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In addition to the fast correlation for local stochastic motion, the velocity correlation function in a fluid enclosed
within the pore boundaries features a slow long time-tail decay. At late times, the flow approaches that of an incompressible
fluid. Here, we consider the motion of a viscous fluid, at constant temperature, in a rectangular semipermeable channel.
The fluid is driven through the rectangular capillary by a uniform main pressure gradient. Tiny pressure gradients
are allowed perpendicular to the main flux. We solve numerically the three-dimensional Navier-Stokes equations
for the velocity field to obtain the steady solution. We then set and solve the Langevin equation for the fluid velocity.
We report hydrodynamic fluctuations for the center-line velocity together with the corresponding relaxation times as
a function of the size of the observing region and the Reynolds number. The effective diffusion coefficient for the
fluid in the microchannel is also estimated (Deff ) 1.43× 10-10 m2‚s-1 for Re) 2), which is in accordance with
measurements reported for a similar system (Stepisˇnik, J.; Callaghan, P. T.Physica B2000, 292, 296-301; Stepisˇnik,
J.; Callaghan, P. T.Magn. Reson. Imaging2001, 19, 469-472).

I. Introduction

In recent years, with the advance of nanotechnology, there has
been interest in the fabrication of nanoscale devices powered by1

or constructed using2 so-called “Brownian motors”. Also, a series
of pressure-sensitive microfluidic gates to regulate liquid flow
have been successfully fabricated.3 Yang and Kwok studied the
microfluid flow with hydrophobic channel walls with electro-
kinetic effects and Navier’s slip condition.4 Optical detection of
a single molecule in solution has become more and more
important.5-7 Lenne et al.8 and also Go¨sch et al.9 reported
hydrodynamic and electrophoretic flow profiling in microchannel
structures by single molecule fluorescence correlation spectros-
copy (FCS), where the flow measured showed a Poiseuille laminar
flow profile. Computer simulations of fluid hydrodynamics by
Alder and Wainwright10and Hagen et al.11revealed the existence
of slow molecular motion, that appears as a long time tail of the
velocity correlation function superposed on the fast exponential
decay of the propagating sound mode, which does not contribute
to the long time tail. At late times, the flow approaches that of
an incompressible fluid. This results were proved experimentally
by Stepisˇnik and Callaghan12,13who applied the NMR modulated

gradient spin-echo method (MGSE)14 to measure the diffusion
coefficient. In this work, we shall report the influence of
hydrodynamic fluctuations on the mean center-line velocity of
an incompressible fluid in a rectangular cross section micro-
capillary channel. With such an aim, we set and solve the coupled
Langevin equations for the three components of the fluid velocity.
We also report the relaxation time of the hydrodynamic
fluctuations as a function of the volume and Reynolds number.
In this first approximation to the problem, we consider the
temperature uniform and constant through the whole cell. As a
consequence, we neglect the hydrodynamic heat equation (energy
balance) in our development. This is justified, and as an example
we can consider that the heating effects in fluorescence correlation
spectroscopy (FCS) are negligible at the laser intensities used.
The steady-state difference,∆T, between the temperature of the
solution at the center of the Gaussian beam and the ambient
temperature is∆T e 10-6 K.15

II. Hydrodynamic Fluctuations

The hydrodynamic equations relevant to our problem (see ref
16) are as follows:

whereV(x,y,z,t), p(x,y,z,t), andF(x,y,z,t) are the velocity (m/s),
the pressure (N/m), and the mass density (kg/m3) of the fluid,
respectively. The symbolVi represents the components of the
velocity in the corresponding coordinates system. The dissipative
fluxes are the heat flowq (W/m2) and the deviatoric stress tensor
σ′ik (N/m2), to be distinguished from the stress tensorσik
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(9) Gösch, M.; Blom, H.; Holm, J.; Heino, T.; Rigler, R.Anal. Chem.2000,
72 (14), 3260-3265.

