
1341

0022-4715/04/0600-1341/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 115, Nos. 5/6, June 2004 (© 2004)

On the Physical Origin of Long-Ranged Fluctuations
in Fluids in Thermal Nonequilibrium States

José M. Ortiz de Zárate1 and Jan V. Sengers2

1 Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense,
E28040 Madrid, Spain; e-mail: jmortizz@fis.ucm.es

2 Institute for Physical Science and Technology and Departments of Chemical Engineering
and Mechanical Engineering, University of Maryland, College Park, Maryland 20742;
e-mail: sengers@ipst.umd.edu

Received September 22, 2003; accepted January 21, 2004

Thermodynamic fluctuations in systems that are in nonequilibrium steady states
are always spatially long ranged, in contrast to fluctuations in thermodynamic
equilibrium. In the present paper we consider a fluid subjected to a stationary
temperature gradient. Two different physical mechanisms have been identified
by which the temperature gradient causes long-ranged fluctuations. One cause is
the presence of couplings between fluctuating fields. Secondly, spatial variation
of the strength of random forces, resulting from the local version of the fluctua-
tion-dissipation theorem, has also been shown to generate long-ranged fluctua-
tions. We evaluate the contributions to the long-ranged temperature fluctuations
due to both mechanisms. While the inhomogeneously correlated Langevin noise
does lead to long-ranged fluctuations, in practice, they turn out to be negligible
as compared to nonequilibrium temperature fluctuations resulting from the
coupling between temperature and velocity fluctuations.

KEY WORDS: Fluctuating hydrodynamics; long-ranged correlations; nonequi-
librium fluctuations; nonequilibrium steady states; temperature fluctuations.

1. INTRODUCTION

Equal-time (or static) correlation functions of fluctuating dynamical
variables in fluids in thermodynamic equilibrium states are generically spa-
tially short ranged, except in the vicinity of a critical point. On the other
hand, in nonequilibrium steady states, correlations of thermodynamic
fluctuations become spatially long ranged, (1–3) typically encompassing the
spatial size of the system. (2, 4)



A theoretical treatment of fluctuations in nonequilibrium states is com-
monly based on fluctuating hydrodynamics. Fluctuating hydrodynamics
was originally formulated for dealing with fluctuations of hydrodynamic
variables in fluids in thermodynamic equilibrium states. The ordinary bal-
ance equations of hydrodynamics are transformed into a set of stochastic
partial differential equations by assuming that the dissipative fluxes contain
an average part (related to the corresponding forces by the usual linear
laws), plus an stochastic part (which averages to zero). Since fluctuations in
equilibrium are small, the resulting equations for the fluctuating fields are
linearized, yielding a set of coupled Langevin equations where stochastic
dissipative fluxes play the role of random-noise terms. (5, 6) The autocorrela-
tion functions of the different components of the random dissipative fluxes
are then related to the relevant thermodynamic and transport properties by
application of the fluctuation-dissipation theorem (7) (FDT).

In nonequilibrium steady states one is interested in the fluctuations of
the dynamical variables around their local equilibrium values. For this
application fluctuating hydrodynamics is extended by applying a local
version of the FDT. (8) A consequence of this extension is that the noise
correlation functions in inhomogeneous steady states now, in principle,
may become dependent on the position through the spatial dependence
of the corresponding physical quantities. Thus, in nonequilibrium states,
the correlations of the noise appearing in the fluctuating hydrodynamic
equations are in many cases inhomogeneous.

A review of the literature indicates that nonequilibrium constraints
may cause long-ranged nonequilibrium fluctuations by two different
mechanisms:

1. A first mechanism results from the spatial dependence of the noise
autocorrelation functions, (9–15) specified in accordance with a local FDT, as
explained above.

2. A second mechanism is the generic existence of nonequilibrium
hydrodynamic couplings between fluctuating fields. (3, 16–19) This generates
long-ranged nonequilibrium fluctuations even in the absence of any spatial
dependence of the noise correlation, as in the case of an isothermal fluid
subjected to shear, (20–23) or isothermal reaction-diffusion problems. (24, 25)

The nonequilibrium hydrodynamic couplings (second mechanism)
usually arise from the advection terms in the hydrodynamic equations.
Since these same terms cause the equilibrium long-time tails in the correla-
tion functions, (19) it is not a surprise that the importance of such mode-
coupling effects for generating long-ranged fluctuations was initially dem-
onstrated within the framework of kinetic theory by researchers familiar

1342 Ortiz de Zárate and Sengers



with long-time tails. (26–28) Generally the two mechanisms mentioned above
have been investigated independently: some authors have focussed on the
spatial dependence of the autocorrelation function of the Langevin forces
and others have focussed on the effect of mode couplings. As a conse-
quence, the relative importance of these two physical mechanisms for
originating long-ranged fluctuations in actual systems has remained unclear.

To elucidate the relative importance of the two mechanisms we
consider here an incompressible fluid with a nonzero thermal expansion
coefficient (a ] 0) subjected to a stationary temperature gradient. This
situation can be realized in practice by confining the fluid between two
horizontal plates that are maintained at two different temperatures. We
shall refer to this case as the Rayleigh–Bénard problem (29) with the under-
standing that we only consider stationary nonequilibrium states below the
onset of convection. This condition is satisfied for states with negative
Rayleigh numbers (the density gradient induced by the temperature gra-
dient coinciding with the direction of gravity) and for states with positive
Rayleigh numbers (the density gradient induced by the temperature gra-
dient being opposite to the direction of gravity) below the critical Rayleigh
number Rc. The Rayleigh–Bénard problem, thus defined, is of special
interest, since for this problem we are able to evaluate the autocorrelation
function of the nonequilibrium temperature fluctuations taking into
account both mechanisms so as to obtain an assessment of their mutual
importance. Moreover, for this case the theoretical predictions can be
readily tested by light-scattering experiments (30, 31) or shadowgraph experi-
ments. (32, 33)

