizated as 6 8 0.075 5.625
1 ot 8 6 0.100 7.500
10 4.8 0.125 9.375
Re XZ(UI l‘]k+ul+ljk+ulj 1k+u|]+lk+
d ah=50um,c=200um, L = 800um, d, = 80um, p = 10¥kg-m™3,

Ujper + Wiyer — 6U3,) (32) 7 =10 SNeom & dV=10 2ome,t= (@)% Tloc = 1oy = 10 Al
and a grid of 50x 200 x 800 points.
and analogously, for the other components. Al velodity W Vs Xy
We have considered equal increments in the three coordinates e o
dx = dy = dz, of our rectangular grid. Consequently, we have
to comply with the numerical stability condition, known as CFL
(Courant-Friedrichs-Lewy), which reads for our case as

3 dt_
Regd 2

Taking the equal sign (most favorable case), we obtain for the
ratio of time to spatial increments

(33)

Axml velocity (-w)
P

25

dt _ /Redt sl
dx_ 6 (34) 250 ;‘m_\“‘ P

To perform the simulation surrounding the steady state, we solved
simultaneously the system of the three coupled Langevin
equations:

Figure 2. Dimentionless steady state solution for the component

=y — Redt[ A (T u o+ wh w=w(x,y) of the velocity forRe= 2 (see Table 1 for other parameter
Lpk Tk 24 Witk -, K values). The effect of the lateral pressure gradiggisanda,p on

the velocity profile is negligible.
(uin,j,k+l - uirjj,k—l)] — Iy, dt + é(uin—l,j,k + UP+1,j,k + uin,j—l,k + P 9
37/, enough for the dying out of the transients due to the initial
conditions. Hence\ = 37/, dt' %, wherer!, = C'~2. For instance,
if Re=2andd&/=10"18 m3 we have d'=0.0125, ¢ =5.2094

1 1/2

1 Redt 5 = — = =
Uin,j,k = Uirjj,k_ 7 ===y |,k(U.+1Jk inljk) +w x 1075, C' = —10.27,7,, = 0.0095, and\; = 546.
To numerically evaluate the steady state solutluﬁk[ Uij ko
(Ui“j i — Uiﬂj )] — T, dt + _(Ui“ kT Uin+1J T Uinj—lk + k] we proceed as follows: First, we initialize our working

grld by setting all the matrix components of the velocities equal
virjjﬂk + vi"’j’k,l + Uirfj,kﬂ — 6Ui“’j’k) + C'aﬁ dt*? R (35) to zero, Lijk vijk W] = 0. We then fix the boundary
conditions: w(0,y,2) = w(b,y,2) = w(x,0,2) = w(X,c,2) = u(x,0,2)

Redt =u(x,c,2 = v(0y,2) = v(b,y,2) = 0. The valuesi(0,y,2), u(b,y,2),
WPJ Kk — Wn [U| i k(WnHJ k i—l,j,k) + Uin,j,k v(X,0,2), v(x,c,2), w(xy,0), andw(x,y,L) are determined by the
proper set of eq 35. Next, we solve simultaneously these three
(W1 — \A/i1j—1 W] — g, dt + ( Lokt Whjt parts of eq 35. At every 10 time steps, we compute the difference
between the actual velocities; [, vijk Wik and the velocities
Mj—l,k + VVnJ+1k + Wnl k1t WnJ k1 i,j,k) + in the previous verification. The maximum of the differences
C:"‘ﬁ at” Re (10 £+10 toot
i max([Uijic vijk - |]k = [Uij 0 vij \Nit,j,k])
wi
T 12 56 2 is referred to as the error. Time integration of the equations is
o - =273 7+ D) (AV) “d, (36) stopped when the error is less than the tolerance defined at the
a

p(VRQS/Z beginning of the process. We have found that a tolerance tol
10 gives reasonable results for the steady state solution. In this

For the present work, we have performed five series of first part of our numerical procedure (namely, the evaluation of
simulations, with the external parameter values fixed for each the steady state solution) we use deterministic equations; that is,
series. The values employed in each series of simulations arerandom noise is not considered. In all cases investigated, we
summarized in Table 1. obtained errors lower than the tolerance, indicating that the laminar

The first step of the numerical procedure is the choice of the solutions are stable, as expected from the very small Reynolds
volume &/ and the corresponding dimensionless spatial grid numbers employed in our calculations. An example of the steady
step &', and in our casexd= dv¥3d, L. Next, the corresponding  state solution obtained by the above-described procedure is shown
dimensionless time step' @s evaluated from the CFL condition,  in Figures 2 and 3. In Figure 2 is shown the steady state solution
dt' = Rgdx")¥/6. In selecting the number of temporal steps, the forthe axial component = w(x,y) of the velocity in arectangular
code needs to rum;, and we consider the temporal interval of microchannel withRe= 2
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Figure 3. Energy dissipation per unit volume corresponding to the
velocity profile shown in Figure 2Re= 2, and other parameter
values are quoted in Table 1. The asymmetry of the surface is because
of the lateral pressure gradiertip anda,p.