(10) Alder, B. J.; Wainwright, T. E.Phys. ReV. A 1970, 1, 18-21.
(11) Hagen, M. H. J.; Pagonabarraga, I.; Lowe, C. P.; Frenkel, D.Phys. ReV

Lett. 1997, 78 (19), 3785-3788.
(12) Stepisˇnik, J.; Callaghan, P. T.Physica B2000, 292, 296-301.
(13) Stepisˇnik, J.; Callaghan, P. T.Magn. Reson. Imaging2001, 19, 469-472.

(14) Callaghan, P. T.; Stepisˇnik, J. J. Magn. Res. A1995, 117, 118-122.
(15) Magde, D.; Edson, E. L.; Webb, W. W.Biopolymers1974, 13(1), 29-61.
(16) Lifshitz, E. M.; Pitaevskii, L. P.Statistical Physics; Course of Theoretical

Physics, Vol. 9, Part 2; Butterworth-Heinemann: Oxford, 2003.

∂F
∂t

+ ∇(Fv) ) 0 (1)

F
∂Vi

∂t
+ FVk

∂Vi

∂xk
) - ∂p

∂xi
+

∂σ′ik
∂xk

(2)

11917Langmuir2007,23, 11917-11923

10.1021/la702502q CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/16/2007



Hydrodynamic equations need to be supplemented with boundary
conditions. Molecular forces always exist between a viscous
fluid and a solid surface. These forces cause the fluid layer just
at the surface to be at rest and as a consequence have to be
considered as a boundary condition of the movement equations.
The velocity of the fluid is zero at the solid surfaces, and this
is the so-called no-slip boundary condition (V ) 0). This is not
our case of semipermeable walls to abandon the no-slip boundary
condition. For a recent review with a deep discussion on the
no-slip boundary condition, including microfluidics, see Lauga
et al.17and references therein. In any case, since we are interested
in bulk fluctuations here and our channel size is in the micrometer
range, the choice of boundary conditions would not affect our
results.

The (deviatoric) stress tensor and the heat flow are related to
the velocity by the Newton viscosity law and the Fourier law,
respectively. However, when fluctuations are present, there also
appear local stresses and spontaneous energy fluxes disconnected
from those gradients. The “random” contributions to the
dissipative fluxes will be designed bysik andg. The fluctuating
phenomenological laws then read as

The term inside the brackets in eq 4 cancels fori ) k. The
constantsη and ú are called viscocity coefficients (N‚s‚m-2)
where both are positives, andκ (W‚m-1‚K-1) is the thermal
conductivity. As a consequence of eq 4, the quantity∂σ′ik/∂xk in
the momentum balance (eq 2) can be written as

so that eq 2, for a viscous fluid in movement, can be expressed
as a single vectorial equation:

When the fluid can be considered as incompressible, then∇‚v
) 0. As a consequence, the equation of movement of an
incompressible viscous fluid is simply given by

This equation, without the last term, is the Navier-Stokes
equation. The first term in the right-hand side expresses
convection, the second term represents pressure variations, the
third term represents the viscous forces, and the fourth one
represents fluctuations. We observe that, for an incompressible
fluid, only one viscosity coefficient appears in the equation of
motion. As most of the fluids can be considered as (nearly)
incompressible, the shear viscosity coefficientη is the only
relevant one in practice. The ratio

is referred to as kinematic viscocity (J‚s‚kg-1) (while η itself is
referred to as the dynamic shear viscocity).

The energy dissipated in an incompressible fluid due to viscous
processes can be written (see ref 16) as

As already mentioned above, in this paper, we shall consider a
perfectly isothermal system, and this approximation neglects the
heating effects expressed by eq 10.

A. Discretization of the Langevin Equation for the Velocity.
To numerically solve eq 8, we need to perform a discretization.
This is achieved by multiplying both members by dt and
performing the integration in the interval (t,t + ∆t), namely

or

where the discretization of the stochastic forcing term has been
performed by employing eq 48 of the Appendix, where the
coefficientsCi and the “Wiener’s increment”∆W(t) are defined
and the discretization of the random force is justified in more
detail.