Our calculation of the contributions to the long-ranged nonequilib-
rium temperature fluctuations from the two mechanisms will proceed in
two steps. First, in Section 2, we neglect the hydrodynamic coupling
between temperature and velocity fluctuations, so that the Rayleigh–
Bénard problem reduces to a simple heat-conduction problem. Specifically,
we show how the spatial dependence of the autocorrelation function of
the random heat flux leads to the presence of long-ranged temperature
fluctuations. Next, in Section 3, we consider the same Rayleigh–Bénard
problem but no longer neglect the hydrodynamic coupling between tem-
perature and velocity fluctuations. Specifically, we show how the existence
of a coupling between temperature and velocity fluctuations further con-
tributes to the generic long-ranged nature of the equal-time autocorrelation
function of the temperature fluctuations. For mathematical simplicity we
do not include any effects from gravity, which for negative Rayleigh
numbers turns out to be a good approximation. (34) Finally, in Section 4, we
analyze the relative importance of the nonequilibrium fluctuations arising
from both mechanisms. We conclude that the effects due to the spatial
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inhomogeneity of the noise correlations in the Rayleigh–Bénard problem
are completely negligible as compared to the long-ranged nonequilibrium
fluctuations induced by the coupling between temperature and transverse-
velocity fluctuations. We also discuss in Section 4 how this conclusion may
be understood in a more general context.

2. NONEQUILIBRIUM FLUCTUATIONS DUE TO

INHOMOGENEOUSLY CORRELATED RANDOM HEAT FLUX

We consider a system bounded by two horizontal plates located at
z=0 and z=L and maintained at different temperatures. The local tem-
perature in the system between the plates can be decomposed as:

T(r, t)=T0(r)+dT(r, t), (1)

where T0(r) is the average temperature at position r. If the temperatures of
the two plates are kept constant, the system reaches a steady state and T0(r)
does not actually depend on the time t. If we assume the thermal conduc-
tivity l of the sample to be constant in the relevant range of temperatures,
the average temperature T0 will vary linearly with the vertical coordinate z:

T0(z)=T0
51+b 1 z

L
−

1
2
26 , (2)

where T0=T0(L/2) is the average temperature in the layer and b=
L(NT0)/T0, with NT0 being the magnitude of the uniform vertical tempera-
ture gradient.

In this section we consider only temperature fluctuations dT(r, t) and
disregard any possible fluctuations of the fluid velocity. As mentioned in
Section 1, we do so as to concentrate here only on nonequilibrium effects
arising from inhomogeneously correlated noise, but the analysis can also be
considered as applying to heat conduction in a solid. If we neglect the
coupling between velocity and temperature fluctuations, the spatiotemporal
evolution of the temperature fluctuations dT(r, t) will be governed by the
heat-conduction equation:

“

“t
dT(r, t)=DTN2 dT(r, t) −

1
rcP

N · dQ(r, t), (3)

where DT is the local thermal diffusivity, r the local density, and cP the
local isobaric specific heat capacity. In Eq. (3), dQ(r, t) denotes a random
heat flux in accordance with the principle of fluctuating hydrodynamics. (5, 6)
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The average value of OdQ(r, t)P=0, and the correlations among their
components are given by: (5, 17)

OdQg
i (r, t) · dQj(r −, t −)P=2kBlT2

0(r) d(r − r −) d(t − t −) dij

=2kBlT0
2 51+b 1 z

L
−

1
2
262

d(r − r −) d(t − t −) dij,
(4)

where kB is Boltzmann’s constant. Equation (4) is the fluctuation-dissipa-
tion theorem (FDT) for fluctuations around equilibrium, but the equilib-
rium temperature has been replaced with its local value T0(r) as given by
Eq. (2) In applying a local equilibrium version of the FDT we are making
an assumption which, ultimately, requires justification from microscopic
nonequilibrium statistical mechanics. (8, 35) We interpret Eq. (3) as a linear
Langevin equation where the term N · dQ(r, t) plays the role of an inho-
mogeneously correlated random force. This random force is expressed as
the divergence of a vector to assure that fluctuations preserve local energy
balance.

To solve Eq. (3), we perform Fourier transforms in time and in the
horizontal XY-plane. However, to incorporate boundary conditions for the
fluctuations dT(r, t)=0 at z=0 and z=L, we do not Fourier transform in
the z-coordinate, but instead expand the solution in a Fourier sine series:

dT(w, q ||, z)= C
.

N=1
TN(w, q ||) sin 1Np

L
z2 , (5)

where w is the frequency of the fluctuations and q ||={qx, qy} is the wave
vector of the fluctuations in the horizontal XY-plane. Substituting Eq. (5)
into Eq. (3), assuming that all the thermophysical properties are constants,
we readily solve for the coefficients TN(w, q ||) and obtain:

TN(w, q ||)=
− FN(w, q ||)

rcP[iw+DT(N2p2

L2 +q2
||)]

, (6)

where q2
||=q2

x+q2
y, and where FN(w, q ||) are the Fourier sine series coeffi-

cients of the random force N · dQ(r, t):

FN(w, q ||)=
2
L

F
L

0
dz sin 1Np

L
z2 [N · dQ](w, q ||, z). (7)
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In Eq. (7),

[N · dQ](w, q ||, z)=iqx dQx(w, q ||, z)+iqy dQy(w, q ||, z)+“z dQz(w, q ||, z)

is the Fourier transform of N · dQ(r, t) in time and in the horizontal x
and y coordinates. To calculate the correlation function OdTg(w, q ||, z) ·
dT(w −, q −

||, z −)P of the temperature fluctuations we need the correlation
functions OFg

N(w, q ||) · FM(w −, q −

||)P of the Fourier components of the
random force [N · dQ](w, q ||, z). These correlation functions can be com-
puted from the definition (7) of FN(w, q ||) by applying a double Fourier
transform in t and t − and in the horizontal variables x and y, to the right-
hand side of Eq. (4). We then find that these correlation functions can be
expressed as:

OFg
N(w, q ||) · FM(w −, q −

||)P=
8kBlT0

2

L3 (2p)3 d(w − w −) d(q || − q −

||) ÃNM(q||),
(8)

where the dimensionless functions ÃNM(q||) are given by:

ÃNM(q||)=L F
L

0
F

L

0
dz dz − sin 1Np

L
z2 sin 1Mp

L
z −2

× (q2
||+“z“zŒ) ·351+b 1 z

L
−

1
2
262

d(z − z −)4 . (9)

To evaluate the double integral of the derivatives of the delta function
contained in Eq. (9), we perform a couple of integrations by parts to move
the differential operators from the delta function to the preceding sine
functions. The resulting integrals can be readily evaluated and the final
expression for ÃNM(q||) is presented in the Appendix (see Eq. (28)).

We now have all the information needed for the calculation of the
autocorrelation function OdTg(w, q ||, z) · dT(w −, q −

||, z −)P of the temperature
fluctuations. In view of Eq. (8) it is evident that it will be expressed as:

OdTg(w, q ||, z) · dT(w −, q −

||, z −)P=F(w, q||, z, z −)(2p)3 d(w − w −) d(q || − q −

||),
(10)

which is expected, since translational symmetries in time and in the
horizontal plane make the correlation function OdTg(r ||, z, t) · dT(r −

||, z −, t −)P
to depend only on the differences t − t − and r || − r −

||. In Eq. (10) the function
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F(w, q||, z, z −) is represented by a double Fourier series in the variables z
and z −:

F(w, q||, z, z −)=
8kBlT0

2

L3r2c2
P

C
.

N=1
C
.

M=1
sin 1Np

L
z2 sin 1Mp

L
z −2

×
ÃNM(q||)

[− iw+DT(N2p2

L2 +q2
||)][iw+DT(M2p2

L2 +q2
||)]

. (11)

Our goal here is to calculate the equal-time (or static) autocorrelation
function, OdTg(q ||, z, t) · dT(q −

||, z −, t)P. Applying a double inverse Fourier
transform in w and w − to Eq. (10), we obtain:

OdTg(q ||, z, t) · dT(q −

||, z −, t)P=F(q||, z, z −)(2p)2 d(q || − q −

||), (12)

where F(q||, z, z −)=(2p)−1 > dw F(w, q||, z, z −). The w integration of
Eq. (11) for F(w, q||, z, z −) yields:

F(q||, z, z −)=
8kBT0

2

rcPL
C
.

N=1
C
.

M=1

ÃNM(q̃||)
(N2p2+M2p2+2q̃2

||)

× sin 1Np

L
z2 sin 1Mp

L
z −2 , (13)

where q̃||=q||L is a dimensionless wave number, and where we have made
use of the definition of the thermal diffusivity DT=l/rcP. With the help of
Eqs. (30a) and (30b) presented in the Appendix, the sum of the trigonome-
tric series above over the index M can be performed exactly, and we finally
obtain:

F(q||, z, z −)=
kB

rcP
T2

0(z) d(z − z −)+FNE(q||, z, z −), (14)

where we have collected the nonequilibrium contribution into the function:

FNE(q||, z, z −)=
2kBT0

2

rcPL
C
.

N=1

b2

N2p2+q̃2
||

sin 1Np

L
z2 sin 1Np

L
z −2 . (15)

We observe in Eq. (14) that the equal-time autocorrelation function for
the temperature fluctuations is expressed as a sum of a short-ranged local
equilibrium contribution and a long-ranged nonequilibrium contribution,
the latter given by Eq. (15). The local-equilibrium contribution is the same
as the one obtained from the theory of equilibrium fluctuations, (36, 37) but
with the uniform equilibrium temperature replaced with the local nonequi-
librium value, T0(r), which in our case is given by Eq. (2).
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It is evident that the nonequilibrium contribution (15) to the tempera-
ture fluctuations arises from the fact that we have used a local version of
the FDT, so that the right-hand side of Eq. (4) has become dependent on
the coordinate z.

Since we have neglected here the presence of velocity fluctuations, the
problem of fluctuations in a fluid subjected to a stationary NT0 reduces to
that of fluctuations in the nonequilibrium heat-conduction equation, which
case has been considered by a number of other authors. Actually, if we
take q||=0 in Eq. (15), we reproduce previous results of Garcia et al. (11)

and of Malek Mansour et al., (12) for the horizontal average of the tempera-
ture fluctuations. Alternatively, taking q||=0 in Eq. (15) can be interpreted
as reducing the original problem to one spatial dimension, in which case we
reproduce the result of Breuer and Petruccione, (14) obtained by solving the
one-dimensional Fokker–Planck equation corresponding to the Langevin
equation considered here.

The sum of the series in Eq. (15) may be performed exactly, yielding:

FNE(q||, z, z −)=
kBT0

2
b2

2rcPL
3cosh[q̃||(1 − |z − zŒ|

L )]
q̃|| sinh(q̃||)

−
cosh[q̃||(1 − z+zŒ

L )]
q̃|| sinh(q̃||)

4 . (16)

The nonequilibrium contribution to the equal-time correlation function in
real space is obtained by applying a double inverse Fourier transform to
OdTg(q ||, z, t) · dTg(q −

||, z −, t)P. As is to be expected from the translational
symmetry of the problem, it will depend on the difference r || − r −

||.
Specifically, separating OdTg(r, t) · dT(r −, t)P into an equilibrium part and a
nonequilibrium part, we obtain for the nonequilibrium contribution to the
intensity of temperature fluctuations:

OdTg(r, t) · dT(r −, t)PNE

=
2kBT0

2
b2

rcPL
F

.

