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Dynamics of fluctuations in a fluid below the onset of Rayleigh-Be´nard convection
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We present experimental data and their theoretical interpretation for the decay rates of temperature fluctua-
tions in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The
measurements were made with the mean temperature of the layer corresponding to the critical isochore of
sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a
wide range of temperature gradients below the onset of Rayleigh-Be´nard convection, and span wave numbers
on both sides of the critical value for this onset. The decay rates were determined from experimental shadow-
graph images of the fluctuations at several camera exposure times. We present a theoretical expression for an
exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is
approached, the data reveal the critical slowing down associated with the bifurcation. Theoretical predictions
for the decay rates as a function of the wave number and temperature gradient are presented and compared with
the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the
small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric
deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at
the mean temperature located on the critical isochore.
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I. INTRODUCTION

In this paper we present experimental data for and a
oretical analysis of the decay rates of fluctuations in a fl
layer between two horizontal plates that are maintained
two different temperatures. The sizeL of the layer in the
horizontal directions is much larger than the distanced be-
tween the plates. By now it has been well established tha
presence of a uniform and stationary temperature grad
¹T0 in the fluid layer induces hydrodynamic fluctuatio
that are long ranged in space.

An important dimensionless parameter that governs
nature of the thermal nonequilibrium fluctuations is the R
leigh number

R5
agd4

“T0

DTn
, ~1!

whereg is the gravitational acceleration and wherea is the
isobaric thermal expansion coefficient,DT the thermal diffu-
sivity, andn the kinematic viscosity of the fluid. The Ray
leigh number is commonly taken to be positive when
fluid layer is heated from below. States in which the flu
layer is heated from above then correspond toR,0. The
fluid layer in the presence of a temperature gradient rem
in a quiescent state for allR less than a critical valueRc for
the onset of Rayleigh-Be´nard~RB! convection, including all
negative values ofR. The present paper is concerned w
thermal fluctuations in such a fluid layer for positive valu
of R below Rc .
1063-651X/2004/69~2!/021106~13!/$22.50 69 0211
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At sufficiently large wave numbersq the intensity of non-
equilibrium fluctuations is proportional to (“T0)2q24 both
for negative and positiveR @1–4#. For smaller values ofq it
was shown theoretically@5# and confirmed experimentally
@6# that the increase of the fluctuation intensity with decre
ing q is quenched in the presence of gravity, yielding a co
stant value in the limit of smallq. If the presence of top and
bottom boundaries is taken into account, one finds that
intensity of the fluctuations vanishes asq2 @4,7,8# at smallq.
Hence, the nonequilibrium structure factorS(q) is predicted
to exhibit a crossover from aq24 dependence for largerq to
a q2 dependence in the limitq→0, leading to a maximum a
an intermediate wave numberqmax which has a value nea
p/d. As the RB instability is approached from below, line
theory predicts thatS(qmax) as well as the total fluctuation
power@i.e., the integral ofS(q)] diverges, in agreement with
the asymptotic prediction obtained by Zaitsev and Shliom
@9# and by Swift and Hohenberg@10,11#. The predicted in-
crease as the RB instability is approached was verified qu
titatively by experiments using shadowgraph measurem
@12#. As the fluctuations become large it was predict
@10,11# and confirmed experimentally@13# that linear theory
breaks down and that the fluctuation amplitudes saturate
to nonlinear interactions.

The present paper is concerned not with the intensity,
with the dynamics of the nonequilibrium fluctuations. O
experimental technique to probe the time dependence of
fluctuations is provided by dynamic Rayleigh ligh
scattering. Dynamic light-scattering experiments in fluid la
ers with negative Rayleigh numbers have shown the e
tence of two modes: a heat mode with a decay rate equa
DTq2 associated with temperature fluctuations and a visc
©2004 The American Physical Society06-1
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mode with a decay rate equal tonq2 associated with trans
verse momentum fluctuations@3,14#. Thus, for largeq where
gravity and boundary effects are negligible the coupling
tween the heat mode and the viscous mode causes an
hancement of the amplitude of nonequilibrium fluctuatio
but does not affect the decay rates, in accordance with
original predictions of Kirkpatricket al. @1#. However, for
smallerq ~corresponding to macroscopic wavelengths!, grav-
ity and boundary effects induce a coupling between the
cay rates of the viscous and heat modes, as originally s
gested by Lekkerkerker and Boon@15#. For certain negative
values of the Rayleigh number the modes can even bec
propagating@5,16–18#. On the other hand, for positiveR
near the RB instability the nonequilibrium structure factor
dominated by a very slow mode with a decay rate wh
vanishes asR→Rc @9–11,15,19#.