At the limit ∆t f dt, the mean values(v‚∇)v = (v ‚∇)v, ∇p

= ∇p, and ∇2v = ∇2v, while ∆W(t) ) dW(t). From the
developments in the Appendix, we need to recall here that the
“Wiener’s process” dW(t) is just a Gaussian stochastic process
of widthσ ) (dt)1/2. At each pass of the integration, we then have
to draw dW(t) and normalize the result properly. That is to say,
if RG is an aleatory number, with a Gaussian distribution, centered
in RG ) 0 and width 1, then we can write at each integration step
dW(t) ) (dt)1/2RG. To conclude the discretization process, eq 12
is transformed in the corresponding Euler’s equation, giving the
temporal evolution of the velocity, namely

The relaxation timeτσ of the hydrodynamic fluctuations is then

whereUCL is the center-line velocity (see below). From now
on, the averages〈...〉 are over the realizations of the stochastic
process.

In this paper, we shall be concerned with the evaluation of
several statistical parameters. A first basic quantity will be the
variance of the velocity, namely

(17) Lauga, E.; Brenner, M. P.; Stone, H. A.Handbook of Experimental Fluid
Dynamics; Foss, J., Tropea, C., Yarin, A., Eds.; Springer-Verlag: New York,
2005.
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Another quantity of central interest is the average position, namely

The corresponding variance of the position is

Associated toσr, an effective diffusion coefficient can be
defined as the long time limit (i.e., after transients due to initial
conditions have died out):

B. Equations for a Rectangular Cross Section Pipe.1. The
System.We consider an incompressible viscous fluid of kinematic
viscosityν and uniform densityF driven in a rectangular pipe
with rectangular cross section with the size along thex axis
(widthb) being much larger than the size along theyaxis (height
c). The length of the pipe is denoted byL. A schematic drawing
of the channel is shown in Figure 1. The flow is driven by a
uniform pressure gradient,∂zp ) K, along the pipe and parallel
to thez axis. The system is subjected to thermal noise at the
constant temperatureT. Furthermore, we assume tiny pressure
gradients perpendicular to thezdirection with∂xp) ∂yp) 10-2∂zp,
causing small axial fluid fluxes. In this sense, we can consider
our system as a semipermeable pipe. The existence of these
lateral fluxes allows the coupling of the three components of the
velocity field, and the nonexistence of them renders only one
equation. Also, these fluxes are common in experimental systems
as in pervaporation in channels; see, for instance, ref 18.

2. The Equations.To simplify the working equations, all
variables will be rendered dimensionless usingdh and the center-
line velocity UCL (both defined below). Hence, time will be
measured in units ofdhUCL

-1, pressure will be measured in units
of FUCL

2, the pressure gradient will be measured in units of
FUCL

2dh
-1, energy will be measured in units ofFUCL

2dh
3, and

forces will be measured in units ofFUCL
2dh

2. In addition, the
viscosityη will be measured in units ofFUCLdh and the random
force ∂xksik will be measured in units ofFUCL

2dh
-1.

The Reynolds number is the parameter governing the dynamics
of the system and is defined by

anddh is the hydraulic diameter, which for a rectangular cross
section pipe is

After having introduced all the previous quantities, we write
the dimensionless version of eq 8 as

or, if we split eq 21 in the three scalar equations corresponding
to each component (x,y,z) of the velocity (u,V,w), we have

At the steady state,∂x'u' ) ∂y'V' ) ∂z'w' ) 0.
To perform the numerical calculation, eq 21 can be written

as

Correspondingly, eq 14 can be written as

where we have used eqs 14, 19, and 52. We shall also need the
dimensionless constantC', which reads as

with τ′σ, the dimensionless relaxation time, related toC' by

III. Numerical Methods

Since all variables have been rendered dimensionless in the
previous section, from here on we shall omit the primes in all
the symbols. We start our numerical calculation by the corre-
sponding discretization of eq 25, which proceeds in various steps.
First, we write the vector (vn‚∇)vn dt in its components as

Next, the first component of eq 29 is discretized as

and analogously, for the other components. The vector 1/Re∇2vn

dt is treated in a similar fashion. First, it is split in its components
as(18) Villaluenga, J. P. G.; Cohen, Y.J. Membr. Sci.2005, 260, 119-130.