InFigure 3is displayed the energy dissipation per unit volume
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for the same microchannel of Figure 2. We note that the energy Re (egs 26 and 52).

is mostly dissipated at the borders of the channel.

Once the steady state solution is evaluated, we start the second
part of our simulations, aiming to compute fluctuations around
the steady state solution due to thermal noise. Hence, we consider
the complete set of eq 35 with the random term to the three
evolution equations for the velocity components, solving the
system overN; temporal points and\r realizations of the
stochastic process. We obtain the perturbed three matrix
[UijxvijWijl. To validate this procedure, we compared the
average of the center line velocity with the deterministic one.
The deviations were less than 0.01. We then analyzed the temporal
and spatial correlations of the velocity fluctuations, focusing our
study in the center line velocityic,.

IV. Results

A. Relaxation Time of Velocity Fluctuations. We display
in Figure 4 the relaxation time, of the fluid velocity fluctuations
as a function of the considered volurd¥ and the Reynolds
numberRe We observe in Figure 4 that, foiv = 1 fl (10718
m3), 7, varies in the range 78s < 7, < 1.9 ms wherRevaries
in the range 2< Re =< 10.

B. Autocorrelation Functions for the Central Line Velocity.
We have performed a spectral analysis of the hydrodynamic
fluctuations in the longitudinal component of the central line
velocity. Our main resultis that thermal noise excites the collective
hydrodynamic modes at low frequencies (kHz). As an example

<w_(CL,tw_(CL,0)>

Fl<w_(CL,tw_(CL,0)>

10 12

Figure 4. Relaxation time of the hydrodynamic fluctuatiomg,as
a function of the considered volum#/, and the Reynolds number,
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Figure 5. Normalized autocorrelation functions faic [ N,
200,N; = 546, andrRe= 2: (a) temporal and (b) Fourier transform
of the former temporal autocorrelation function (the spectral density).

60

of our results, we show in Figure 5a the normalized temporal This property was measured, indirectly, in light scattering
autocorrelation function for the mean (over stochastic realizations) ey periments on fluids subject to a temperature gradient in which

central line (CL) velocity forRe = 2. We observe that the
correlation function extends up to 4&. Correspondingly, in

modifications to the Brillouin and Rayleigh lines were ob-
served.®20Also, such long-range correlations appear generically

Figure 5b, the Fourier transform of the former autocorrelation ¢4, 5 wide class of nonequilibrium stat®¥sThe predictions of
function (the spectral density of the CL velocity) goes up to the ihis phenomenon have been made in a number of contexts,

kHz region.

Regarding the spatial correlation, we show in Figure 6a the
normalized spatialfaxis) autocorrelation function for the mean
CL velocity. We can observe that the correlation is in the tenths

range of 18 m™*. Our present results demonstrate the generic 45

(19) Beysens, D.; Garrabos, Y.; Zalczer,Bhys. Re. Lett. 1980 45, 403~

406; Wegdam, G. H.; Keulen, N. M.; Michielsen, J. CHhys. Re. Lett.1985
55, 630-633.

-~ . X (20) (a) Law, B. M.; Sengers, J. \J. Stat. Phys1989 57, 531-547. (b) Law,
of a millimeter range. Correspondingly, the Fourier transform B. m.: Segfe P. N.; Gammon, R. W.; Sengers, J. Phys. Re. A 1990 41,
of this function (Figure 6b) extends up to wavenumbers in the 816-824. , ,
(21) (a) Dorfman, J. R.; Kirkpatrick, T.; Sengers, JAAn. Re. Chem1994
| e . 213. (b) Kirkpatrick, T.; Belitz, D.; Sengers, J. V. Stat. Phys2002 109
spatially long-range character of nonequilibrium fluctuations. (3-4), 373-405.
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Figure 6. (a) Normalized spatial autocorrelation functiarekis),
Re= 2. (b) Fourier transform of the former spatial autocorrelation
function.
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Figure 7. Variance,o? = [{z(t))?0— Z(t)[&, Re= 2, for the CL
position in the long time limit as a funtion of time fé&te = 2.

including self-organized criticalit§? linear responsé® non-
equilibrium fluctuating hydrodynamic¥;2>kinetic theory?®and
stochastic hydrodynamidg:27.28.30

C. Diffusion Coefficient. In Figure 7 is plotted the position
variance along in the long time limit as a funtion of time for
Re = 2. From eq 18, we can obtain the effective diffusion
coefficient of the fluid in the cell. We obtained the same value
for the effective diffusion coefficient in the three directiddss
=1.43x 1019m?s71, and as a consequence the fluid fluctuations

(22) Grinstein, G.; Lee, D. H.; Sachdev, Bhys. Re. Lett. 199Q 64, 1927.