The phenomenon of critical slowing down of the fluctu
tions as the RB instability is approached from below h
been observed experimentally, but the results obtained s
are qualitative. Using forced Rayleigh scattering Allainet al.
@20# measured the decay of imposed horizontal spatially
riodic temperature profiles with various wave numbersq.
The decay time of these imposed deviations from the ste
state increased as the temperature gradient approache
value associated withRc . Furthermore, the decay times b
came larger for periodic temperature profiles withq closer to
qc . Critical slowing down of nonequilibrium fluctuations ha
also been observed by Sawada with an acoustic method@21#.
In this experiment, first a deterministic RB pattern was
tablished and then the cell was turned over so as to cha
the sign of R. The experimental observations were inte
preted with an amplitude equation that did not include a
wave-number dependence. The single decay time extra
from the data did indeed increase as the onset of convec
was approached, but numerical agreement with the am
tude equation was poor. Using neutron scattering, Riste
co-workers@22,23# observed the critical slowing down o
nonequilibrium fluctuations close to the onset of convect
in a liquid crystal. Quantitative experimental studies ha
been performed showing the slowing down of the dynam
of deterministic patterns as the RB instability is approach
from above@24,25#.

In the present paper we present a quantitative theore
and experimental study of the decay rates of fluctuations
positiveR but below the RB instability. The results of bot
experiment and theory reveal the critical slowing down
the RB instability is approached from below. Theoretica
the decay rates can be determined, in principle, from a lin
stability analysis of the deterministic Oberbeck-Boussin
~OB! equations against perturbations, as has been done
ditionally @15,26–30#. However, here we derive these dec
rates by solving the linearized stochastic OB equations,
tained by supplementing the deterministic OB equations w
random dissipative fluxes@9,10,31,32#. Because of Onsager’
regression hypothesis, the two procedures should yield
same result, and indeed they do. However, it is importan
note that a solution of the stochastic OB equations is
quired to obtain the correct amplitudes of the nonequilibri
fluctuations. For instance, it turns out that the wave num
02110
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qmax corresponding to the maximum enhancement of the
tensity of the fluctuations as a function ofq differs, at least
for R,Rc , from the value ofq at which the decay rate has
minimum @4#.

We present in this paper the results of experimental sh
owgraph measurements@33# of the fluctuations in a thin hori-
zontal layer of sulfur hexafluoride heated from below b
with R,Rc . We show that the decay rates of the fluctuatio
can be obtained from an analysis of images acquired at v
ous exposure times, and compare the experimental re
with the theoretical predictions. The data as well as
theory reveal the critical slowing down of the fluctuations
the onset of convection is approached. To the best of
knowledge, previous shadowgraph experiments were u
primarily to obtain the fluctuation intensities@12,34#. Excep-
tions are studies of the dynamics of deterministic patte
above the RB instability that used image sequences at
stant time intervals@35,36#. Measurements of the structur
factor with the shadowgraph method can probe fluctuati
at the small wave numbers which reveal the influence of
finite geometry. These wave numbers generally are not
cessible to light scattering.

We shall proceed as follows. In Sec. II we derive t
decay rates of the nonequilibrium fluctuations in a fluid lay
between two horizontal rigid boundaries. To obtain analy
expressions we determine the dynamic structure factor
first-order Galerkin approximation. This section is a seq
to a previous publication@4#, in which the static nonequilib-
rium structure factor was considered. In Sec. III we then
the dynamic structure factor to calculate the dependenc
shadowgraph signals on the exposure-time intervalt. In Sec.
IV we describe the experimental conditions and procedu
including the collection and analysis of the shadowgraph
ages. Specifically, we show how the decay rateG2(q) of the
fluctuations below the RB instability can be determined e
perimentally from shadowgraph images obtained with t
different exposure times. A comparison of the experimen
results obtained forG2(q) with our theoretical predictions is
presented in Sec. V. Finally, our conclusions are summari
in Sec. VI.