0
dq|| C

.

N=1

2pq||J0(q||r||)
N2p2+q̃2

||

sin 1Np

L
z2 sin 1Np

L
z −2 , (17)

where r|| is the distance in the horizontal XY-plane between the two points
r and r − at which the correlation function is evaluated. Equation (17)
diverges when r=r −, indicating that, in three-dimensional heat conduction,
some short-range nonequilibrium contribution is present in addition to the
long-ranged contribution.

We emphasize that some previous results in the literature (11, 12) refer
to averages over the horizontal plane, while we have obtained here the
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complete expression for the temperature fluctuations as a function of the
wave number q||. The divergence of OdTg(r, t) · dT(r −, t)PNE in real space
when r=r −, is eliminated by the averaging procedure used elsewhere. (11, 12)

Such horizontal averaging makes the three-dimensional problem equivalent
to one-dimensional heat conduction in the segment [0, L], studied by
Breuer and Petruccione, (14) where such a divergence does not exist. Pro-
bably the presence of a short-range contribution manifested as a divergence
in real space when r=r −, is the cause of the disagreement found (11) with the
results of Liu and Oppenheim, (38) the latter referring to the actual correla-
tion function, as considered here.

It is also interesting to note that, in the heat-diffusion problem con-
sidered here, the long-ranged nonequilibrium contribution to the tempera-
ture fluctuations is proportional to NT2

0; in contrast to a nonequilibrium
correction proportional to N ln(T0) found for the mass-diffusion problem
by Tremblay et al. (10) The reason for that is the fact that in the FDT for the
random heat flow the temperature appears squared, while in the FDT for
random diffusive fluxes considered by Tremblay et al., (10) the temperature
itself appears as a multiplicative factor.

We conclude this section by pointing out that the validity of Eq. (17)
to describe the nonequilibrium temperature fluctuations, averaged over a
horizontal plane (q||=0), has been verified by numerically solving the
stochastic heat-conduction equation. (11)

3. NONEQUILIBRIUM FLUCTUATIONS DUE TO HYDRODYNAMIC

COUPLING BETWEEN FLUCTUATING FIELDS

To evaluate the long-ranged nonequilibrium temperature fluctuations
that originate from the coupling between hydrodynamic modes, we con-
sider the same problem as in Section 2, but we now take into account that
velocity fluctuations are present in addition to temperature fluctuations.
We consider fluctuations around the steady-state conductive solution,
where the temperature distribution T0(z) is again given by Eq. (2), and
where the local fluid velocity averaged over fluctuations is everywhere zero.
Specifically, we need to account for a coupling between temperature fluc-
tuations and the fluctuations of the velocity component parallel to the
gradient, the contribution of which was neglected in Section 2. To describe
the spatiotemporal evolution of fluctuations around (2) we shall use here
the Boussinesq approximation for the equations of fluctuating hydrody-
namics. Use of the Boussinesq approximation implies that we neglect the
sound modes responsible for the Brillouin component of the structure
factor and consider only contributions from the temperature fluctuations to
the structure factor. (4, 29)
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To further simplify the calculations of this section, we shall neglect
gravity effects, which turns out to be a good approximation in the case of
negative Rayleigh numbers, (4) for which the conductive state (2) will always
be stable. Then the spatiotemporal evolution of the temperature and veloc-
ity fluctuations will be given by:

“

“t
dT(r, t)=DTN2 dT(x, t) − NT0 duz(r, t) −

1
rcP

N · dQ(r, t), (18a)

“

“t
[N2 duz(r, t)]=n N2[N2 duz(r, t)]+

1
r

{N × N × [N · dP(r, t)]}z, (18b)

where duz(r, t) are the fluctuations in the Z-component of the fluid velocity,
and where n is the kinematic viscosity of the fluid. Equations (18) are the
linearized Boussinesq equations supplemented with random noise terms in
the absence of gravity. (4, 29) In accordance with fluctuating hydrodynamics,
we now need to consider in addition to dQ(r, t) a second random dissipa-
tive flux, which is a random viscous stress tensor dP(r, t), appearing in
Eq. (18b) for duz(r, t). The correlations among the components of dP(r, t)
are again obtained by applying the FDT locally, so that:

OdPij(r, t) · dPkl(r −, t −)P

=2kBgT0(z)(dikdjl+dildjk) d(r − r −) d(t − t −)

=2kBgT0
51+b 1 z

L
−

1
2
26 (dikdjl+dildjk) d(r − r −) d(t − t −), (19)

where g is the shear viscosity (g=nr). As regards a comparison with the
classical work of Landau and Lifshitz, (5, 17) we note that we are using here
the FDT for an incompressible fluid, so that the contribution of the bulk
viscosity z is neglected. Just as in Eq. (4) for the random heat flux, Eq. (19)
contains the local average temperature T0, which depends on z in accor-
dance to Eq. (2). Regarding the boundary conditions, like in Section 2, we
continue to use perfectly conducting walls for the temperature fluctuations:
dT(x ||, 0, t)=dT(x ||, L, t)=0. For the fluctuations in the vertical compo-
nent of the velocity we adopt here, for the sake of mathematical simplicity,
stress-free boundary conditions. These allow us to look for the solution of
the Fourier-transformed Eqs. (18) in terms of a Fourier sine series:

dT(w, q ||, z)= C
.

N=1
TN(w, q ||) sin 1Np

L
z2 ,

duz(w, q ||, z)= C
.

N=1
wN(w, q ||) sin 1Np

L
z2 .