(23) (a) Dufty, J. W. IrSpectral Line Shape®ende, B., Ed.; W. de Gruyter:
New York, 1981; p 1143. (bl.ong Range Correlation8Buchler, J. R., Dufty,
J. W., Kandrup, H. E., Eds.; Ann. NY Acad. Sci., Vol. 848; New York Academy
of Sciences: New York, 1998; Vol. 848, p 1.

(24) Garcia, A. L.; Mansour, M. M.; Lie, G. C.; Mareschal, M.; Clementi, E.
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could influence the diffusion of the probe molecule in some
spectroscopies.

V. Conclusions

(1) By applying the Langevin dynamics, we have developed
equations to computationally simulate the hydrodynamic fluc-
tuations in a microchannel.

(2) We have determined the relaxation time of the hydrody-
namic fluctuations in different volumes and Reynolds numbers
(Figure 4).

(3) We have performed a spectral analysis of the hydrodynamic
fluctuations for the CL velocity, foRe= 2, with the result that
temporal correlations are in the microsecond range and that the
thermal noise excites the hydrodynamic modes of low frequencies
(kHz). Also, we observed long-range spatial correlation, and the
wavenumbeq (m™1) is in the two digit range (Figures 5 and 6).

(4) We have determined the effective diffusion coefficient of
the fluid in the cell forRe= 2, which isDett = 1.43 x 10710
m?-s~1, in the order of magnitude of the measurements reported
in refs 12 and 13 for a similar system (Figure 7).
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VI. Appendix: Fluctuation Correlations for the
Random Stress Tensor

The correlations among the components of the random stress
tensor are given by ref 16:

S (r Osm(r' t) =
2K T17{ 01O + OOy — géikélm ot—t)o(r —r") (37)

In the case of =i, m =k, in Cartesian coordinates

(S (r s (r' V)=
Ay Ot — 1) 0(x; — X;) (X, — X)) O(%3 — X3') (38)

with Ay given by

A, = ZkBTn(l + %'k) (39)

To perform simulations, we need to estimate the coefficient
relating @sik(r,t)/ox¢) and the thermal noise. Deriving eq 38 with
respect tax,, we have

98 (r.t) Sk(r'at')D:
X
A

X = X

For thed function properties, including its derivative, consult

the ref 31. Considering egs 38 and 40 in the same volAivie
and lapsus of timé\t, we obtain

(5 )°0= AAV) Ay ™ (41)

Ot — 1) O(x, — %) (%, — %) 6(%3 — X5') (40)

and

(31) http//mathworld.wolfram.com/DeltaFunction.html, eq 14.
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o8, (r %0 Ak PN
Tk T A AV AN (42)
or, deriving inside the bracket
0 t
400 A - V80 (43)

We perform now the following approximation inside the left
bracket of the former equation:

Si(r 1) ~ B(r.H0* (44)
Finally, from egs 40, 41, 43, and 44, we can write
aSk(r ,t) Aikllz, —1/2
ReplacingAi by its value given in eq 39, we have
%k( t)
=& G (46)
9%

with C; given by

3
G= ZBik
=

and By given by

. \12
By = —2‘1’2(kBTn)”2(1 + g'k) (A%) AV (47)
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and
8Sk(r 1t) 1 t+At 8Sk(r !t) d
= — t =
x At! axk
Blk
Z t+At C

&)y dt= —AW(t) (48)

&(t) is the thermal noise, defined by its statistical properties,
namely

=0
[&(H) E()0=o(t — t)

that is, the correlation time of the noise is zero.
In eq 48, we use the definition of the Wiener’s process (see
refs 32 and 33), wherAW(t) is the “Wiener’s increment”.
ConsideringAxx = (AV)Y3, then eq 47 foBy becomes

(49)
(50)

. \12
By = —2‘”2(kBTn)1’2(AV)‘5’6(1 + g'k) (51)

Ci then becomes independent of the indeand we denote by
C, namely
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