II. DYNAMIC STRUCTURE FACTOR AND DECAY RATES
OF FLUCTUATIONS

As was done previously@4,7,8#, we determine the non
equilibrium structure factor by solving the linearized st
chastic OB equations for the temperature and velocity fl
tuations. It should be noted that the use of the linearized
equations implies that the critical slowing down of the flu
tuations near the RB instability is treated in a mean-fi
approximation in which the decay rate will vanish atR5Rc
when the wave numberq equals a critical wave numberqc
@9#. It is known from theory@10,37# and experiment@13# that
nonlinear effects will cause a saturation of the fluctuat
amplitudes when they become very large. The effect of n
linear terms on the decay rates depends on the nature o
bifurcation in the presence of fluctuations. In the RB case
fluctuations change the bifurcation, which is supercritical
the absence of fluctuations@38#, to subcritical@10,13#. In that
6-2
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DYNAMICS OF FLUCTUATIONS IN A FLUID BELOW . . . PHYSICAL REVIEW E69, 021106 ~2004!
case one would expect the decay rates to remain finite a
bifurcation; however, this issue is beyond the scope of
present paper.

For the case of a fluid layer between two plates w
stress-free~i.e., slip! boundary conditions the intensity an
the decay rates of the nonequilibrium fluctuations have b
obtained in a previous publication@8#. The advantage o
stress-free boundary conditions is that they permit an e
analytic solution of the problem. Here, instead, we consi
the more realistic case of a fluid layer between two rig
boundaries, corresponding to two perfectly conducting w
for the temperature and with no-slip boundary conditions
the local fluid velocity. While this case does not permit
exact analytic solution, a good approximation can be
tained by representing the dependence of the tempera
and velocity fluctuations upon the verticalz coordinate by
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Galerkin polynomials@30#. Specifically, two of us have de
termined the static nonequilibrium structure factor in a fir
order Galerkin approximation@4#. A first-order Galerkin-
polynomial solution appears to provide a goo
approximation below the convection threshold for the to
intensity of the fluctuations@4,39#. We thus extend here th
first-order Galerkin treatment considered in Ref.@4#, in the
expectation that it will also provide a good approximation f
the decay rates and the actual amplitudes of the two cou
hydrodynamic modes.

The decay rates of the hydrodynamic modes can
readily obtained by finding the roots inv of the determinant
of the matrixH(v,q), defined by Eq.~15! in Ref. @4#. There
are two coupled hydrodynamic modes whose decay r

G6(q̃) are given by
G6~ q̃!5
DT

2d2
~ q̃2110!H s~ q̃4124q̃21504!

~ q̃2110!~ q̃2112!
116AFs~ q̃4124q̃21504!

~ q̃2110!~ q̃2112!
21G 2

1
27Rsq̃2

7~ q̃2112!~ q̃2110!2J , ~2!
e

tor

c

-
m

tem-

e

wheres[n/k is the Prandtl number andq̃5qd is the di-
mensionless horizontal wave number of the fluctuations.
note that in the previous publication@4# the symbolqi was
used to emphasize that it represents the magnitude of a
dimensional wave vectorq in the horizontalXY plane. Here
we drop the subscripti , since in the present paper the wa
vectors will always be two dimensional in the horizon
plane. In Eq.~2!, G2(q̃) represents the decay rate of a slow
heatlike mode which approachesDTq2 for large values ofq,
while G1(q̃) represents the decay rate of a faster visc
mode approachingnq2 for large q. The advantage of the
Galerkin approximation is that one can specify the de
ratesG6(q̃) explicitly as a function ofq̃. We note that in the
first-order Galerkin approximation considered here, we fi
only two decay rates, instead of a series of decay rates
would be obtained if higher orders were considered in
Galerkin expansion. For studying the situation below the
instability, where fluctuations decay to zero, consideration
the two primary decay rates will be adequate. As discus
more in detail later, for these Eq.~2! is a good approxima-
tion.