Figure 1. Schematic drawing of the channel.
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the first component is discretizated as

and analogously, for the other components.
We have considered equal increments in the three coordinates,

dx ) dy ) dz, of our rectangular grid. Consequently, we have
to comply with the numerical stability condition, known as CFL
(Courant-Friedrichs-Lewy), which reads for our case as

Taking the equal sign (most favorable case), we obtain for the
ratio of time to spatial increments

To perform the simulation surrounding the steady state, we solved
simultaneously the system of the three coupled Langevin
equations:

with

For the present work, we have performed five series of
simulations, with the external parameter values fixed for each
series. The values employed in each series of simulations are
summarized in Table 1.

The first step of the numerical procedure is the choice of the
volume dV and the corresponding dimensionless spatial grid
step dx', and in our case dx' ) dV1/3dh

-1. Next, the corresponding
dimensionless time step dt' is evaluated from the CFL condition,
dt' ) Re(dx')2/6. In selecting the number of temporal steps, the
code needs to run,Nt, and we consider the temporal interval of

3τ′σ enough for the dying out of the transients due to the initial
conditions. Hence,Nt ) 3τ′σ dt′-1, whereτ′σ ) C′-2. For instance,
if Re) 2 and dV) 10-18m3, we have dx' ) 0.0125, dt' ) 5.2094
× 10-5, C' ) -10.27,τ′σ ) 0.0095, andNt ) 546.

To numerically evaluate the steady state solution, [ui,j,k
0 , Vi,j,k

0 ,
wi,j,k

0 ], we proceed as follows: First, we initialize our working
grid by setting all the matrix components of the velocities equal
to zero, [ui,j,k, Vi,j,k, wi,j ,k] ) 0. We then fix the boundary
conditions:w(0,y,z) ) w(b,y,z) ) w(x,0,z) ) w(x,c,z) ) u(x,0,z)
) u(x,c,z) ) V(0,y,z) ) V(b,y,z) ) 0. The valuesu(0,y,z),u(b,y,z),
V(x,0,z), V(x,c,z), w(x,y,0), andw(x,y,L) are determined by the
proper set of eq 35. Next, we solve simultaneously these three
parts of eq 35. At every 10 time steps, we compute the difference
between the actual velocities [ui,j,k, Vi,j,k, wi,j ,k] and the velocities
in the previous verification. The maximum of the differences

is referred to as the error. Time integration of the equations is
stopped when the error is less than the tolerance defined at the
beginning of the process. We have found that a tolerance tol)
10-6 gives reasonable results for the steady state solution. In this
first part of our numerical procedure (namely, the evaluation of
the steady state solution) we use deterministic equations; that is,
random noise is not considered. In all cases investigated, we
obtained errors lower than the tolerance, indicating that the laminar
solutions are stable, as expected from the very small Reynolds
numbers employed in our calculations. An example of the steady
state solution obtained by the above-described procedure is shown
in Figures 2 and 3. In Figure 2 is shown the steady state solution
for the axial componentw) w(x,y) of the velocity in a rectangular
microchannel withRe) 2.

1
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2

F(νRe)3/2
(36)

Table 1. Simulations Parametersa

Re -Π0z UCL (m‚s-1) -K (105 × N‚m-3)

2 24 0.025 1.875
4 12 0.050 3.750
6 8 0.075 5.625
8 6 0.100 7.500
10 4.8 0.125 9.375

a b ) 50µm,c ) 200µm,L ) 800µm,dh ) 80µm,F ) 103 kg‚m-3,
η ) 10-3 N‚s‚m-2, dV ) 10-18 m3, dx ) (dV)1/3, Π0x ) Π0y ) 10-2Π0z,
and a grid of 50× 200 × 800 points.