(20)
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Fourier transforming Eqs. (18) in time t and in the horizontal coordinates
x and y, representing the random-forces in a Fourier sine series, we readily
deduce for the functions TN(w, q ||) and wN(w, q ||):

TN(w, q ||)=
FN(w, q ||) − NT0 wN(w, q ||)

rcP[iw+DT(N2p2

L2 +q2
||)]

, (21a)

wN(w, q ||)=
− GN(w, q ||)

r(N2p
2

L2 +q2
||)[iw+n(N2p2

L2 +q2
||)]

. (21b)

In Eq. (21a) FN(w, q ||) are again the coefficients of the Fourier sine series
for the Fourier-transform [N · dQ](w, q ||, z) of the random force N · dQ(r, t)
given by Eq. (7), while GN(w, q ||) in Eq. (21b) are the coefficients of the
Fourier sine series for the corresponding Fourier transform {N × N ×
[N · dP]}z (w, q ||, z) for the second random force {N × N × [N · dP(r, t)]}z:

GN(w, q ||)=
2
L

F
L

0
dz sin 1Np

L
z2 {N × N × [N · dP]}z (w, q ||, z). (22)

To determine the autocorrelation function for the temperature fluc-
tuations, we observe from Eq. (21a) that we need various correlation func-
tions: OFg

N(w, q||) · FM(w −, q −

||)P, OFg
N(w, q||) · wM(w −, q −

||)P, and Owg
N(w, q||) ·

wM(w −, q −

||)P. We first note that the random heat flux and the random stress
tensor are uncorrelated, so that OFg

N(w, q||) · wM(w −, q −

||)P=0. For the same
reason, the correlation function OFg

N(w, q||) · FM(w −, q −

||)P remains the same
as the one calculated in Section 2 in the absence of velocity fluctuations
(see Eqs. (8) and (9): this is the main reason why we presented the calculation
in two steps). Finally, the correlation functions Owg

N(w, q ||) · wM(w −, q −

||)P
can be calculated from the definition (21) of wN(w, q ||), the definition (22)
of GN(w, q ||), and the multiple Fourier transform of Eq. (19) in t and t − and
in the horizontal variables x, x −, y, and y −. After some long algebra we
obtain

Owg
N(w, q ||) · wM(w −, q −

||)P

=
8kBT0

r2L5

(2p)3 d(w − w −) d(q || − q −

||) q2
|| B̃NM(q||)

(N2p2

L2 +q2
||)(M2p2

L2 +q2
||)[− iw+n(N2p2

L2 +q2
||)][iw+n(M2p2

L2 +q2
||)]
(23)
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with

B̃NM(q||)=L3 F
L

0
dz F

L

0
dz − sin 1Np

L
z2 sin 1Mp

L
z −2

×35q4
||+q2

||
1 “

2

“z2+
“

2

“z −2+4
“

“z
“

“z −
2+

“
2

“z2

“
2

“z −2
6

×51+b 1 z
L

−
1
2
26 d(z − z −)4 . (24)

To calculate the coefficients B̃NM(q||), we follow the same procedure
described in Section 2 for the calculation of ÃNM(q||). The resulting expres-
sion is long and not very informative, so we give it in the Appendix (see
Eq. (29)).

We now have all the ingredients needed to actually calculate the auto-
correlation function of the temperature fluctuations. We first observe that,
since both Eq. (8) and Eq. (23) contain products of delta functions, the
autocorrelation OdTg(w, q ||, z) · dT(w −, q −

||, z −)P, as expected, can be cast in
the same form, Eq. (10), obtained in Section 2 in the absence of velocity
fluctuations. In addition, since OFg

N(w, q||) · wM(w −, q −

||)P=0, the function
F(w, q||, z, z −) will be the same obtained in Eq. (11), plus some contribution
from the coupling of the hydrodynamic modes. The expression is long, not
very informative, and can be easily obtained by the reader, so we skip it here.

As in Section 2, we focus our attention on the equal-time (or static)
autocorrelation function OdTg(q||, z, t) · dT(q −

||, z −, t)P. Since the frequency-
dependent correlation function is proportional to a delta function d(w − w −),
the equal-time autocorrelation of the temperature fluctuations can be
expressed in a form as given in Eq. (12), where the function F(q||, z, z −) is to
be obtained by the integration in frequency of F(w, q||, z, z −). If we perform
the integration, incorporating Eqs. (4) and (19) for the correlations of the
random forces, and use some formulas presented in the Appendix, we
arrive at

F(q||, z, z −)=
kB

rcP
T2

0(z) d(z − z −)+
2kB(NT0)2 L

rcP

× C
.

N=1

5 1
N2p2+q̃2

||

+
2L2cPT0

DT(n+DT)
q̃2

||

(N2p2+q̃2
||)

3
6

× sin 1Np

L
z2 sin 1Np

L
z −2 , (25)

where we have neglected some higher-order terms that are cubic in NT0.
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From Eqs. (12) and (25) we observe that there are three contributions to
OdTg(q ||, z, t) · dT(q −

||, z −, t)P: First the local-equilibrium correlation function.
The second contribution in Eq. (25) (in the form of a series expansion) is the
same already found in Eq. (14) and it accounts for the inhomogeneously
correlated random heat flux, in accordance with the local formulation of the
FDT. The third contribution in Eq. (25) (again in the form of a series
expansion) is due to the coupling between temperature and velocity fluctua-
tions; it is the same as obtained previously, (4) where T0(z) was identified with
T0 in both Eqs. (4) and (19). The Z-dependence of the correlation func-
tion (19) of the random stress tensor only contributes terms cubic in NT0,
which we have neglected in Eq. (25). Our final result (25) shows how both
mechanisms mentioned in the Introduction yield contributions to nonequi-
librium fluctuations that are spatially long-ranged. To our knowledge, this is
the first time that both effects have been evaluated for the same system.