We are interested in the time correlation function for t
density fluctuations at constant pressure which is dire
related to the time-dependent autocorrelation funct
^dT* (q,z,t)•dT(q8,z8,t8)& of the temperature fluctuation
by @4#

^dT* ~q,z,t !•dT~q8,z8,t8!&

5F~q,z,z8,Dt !
~2p!2

a2r2
d~q2q8!. ~3!
e
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HereDt5ut2t8u andr is the average fluid density. The tim
correlation functionF(q,z,z8,Dt) is just the inverse fre-
quency Fourier transform of the dynamic structure fac
S(v,q,z,z8) defined by Eq.~9! in Ref. @4#. Following the
steps described in Ref.@4# we find after some long algebrai
calculations that the time correlation functionF(q,z,z8,Dt)
can be expressed as the sum of two exponentials:

F~ q̃,z,z8,Dt !5
SE

d
$Ã1~ q̃!exp@2G1~ q̃! Dt#1Ã2~ q̃!

3exp@2G2~ q̃! Dt#%S z

d
2

z2

d2D S z8

d
2

z82

d2
D .

~4!

Here the coefficientSE represents the intensity of the fluc
tuations of the fluid in a local thermodynamic equilibriu
state at the average temperatureT5T̄ „see Eq.~2! in Ref.
@4#…. The Galerkin polynomials appear in Eq.~4! because
they have been used to represent the dependence of the
perature fluctuations on the vertical coordinatez. We intro-
duce the dimensionless decay rates

G̃6~ q̃!5tv G6~ q̃! ~5!

wheretv[d2/DT is the vertical thermal relaxation time. Th
dimensionless amplitudesÃ6(q̃) in Eq. ~4! are then given by
6-3



~ q̃2110!F G̃6
2 ~ q̃!2s2S q̃4124q̃21504

q̃2112
D 2G2

27~ q̃4124q̃21504!q̃2

28~ q̃2112!2
s~S̃NE

0 2sR!

OH et al. PHYSICAL REVIEW E 69, 021106 ~2004!
Ã6~ q̃!5630
G̃6~ q̃!@G̃1

2 ~ q̃!2G̃2
2 ~ q̃!#

. ~6!
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In Eq. ~6!, S̃NE
0 denotes the strength of the enhancemen

the static nonequilibrium structure factor of the fluid in t
absence of any boundary conditions:

S̃NE
0 5sR1

~cP /T!d4

DT
2 ~¹T0!2. ~7!

HerecP is the isobaric specific heat per unit mass@4#. In Eq.
~7!, as everywhere else in the present paper, all thermoph
cal properties are to be evaluated at the average temper
T5T̄. We note that the amplitudesÃ6(q̃) depend on the
Prandtl numbers and on the Rayleigh numberR not only
explicitly in accordance with Eq.~6!, but also implicitly
through expression~2! for the decay ratesG6(q̃).

As noted in the Introduction, the decay rates of the flu
tuations can also be obtained from an analysis of deviat
from steady state on the basis of the deterministic OB eq
tions, i.e., the OB equations without random noise term
Hence, Eq.~2! for G6(q̃) is implicit in the standard calcula
tion of the convection threshold within the same Galer
approximation employed here@30#. However, to obtain the
correct amplitudesÃ6(q̃), it is necessary to solve the sto
chastic OB equations for the fluctuating fields.

Expression~2! for the decay rates as well as Eq.~6! for
the amplitudes are rather complicated. They simplify cons
erably for s→`. In that limit the decay rate of the slowe
modeG̃2(q̃) reduces to

G̃2~ q̃!.~ q̃2110!2
27q̃2R

28~ q̃4124q̃21504!
, ~8!