Figure 2. Dimentionless steady state solution for the component
w) w(x,y) of the velocity forRe) 2 (see Table 1 for other parameter
values). The effect of the lateral pressure gradients∂xp and∂yp on
the velocity profile is negligible.

max([ui,j,k
t+10, Vi,j,k

t +10, wi,j,k
t+10] - [ui,j,k

t , Vi,j,k
t , wi,j,k

t ])
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In Figure 3 is displayed the energy dissipation per unit volume
for the same microchannel of Figure 2. We note that the energy
is mostly dissipated at the borders of the channel.

Once the steady state solution is evaluated, we start the second
part of our simulations, aiming to compute fluctuations around
the steady state solution due to thermal noise. Hence, we consider
the complete set of eq 35 with the random term to the three
evolution equations for the velocity components, solving the
system overNt temporal points andNR realizations of the
stochastic process. We obtain the perturbed three matrix
[ui,j,k,Vi,j,k,wi,j ,k]. To validate this procedure, we compared the
average of the center line velocity with the deterministic one.
The deviations were less than 0.01. We then analyzed the temporal
and spatial correlations of the velocity fluctuations, focusing our
study in the center line velocitywCL.

IV. Results

A. Relaxation Time of Velocity Fluctuations. We display
in Figure 4 the relaxation timeτσ of the fluid velocity fluctuations
as a function of the considered volumeδV and the Reynolds
numberRe. We observe in Figure 4 that, forδV ) 1 fl (10-18

m 3), τσ varies in the range 78µse τσ e 1.9 ms whenRevaries
in the range 2e Ree 10.

B. Autocorrelation Functions for the Central Line Velocity.
We have performed a spectral analysis of the hydrodynamic
fluctuations in the longitudinal component of the central line
velocity. Our main result is that thermal noise excites the collective
hydrodynamic modes at low frequencies (kHz). As an example
of our results, we show in Figure 5a the normalized temporal
autocorrelation function for the mean (over stochastic realizations)
central line (CL) velocity forRe ) 2. We observe that the
correlation function extends up to 40µs. Correspondingly, in
Figure 5b, the Fourier transform of the former autocorrelation
function (the spectral density of the CL velocity) goes up to the
kHz region.

Regarding the spatial correlation, we show in Figure 6a the
normalized spatial (zaxis) autocorrelation function for the mean
CL velocity. We can observe that the correlation is in the tenths
of a millimeter range. Correspondingly, the Fourier transform
of this function (Figure 6b) extends up to wavenumbers in the
range of 103 m-1. Our present results demonstrate the generic
spatially long-range character of nonequilibrium fluctuations.

This property was measured, indirectly, in light scattering
experiments on fluids subject to a temperature gradient in which
modifications to the Brillouin and Rayleigh lines were ob-
served.19,20Also, such long-range correlations appear generically
for a wide class of nonequilibrium states.21 The predictions of
this phenomenon have been made in a number of contexts,

(19) Beysens, D.; Garrabos, Y.; Zalczer, G.Phys. ReV. Lett.1980, 45, 403-
406; Wegdam, G. H.; Keulen, N. M.; Michielsen, J. C. F.Phys. ReV. Lett.1985,
55, 630-633.

(20) (a) Law, B. M.; Sengers, J. V.J. Stat. Phys.1989, 57, 531-547. (b) Law,
B. M.; Segré, P. N.; Gammon, R. W.; Sengers, J. V.Phys. ReV. A 1990, 41,
816-824.

(21) (a) Dorfman, J. R.; Kirkpatrick, T.; Sengers, J. V.Ann. ReV. Chem.1994,
45, 213. (b) Kirkpatrick, T.; Belitz, D.; Sengers, J. V.J. Stat. Phys.2002, 109
(3-4), 373-405.