To show the spatially long-ranged nature of the correlations more
clearly, we plot in Fig. 1 the third contribution to Eq. (25), denoted
G(z, z −), as a function of z −, for two values of z. Figure 1 shows the non-
equilibrium contribution in real space, so it is actually obtained by applying
a double inverse Fourier transform to Eq. (25) in the variables q || and q −

||.
The real-space correlation function depends on the horizontal distance r||

between the two points at which is evaluated. The data shown in Fig. 1 cor-
respond to r||=0. In addition G(z, z −) has been normalized, so as to make it
dimensionless. A simple inspection of the figure shows that the nonequilib-
rium contribution to the correlation function is spatially long-ranged, does
not involve any intrinsic length scale, and encompasses the entire system.

0
0.00

0.05

G
 (z

, z
'  )

z'/L
1

Fig. 1. Normalized nonequilibrium contribution to the structure factor arising from the
hydrodynamic coupling between temperature and velocity fluctuations, G(z, z −), as a function
of z − for z=L/4 (solid curve), and for z=L/2 (dashed curve). The spatially long-ranged
nature of the nonequilibrium fluctuations is evident.
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The long-ranged nature of nonequilibrium fluctuations can be probed
by light-scattering experiments performed at different scattering wave
vectors q (different scattering angles). As discussed elsewhere, (3, 4, 39) the
intensity of light scattered by a fluid with scattering wave vector q=
{q ||, q+ } is determined by a structure factor S(q), defined by:

a2r2S(q)(2p)2 d(q || − q −

||)

=
1
L

F
L

0
dz F

L

0
dz − e−i q+ (z − zŒ) OdTg(q ||, z, t) · dT(q −

||, z −, t)P. (26)

If we substitute in Eq. (26) the local-equilibrium contribution to
OdTg(q ||, z, t) · dT(q −

||, z −, t)P, which is proportional to the first term in the
right-hand side of Eq. (25), we find that in equilibrium the intensity of
the scattered light does not depend on q; hence, it is independent of the
scattering angle. However, both nonequilibrium contributions in Eq. (25)
depend on the wave number q|| and, hence, yield contributions to the
scattered-light intensity that will depend on the scattering angle. In this
way, the spatial long-ranged nature of the fluctuations may be probed
experimentally. It should be noted that the divergence in real space of
the nonequilibrium fluctuations due to the inhomogeneously correlated
random heat flux, mentioned at the end of Section 2, does not cause any
problem in real experiments. Integration over z and z − of Eq. (16), as
required by Eq. (26), yields a convergent result for any value of q.

In the discussion above we have assumed that the fluid has a nonzero
thermal expansion coefficient a. When a=0, the temperature fluctuations
do not contribute to the structure factor S(q) (see Eq. (26)) so that the
scattering function will only contain contributions from the sound modes
yielding two Brillouin lines neglected here.

As noted at the end of Section 2, the contributions to the long-ranged
temperature fluctuations from inhomogeneous correlated noise have to
some extent been verified by computer simulations. (11) We do not know
of any computer simulations of the contributions due to hydrodynamic
coupling. However, the dependence of the Rayleigh component of the
nonequilibrium structure factor on q4 implied by Eq. (25) for large q has
been verified experimentally. (30, 31)

4. DISCUSSION

Our initial motivation was to compare the contribution from the
inhomogeneity of the thermal noise with the contribution from the non-
equilibrium coupling between temperature and velocity fluctuations to the
Rayleigh component of the nonequilibrium structure factor of a fluid in the
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presence of a temperature gradient. Previous studies (3, 39) have not con-
sidered the effect of the inhomogeneity in the thermal noise. As far as we
know, we have performed for the first time a complete calculation for a
case where both mechanisms, namely inhomogeneity of the noise correla-
tion and coupling of hydrodynamic modes, are present. The resulting
expression for the equal-time autocorrelation OdTg(q ||, z, t) · dT(q −

||, z −, t)P
of the temperature fluctuations is given by Eqs. (12) and (25). From
Eq. (25) we observe that the contribution from a nonequilibrium coupling
between temperature and velocity fluctuations (proportional to the second
term inside the square brackets) relative to the contribution from the
inhomogeneously correlated noise terms (proportional to the first term
inside the square brackets) is determined by the dimensionless ratio:

R2=
2L2cPT0

DT(n+DT)
. (27)

If we consider a liquid layer with height L=2 mm and if we adopt values
of the physical quantities for toluene (40) at 25°C, we find R2=6 × 1013.
While long-ranged correlations due to inhomogeneously correlated random
forces exist in principle, they are totally negligible in practice as compared
to the long-ranged correlations resulting from a coupling between the
temperature and velocity fluctuations. This conclusion is also supported by
measurements of the nonequilibrium temperature fluctuations obtained
from light-scattering experiments, (30, 31) which could be interpreted as
arising exclusively from the mode-coupling effects.

While our analysis was specifically concerned with a fluid in the pres-
ence of a stationary temperature gradient, it is of interest to consider
whether one can draw some more general conclusions about the role of the
two mechanisms for generating long-ranged fluctuations in nonequilibrium
states in fluids. First we note that there are cases where one of the two
mechanisms through which nonequilibrium constraints cause long-ranged
nonequilibrium fluctuations may be absent. One example is the case of an
isothermal fluid under shear, (20–23) where the noise correlation is spatially
uniform (uniform temperature), so that the first of the two mechanisms is
absent. Nonequilibrium effects do appear in this case due exclusively to the
hydrodynamic coupling between the uniform shear rate (nonequilibrium
constraint) and the velocity fluctuations, through the advective term in the
Navier–Stokes equation. Hence, in this case only the second of the mecha-
nisms mentioned in Section 1 is responsible for the presence of long-ranged
fluctuations.