while the decay rateG̃1(q̃) of the faster mode becomes pr
portional tos and is so large that the first exponential te
in Eq. ~4! can be neglected. The amplitudeÃ2(q̃) of the
remaining exponential term reduces, in the sames→` limit,
to a simpler expression to be used later, in Eq.~16!. It is
interesting to note that the limit for large Prandtl numbers
approached rather fast. For instance, ats515, the difference
between the actualG2(q̃) given by Eq.~2! and the value
deduced from the asymptotic expression~8! is always
smaller than 3% for any value ofq̃, with the larger devia-
tions of about 3% atq̃ values close toq̃c . From Eq.~8! we
find thatG̃2(q̃) approaches 10 whenq̃→0, independently of
the values of the Rayleigh or Prandtl number. The value
obtained from our first-order Galerkin approximation has
be compared withp2.9.87, obtained from the exact theo
for the limiting value atq̃→0 of this decay rate@30#.
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The analysis in the previous paper@4# was specifically
devoted to the static structure factorS(q,z,z8), which may
be obtained by settingDt50 in Eq. ~4! or, equivalently, by
integrating the dynamic structure factorS(v,q,z,z8) over
the entire range of frequenciesv @4#. However, as discusse
in more detail in Ref.@4#, the structure factorS(q) that is
actually measured in small-angle light-scattering or in ze
collecting-time shadowgraph experiments is the one obtai
after integration of the full static structure factor overz and
z8 @18#, so that

S~ q̃!5
1

dE0

d

dzE
0

d

dz8F~ q̃,z,z8,0!

5
SE

36
$Ã1~ q̃!1Ã2~ q̃!%

5SEH 5

6
1S̃NE

0 L0
R~ q̃!J , ~9!

whereL0
R(q̃) represents the normalized enhancement of

intensity of nonequilibrium fluctuations in the first-orde
Galerkin approximation, as given by Eq.~20! in Ref. @4#. We
note that, in accordance with Eq.~9!, the static structure
factor S(q) is expressed as the sum of an equilibrium an
nonequilibrium contribution. However, the dynamic structu
factor and its equivalent, the time-dependent correlat
function given by Eq.~4!, can no longer be written as a su
of equilibrium and nonequilibrium contributions. This diffe
ence between the static and the dynamic structure facto
sults from the coupling between hydrodynamic modes du
the presence of gravity and boundaries. For the same rea
the nonequilibrium intensity enhancementS̃NE

0 no longer ap-
pears as a simple multiplicative factor in the expression
the dynamic structure factor. The observation that the n
equilibrium dynamic structure factor is no longer the sum
an equilibrium and a nonequilibrium contribution alrea
pertains to the dynamic structure factor of the ‘‘bulk’’ flui
~i.e., without considering boundary conditions!, where mix-
ing of the modes is still caused by gravity effects@5#.

III. APPLICATION TO THE DEPENDENCE OF
SHADOWGRAPH SIGNALS ON EXPOSURE TIME

The shadowgraph method provides a powerful tool
visualizing flow patterns in Rayleigh-Be´nard convection
@33,36,40#. Of special interest for the present paper is that
shadowgraph method can also be used to measure flu
tions in quiescent nonequilibrium fluids at very small wa
numbers@6,12,34,40,41#.

In shadowgraph experiments an extended uniform mo
6-4
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chromatic light source is employed to illuminate the flu
layer. Many shadowgraph images of a plane perpendicula
the temperature gradient are obtained with a charge-coup
device detector that registers the spatial intensity distribu
I (x,t) as a function of the two-dimensional position in th
imaging planex and the nonzero exposure timet used by the
detector to average photons for a single picture. An effec
shadowgraph signalI(x,t) is then defined as

I~x,t!5
I ~x,t!2I 0~x,t!

I 0~x,t!
, ~10!

whereI 0(x,t) is a blank intensity distribution in the absen
of any thermally excited fluctuations. In practice,I 0(x,t) is
calculated as an average over many original shadowg
images, so that fluctuation effects cancel.

From a series of experimental shadowgraph sign
I(x,t), the experimental shadowgraph structure fac
Ss(q,t) is defined as the modulus square of the tw
dimensional Fourier transform of the shadowgraph sign
averaged over all the signals in the series:Ss(q,t)
[^uI(q,t)u2&. The physical meaning of the shadowgra
structure factorSs(q,t) in the past has been based on t
assumption that the shadowgraph images are taken inst
neously. In the limitt→0, Ss(q,t) has been related to th
static structure factor of the fluidS(q) by a relation of the
form @4,12,36,40,41#

Ss~q,0!5T~q!S~q!. ~11!