Figure 3. Energy dissipation per unit volume corresponding to the
velocity profile shown in Figure 2.Re ) 2, and other parameter
values are quoted in Table 1. The asymmetry of the surface is because
of the lateral pressure gradients∂xp and∂yp.

Figure 4. Relaxation time of the hydrodynamic fluctuations,τσ, as
a function of the considered volume,δV, and the Reynolds number,
Re (eqs 26 and 52).

Figure 5. Normalized autocorrelation functions for〈wCL〉, Nr )
200,Nt ) 546, andRe) 2: (a) temporal and (b) Fourier transform
of the former temporal autocorrelation function (the spectral density).
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including self-organized criticality,22 linear response,23 non-
equilibrium fluctuating hydrodynamics,24,25kinetic theory,26and
stochastic hydrodynamics.10,27,28,30

C. Diffusion Coefficient. In Figure 7 is plotted the position
variance alongz in the long time limit as a funtion of time for
Re ) 2. From eq 18, we can obtain the effective diffusion
coefficient of the fluid in the cell. We obtained the same value
for the effective diffusion coefficient in the three directionsDeff

) 1.43×10-10m2‚s-1, and as a consequence the fluid fluctuations

could influence the diffusion of the probe molecule in some
spectroscopies.

V. Conclusions

(1) By applying the Langevin dynamics, we have developed
equations to computationally simulate the hydrodynamic fluc-
tuations in a microchannel.

(2) We have determined the relaxation time of the hydrody-
namic fluctuations in different volumes and Reynolds numbers
(Figure 4).

(3) We have performed a spectral analysis of the hydrodynamic
fluctuations for the CL velocity, forRe) 2, with the result that
temporal correlations are in the microsecond range and that the
thermal noise excites the hydrodynamic modes of low frequencies
(kHz). Also, we observed long-range spatial correlation, and the
wavenumberq (m-1) is in the two digit range (Figures 5 and 6).

(4) We have determined the effective diffusion coefficient of
the fluid in the cell forRe) 2, which isDeff ) 1.43× 10-10

m2‚s-1, in the order of magnitude of the measurements reported
in refs 12 and 13 for a similar system (Figure 7).
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VI. Appendix: Fluctuation Correlations for the
Random Stress Tensor

The correlations among the components of the random stress
tensor are given by ref 16:

In the case ofl ) i, m ) k, in Cartesian coordinates

with Aik given by

To perform simulations, we need to estimate the coefficient
relating (∂sik(r ,t)/∂xk) and the thermal noise. Deriving eq 38 with
respect toxk, we have

For theδ function properties, including its derivative, consult
the ref 31. Considering eqs 38 and 40 in the same volume∆V
and lapsus of time∆t, we obtain

and

(22) Grinstein, G.; Lee, D. H.; Sachdev, S.Phys. ReV. Lett.1990, 64, 1927.
(23) (a) Dufty, J. W. InSpectral Line Shapes; Wende, B., Ed.; W. de Gruyter:

New York, 1981; p 1143. (b)Long Range Correlations; Buchler, J. R., Dufty,
J. W., Kandrup, H. E., Eds.; Ann. NY Acad. Sci., Vol. 848; New York Academy
of Sciences: New York, 1998; Vol. 848, p 1.

(24) Garcia, A. L.; Mansour, M. M.; Lie, G. C.; Mareschal, M.; Clementi, E.
Phys. ReV. A 1987, 36 (9), 4348-4355.

(25) Lutsko, J. F.; Dufty, J. W.Phys. ReV. E 2002, 66, 041206.
(26) Kirkpatrick, T. R.; Cohen, E. G. D.; Dorfman, J. R.Phys. ReV. A 1986,

26, 972.
(27) Schmitz, R.Phys. Rep.1988, 171, 1-58.
(28) Ortiz de Za´rate, J. M.; Sengers, J. V.J. Stat. Phys.2004, 115, 1341-1359.
(29) Ortiz de Za´rate, J. M.; Sengers, J. V.Hydrodynamic Fluctuations in

Fluids and Fluid Mixtures; Elsevier: Amsterdam, 2006.
(30) Cattuto, C.; Brito, R.; Marconi, U. M. B.; Nori, F.; Soto, R.Phys. ReV.