Another example, of the opposite kind, are nonequilibrium effects
in the Brillouin doublet. As mentioned earlier in Section 3, we have
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considered here the nonequilibrium Rayleigh component of the structure
factor of a fluid in the presence of a temperature gradient. In addition,
there are also long-ranged nonequilibrium fluctuations in the Brillouin
components (an asymmetry in the Brillouin doublet) that, if studied in the
simpler a=0 approximation, turn out to be exclusively due to the inho-
mogeneity of the thermal noise. (9, 10)

Finally, we note that the ratio R2 , given by Eq. (27), is proportional
to L2. In molecular simulations with extremely small L the contribution
from inhomogeneously correlated noise could become more important.

We conclude that a complete theory of fluctuations in nonequilibrium
states requires that two different mechanisms need to be considered by
which the nonequilibrium constrains induce spatially long-ranged fluctua-
tions, as we have done for the Rayleigh–Bénard problem. However, as dis-
cussed above, in some particular cases one of the two mechanisms may be
absent. The possibility of long-ranged fluctuations generated by anisotropic
(but spatially uniform) correlated noise has been discussed by Maes and
Reding (41, 42) and is not considered here.

Our conclusions are based on the application of fluctuating hydro-
dynamics to nonequilibrium states. The validity of this approach has been
verified through microscopic simulations. (43) Fluctuating hydrodynamics is
a mesoscopic theory which, ultimately, requires justification from micro-
scopic models (note that the FDT is only fully rigorous for global equilib-
rium states). Unfortunately, a rigorous implementation of such a program
is difficult, even for systems without dissipation. (35) Very recently, advances
have been made by exactly solving some simple microscopic models. (44, 45)

Evidently, a fully rigorous justification of nonequilibrium fluctuating
hydrodynamics for real fluid systems continues to be one of the challenges
of nonequilibrium statistical physics.

APPENDIX

In this appendix we first present the expressions for ÃNM(q̃||) and
B̃NM(q̃||), obtained by evaluating the integrals contained in Eqs. (9)
and (23), respectively:

ÃNM(q̃||)=3N2p2+q̃2
||

2
+

b2

24
5N2p2+6+

q̃2
||

p2N2 (N2p2 − 6)64 dNM

+2bNM
(N2p2+M2p2+2q̃2

||)
p2(N2 − M2)2 [cos(Np) cos(Mp) − 1]

+b2NM
(N2p2+M2p2+2q̃2

||)
p2(N2 − M2)2 [cos(Np) cos(Mp)+1](1 − dNM),

(28)
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B̃NM(q̃||)=
(N2p2+q̃2

||)
2

2
dNM

+2bNM
(N2p2+q̃2

||)(M2p2+q̃2
||)

p2(N2 − M2)2 [cos(Np) cos(Mp) − 1].
(29)

Secondly, to obtain Eqs. (14) and (15) for F(q||, z, z −) we need the sum
of two trigonometric series. For this purpose use has been made of the
following identities:

C
.

M=1

M[cos(Np) cos(Mp) − 1]
(M2 − N2)2 sin(Mpz)

=
p2(2z − 1)

8
sin(Npz), (30a)

C
.

M=1

M[cos(Np) cos(Mp)+1](1 − dMN)
(M2 − N2)2 sin(Mpz)

=5p2(6z2 − 6z+1)
24N

+
1

8N3
6 sin(Npz). (30b)

Equations (30a) and (30b) are valid for nonzero positive integers N and
for z ¥ [0, 1]. These expressions can be obtained from formulas 1.445 in
Gradstein and Ryzhik, (46) after some lengthly algebra. They can be easily
verified numerically.

ACKNOWLEDGMENTS

In pursuing the research described in this paper the authors were
motivated by some stimulating discussions with J. L. Lebowitz. The
research at the University of Maryland was supported by the Chemical
Sciences, Geosciences, and Biosciences Division of the Office of Basic
Energy Sciences of the U.S. Department of Energy under Grant DE-FG-02-
95ER14509.

REFERENCES

1. J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Generic long-range correlations in
molecular fluids, Annu. Rev. Phys. Chem. 45:213–239 (1994).

2. G. Grinstein, D. H. Lee, and S. Sachdev, Conservation laws, anisotropy and ‘‘self-
organized criticallity’’ in noisy nonequilibrium systems, Phys. Rev. Lett. 64:1927–1930
(1990).

On the Physical Origin of Long-Ranged Fluctuations 1357



3. R. Schmitz and E. G. D. Cohen, Fluctuations in a fluid under a stationary heat flux. II.
Slow part of the correlation matrix, J. Stat. Phys. 40:431–482 (1985).

4. J. M. Ortiz de Zárate, R. Pérez Cordón, and J. V. Sengers, Finite-size effects on fluctua-
tions in a fluid out of thermal equilibrium, Physica A 291:113–130 (2001).

5. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959).
6. R. F. Fox and G. E. Uhlenbeck, Contributions to non-equilibrium thermodynamics. I.

Theory of hydrodynamical fluctuations, Phys. Fluids 13:1893–1902 (1970).
7. L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91:

1505–1512 (1953).
8. J. Keizer, A theory of spontaneous fluctuations in viscous fluids far from equilibrium,

Phys. Fluids 21:198–208 (1978).
9. D. Ronis, I. Procaccia, and J. Machta, Statistical mechanics of stationary states. VI.