In Eq. ~11!, T(q) is an optical transfer function that contain
various properties, such as the wave number of the incid
light, the temperature derivative of the refractive index of t
fluid, and details of the experimental optical arrangeme
For the present work a specification ofT(q) is not needed
since it will be eliminated in the treatment of the experime
tal data in Sec. IV. The quantityS(q) in Eq. ~11! equals the
static structure factor of the nonequilibrium fluid, as defin
in Eq. ~9!.

To determine the dependence of the experimental shad
graph structure factorSs(q,t) on the exposure timet we
need to extend the physical optics treatment performed
Trainoff and Cannell@40#. We then find that Eq.~11! is to be
generalized to

Ss~q,t!5T~q!S~q,t!, ~12!

whereT(q) is the same optical transfer function as in E
~11! and whereS(q,t) is a new exposure-time-depende
structure factor, which is related to the autocorrelation fu
tion of temperature fluctuations by
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~2p!2

a2r2
S~q,t! d~q2q8!

5
1

dt2E0

t

dtE
0

t

dt8E
0

d

3dzE
0

d

dz8 ^dT* ~q,z,t !•dT~q8,z8,t8!&.

~13!

In principle,S(q,t) can be evaluated by substituting Eq.~3!
with Eq. ~4! for the correlation function of the density fluc
tuations into the right-hand side of Eq.~13!. However, for the
experimental results to be presented, it is sufficient to eva
ate S(q,t) for large values of the Prandtl numbers, in
which case the exponential contribution with decay r
G1(q) in Eq. ~4! can be neglected, as discussed before.
taining only the contribution from the slower mode with am
plitude Ã2(q) in Eq. ~4! and performing the integrations, w
deduce from Eq.~13!,

S~ q̃,t̃ !5SEÃ2~ q̃!
t̃ G̃2~ q̃!211exp@2 t̃ G̃2~ q̃!#

18t̃2G̃2
2 ~ q̃!

,

~14!

where t̃ is a dimensionless exposure time, defined byt̃
5t/tv with tv the vertical relaxation time introduced in Eq
~5!. In the limit t→0, Eq. ~14! reduces to S(q̃)
5SEÃ2(q̃)/36, so that it equals the static structure fac
measured in small-angle light-scattering or in shadowgr
experiments in the zero-collecting-time approximation,
given by Eq.~9!. It is interesting to note that, due to th
nonzero-collecting timet, even in thermal equilibrium (R
50) the shadowgraph measurements present some ‘‘s
ture.’’ From Eq.~14!, we find that this equilibrium structure
as a function of the dimensionless collecting timet̃ is given
by

SE~ q̃,t̃ !5SE

5

3t̃2

t̃~ q̃2110!211exp@2 t̃~ q̃2110!#

~ q̃2110!2
.

~15!

It can be readily checked that, in the limitt→0, Eq. ~15!
reduces to the structureless constant (5/6)SE, in agreement
with Eq. ~9!. This value is 17% lower than the actual valu
SE, due to the use of a first-order Galerkin approximati
@4#.

To gain insight into the effect of the exposure time
shadowgraph measurements, we show in Fig. 1 the dif
ence between the nonequilibrium structure factor as obta
from Eq.~14! and the equilibrium structure factor (R50) as
obtained from Eq.~15!, as a function ofq̃, for three different
collecting times. Corresponding to some of the experimen
results to be discussed below, we usedR51371, a vertical
relaxation timetv5d2/DT of 0.74 s, and a Prandtl numbers
equal to 34. We evaluated the difference fort50, t5200,
6-5
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and t5500 ms. The structure factorsS(q,t) and SE(q,t)
have been normalized by dividing them by the prod
SES̃NE

0 .
From Fig. 1, we arrive at the following conclusions.
~i! The main effect of a nonzero-collecting time is

lower the height of the measuredS(q,t); this is expected
since fluctuations cancel out when larger exposure times
used.