Lett. 2006, 96, 178001-178003. (31) http//mathworld.wolfram.com/DeltaFunction.html, eq 14.

Figure 6. (a) Normalized spatial autocorrelation function (z axis),
Re) 2. (b) Fourier transform of the former spatial autocorrelation
function.

Figure 7. Variance,σ2 ) 〈(z(t))2〉 - 〈z(t)〉2, Re ) 2, for the CL
position in the long time limit as a funtion of time forRe) 2.

〈sik(r ,t)slm(r ′,t′)〉 )

2kBTη(δilδkm + δimδkl - 2
3

δikδlm) δ(t - t′) δ(r - r ′) (37)

〈sik(r ,t)sik(r ′,t′)〉 )
Aik δ(t - t′) δ(x1 - x1′) δ(x2 - x2′) δ(x3 - x3′) (38)

Aik ) 2kBTη(1 +
δik

3 ) (39)

∂〈sik(r ,t) sik(r ′,t′)〉
∂xk

)

Aik

xk - xk′
δ(t - t′) δ(x1 - x1′) δ(x2 - x2′) δ(x3 - x3′) (40)

〈sik(r ,t)2〉 ) Aik(∆V)-1(∆t)-1 (41)
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or, deriving inside the bracket

We perform now the following approximation inside the left
bracket of the former equation:

Finally, from eqs 40, 41, 43, and 44, we can write

ReplacingAik by its value given in eq 39, we have

with Ci given by

andBik given by

and

ê(t) is the thermal noise, defined by its statistical properties,
namely

that is, the correlation time of the noise is zero.
In eq 48, we use the definition of the Wiener’s process (see

refs 32 and 33), where∆W(t) is the “Wiener’s increment”.
Considering∆xk ) (∆V)1/3, then eq 47 forBik becomes

Ci then becomes independent of the indexi, and we denote by
C, namely

LA702502Q

(32) Gardiner, C. W.Handbook of Stochastic Methods for Physics, Chemistry
and the Natural Sciences; Springer-Verlag: Berlin, 1985.

(33) Scherer, C.Métodos Computacionaisda Fı́sica; Editora Livraria da Fı´sica,
USP: Sa˜o Paulo, 2005 (in Portuguese).

∂〈sik(r ,t)2〉
∂xk

) -
Aik

∆xk
(∆V)-1(∆t)-1 (42)

〈sik(r ,t)
∂sik(r ,t)

∂xk
〉 ) -

Aik

2∆xk
(∆V)-1(∆t)-1 (43)

sik(r ,t) ∼ 〈sik(r ,t)2〉1/2 (44)

∂sik(r ,t)

∂xk
) -

Aik
1/2

2∆xk
(∆V)-1/2 ê(t) (45)

∂sik(r ,t)

∂xk
) ê(t) Ci (46)

Ci ) ∑
k)1

3

Bik

Bik ) -2-1/2(kBTη)1/2(1 +
δik

3 )1/2

(∆xk)
-1(∆V)-1/2 (47)

∂sik(r ,t)

∂xk

)
1

∆t
∫t

t+∆t
∂sik(r ,t)

∂xk

dt )

∑
k)1

3

Bik

∆t
∫t

t+∆t
ê(t) dt )

Ci

∆t
∆W(t) (48)

〈ê(t)〉 ) 0 (49)

〈ê(t) ê(t′)〉 ) δ(t - t′) (50)

Bik ) -2-1/2(kBTη)1/2(∆V)-5/6(1 +
δik

3 )1/2

(51)

C ) -21/2(3-1/2 + 1)(kBTη)1/2(∆V)-5/6 (52)
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