Hydrodynamic fluctuation theory far from equilibrium, Phys. Rev. A 22:714–724 (1980).
10. A. S. Tremblay, M. Arai, and E. D. Siggia, Fluctuations about simple nonequilibrium

steady states, Phys. Rev. A 23:1451–1480 (1981).
11. A. L. Garcia, M. Malek Mansour, G. C. Lie, and E. Clementi, Numerical integration of

the fluctuating hydrodynamics equations, J. Stat. Phys. 47:209–228 (1987).
12. M. Malek Mansour, J. W. Turner, and A. L. Garcia, Correlation functions for simple

fluids in a finite system under nonequilibrium constrains, J. Stat. Phys. 48:1157–1186 (1987).
13. I. Pagonabarraga and J. M. Rubí, Long-ranged correlations in diffusive systems away

from equilibrium, Phys. Rev. E 49:267–272 (1987).
14. H.-P. Breuer and F. Petruccione, A master equation approach to fluctuating hydrody-

namics: Heat conduction, Phys. Lett. A 185:385–389 (1994).
15. A. L. Garcia, G. Sonnino, and M. Malek Mansour, Long-ranged correlations in bounded

nonequilibrium fluids, J. Stat. Phys. 90:1489–1492 (1998).
16. D. Ronis and I. Procaccia, Nonlinear resonant coupling between shear and heat fluctua-

tions in fluids far from equilibrium, Phys. Rev. A 26:1812–1815 (1982).
17. R. Schmitz and E. G. D. Cohen, Fluctuations in a fluid under a stationary heat flux. I.

General theory, J. Stat. Phys. 39:285–316 (1985).
18. B. M. Law and J. V. Sengers, Fluctuations in fluids out of thermal equilibrium, J. Stat.

Phys. 57:531–547 (1989).
19. T. R. Kirkpatrick, D. Belitz, and J. V. Sengers, Long-time tails, weak localization, and

classical and quantum critical behavior, J. Stat. Phys. 109:373–405 (2002).
20. J. Machta, I. Oppenheim, and I. Procaccia, Statistical mechanics of stationary states. V.

Fluctuations in systems with shear flow, Phys. Rev. A 22:2809–2817 (1980).
21. J. F. Lutsko and J. W. Dufty, Hydrodynamic fluctuations at large shear rate, Phys.

Rev. A 32:3040 (1985).
22. J. F. Lutsko and J. W. Dufty, Long-ranged correlations in sheared fluids, Phys. Rev. E

66:041206 (2002).
23. H. Wada and S. Sasa, Anomalous pressure in fluctuating shear flow, Phys. Rev. E

67:065302(R) (2003).
24. C. W. Gardiner, Handbook of Stochastic Methods, 2nd edn. (Springer, Berlin, 1985).
25. M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, Large fluctuations and optimal paths

in chemical kinetics, J. Chem. Phys. 100:5735–5750 (1994).
26. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Fluctuations in a nonequilibrium

steady state; Basic equations, Phys. Rev. A 26:950–971 (1982).
27. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Light scattering by a fluid in a

nonequilibrium steady state. II. Large gradients, Phys. Rev. A 26:995–1014 (1982).
28. T. R. Kirkpatrick and E. G. D. Cohen, Kinetic theory of fluctuations near a convective

instability, J. Stat. Phys. 33:639–694 (1983).

1358 Ortiz de Zárate and Sengers



29. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press,
Oxford, 1961).

30. B. M. Law, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Light-scattering measure-
ments of entropy and viscous fluctuations in a liquid far from equilibrium, Phys. Rev. A
41:816–824 (1990).

31. P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Rayleigh scattering in a
liquid far from thermal equilibrium, Phys. Rev. A 45:714–724 (1992).

32. M. Wu, G. Ahlers, and D. S. Cannell, Thermally induced fluctuations below the onset of
Rayleigh–Bénard convection, Phys. Rev. Lett. 75:1743 (1995).

33. J. Oh, J. M. Ortiz de Zárate, J. V. Sengers, and G. Ahlers, Dynamics of fluctuations in a
fluid below the onset of Rayleigh–Bénard convection, Phys. Rev. E 69:021106 (2004).

34. J. M. Ortiz de Zárate and J. V. Sengers, Fluctuations in fluids in thermal nonequilibrium
states below the convective Rayleigh–Bénard instability, Physica A 300:25 (2001).

35. P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn, Long-range correlations for con-
servative dynamics, Phys. Rev. A 42:1954–1968 (1990).

36. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
37. J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New York, 1991).
38. C.Z.-W. Liu and I. Oppenheim, Spatial correlations in bounded nonequilibrium fluid

systems, J. Stat. Phys. 86:179–190 (1997).
39. J. M. Ortiz de Zárate and J. V. Sengers, Boundary effects on the nonequilibrium structure

factor of fluids below the Rayleigh–Bénard instability, Phys. Rev. E 66:036305 (2002).
40. W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Small-angle Rayleigh scattering

from nonequilibrium fluctuations in liquids and liquid mixtures, Physica A 204:399–436
(1994).

41. C. Maes, Kinetic limit of a conservative lattice gas dynamics showing long range correla-
tions, J. Stat. Phys. 61:667–681 (1990).

42. C. Maes and F. Reding, Long range correlations for anisotropic zero range processes,
J. Phys. A: Math. Gen. 24:4359–4373 (1991).

43. M. Mareschal, M. Malek Mansour, G. Sonnino, and E. Kestemont, Dynamic structure
factor in a nonequilibrium fluid: A molecular-dynamics approach, Phys. Rev. A 45:
7180–7183 (1992).

44. B. Derrida, J. L. Lebowitz, and E. R. Speer, Free energy functional for nonequilibrium
systems: An exactly solvable case, Phys. Rev. Lett. 87:150601 (2001).

45. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact free energy functional for a driven
diffusive open stationary nonequilibrium system, Phys. Rev. Lett. 89:030601 (2002).

46. I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th edn.
(Academic Press, San Diego, 1994).

On the Physical Origin of Long-Ranged Fluctuations 1359


	1. INTRODUCTION
	2. NONEQUILIBRIUM FLUCTUATIONS DUE TO INHOMOGENEOUSLY CORRELATED RANDOM HEAT FLUX
	3. NONEQUILIBRIUM FLUCTUATIONS DUE TO HYDRODYNAMIC COUPLING BETWEEN FLUCTUATING FIELDS
	4. DISCUSSION
	APPENDIX
	ACKNOWLEDGMENTS