~ii ! An additional effect of a nonzero-collecting time
which can be observed in Fig. 1, is a displacement of
maximum inS(q,t) to lower q̃ values. This effect is mainly
due to the subtraction of the equilibrium structure given
Eq. ~15!, which decreases with increasingq̃.

~iii ! Another interesting feature we infer from Fig. 1
that the dependence onq̃2 for low q̃ is preserved, while the
dependence onq̃24 for large q̃ is destroyed for the effective
structure factor. Actually, at largeq, there exists a crossove
from a q24 dependence to aq26 dependence, for nonzer
values oft, as will be shown below in Eq.~17!.

A simpler formula forS(q̃,t̃) can be obtained by intro
ducing into Eq.~14! the limiting value ofÃ2(q) for large
Prandtl numbers. We then obtain

dS~ q̃,t!

SES̃NE
0

5
S~ q̃,t̃ !2SE~ q̃,t̃ !

SES̃NE
0

5
5

3s

t̃G̃2~ q̃!211exp@2 t̃ G̃2~ q̃!#

t2 G̃2
2 ~ q̃!

3
27q̃2

28~ q̃2110!~ q̃4124q̃21504!227Rq̃2
,

~16!

FIG. 1. DifferencedS(q̃,t)/SES̃NE
0 @see Eq.~16! below# between

the theoretical structure factors atR51371 @Eq. ~14!#, and atR

50 @Eq. ~15!# as a function ofq̃, for three different collecting
times. The solid curve corresponds tot50 ms, the dashed curve t
t5200 ms, and the dotted curve tot5500 ms. The Prandtl num
ber iss534 andtv50.74 s.
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where forG̃2(q̃) of Eq. ~8! for larges should be used. As
discussed after Eq.~8!, for Prandtl numbers near 15 th
asymptotic limit ~16! is already closely approached. Equ
tion ~16! reduces, in the limitt→0, to the expressions ob
tained in Ref.@4#. It is interesting to note that, in the limi
q̃→`, Eq. ~16! reduces to

dS~ q̃,t!

SES̃NE
0

→
q̃→` 45

28t̃s

1

q̃6
, ~17!

showing, as mentioned above, that a nonzero-collecting t
changes the asymptotic behavior fromq24 to q26. Note that
Eq. ~17! is evidently not valid whent50 in which case one
needs the asymptotic expression given by Eq.~30! in Ref.
@4#.

IV. EXPERIMENTS

A. Apparatus

To visualize the thermal fluctuations with the shado
graph method one needs to perform the experiments wi
fluid in which the thermal noise will be large@11,42#. This
goal can be accomplished by selecting a fluid in the vicin
of its critical point @12,13,33#. The measurements reporte
here were obtained for sulfur hexafluoride. The appara
and experimental procedures have been described in d
elsewhere@33#. Here we describe only those aspects wh
are specific to the experiment with a fluid near its critic
point.

For the details of the cell construction we refer to Fig.
of Ref. @33#. Initially we used a diamond-machined alum
num bottom plate which could be positioned with piezoele
tric elements. The bottom-plate thermistors were embed
'0.64 cm below its top surface. Even though to the nak
eye this plate had a near-perfect mirror finish, the tool ma
from the diamond machining imposed a preferred direct
on the fluctuations below the onset of convection. Thus
placed an optically flat sapphire of thickness 0.318 cm on
of the aluminum plate. A thin silver film was evaporated
the top surface of this sapphire to provide a mirror for t
shadowgraphy.

Initially we used a sapphire of thickness 0.952 cm for t
cell top. In addition a sapphire of thickness 1.90 cm was
the optical path of the shadowgraphy and provided the
window of the pressure vessel. In combination with the ve
small cell thickness used in these experiments, it turned
that the optical anisotropy of these randomly oriented s
phires introduced an anisotropy of the shadowgraph ima
which obscured the rotational symmetry of the fluctuatio
In order to minimize this effect, we replaced the press
window by a fused-quartz window and used an optically fl
sapphire of 0.318 cm thickness for the cell top. Under th
conditions we found that the fluctuations below the onse
convection yielded a structure factor which was nearly
variant under rotation, as can be seen from Fig. 5 below

The cell spacing was fixed by a porous paper sidew
with an inner~outer! diameter of 2.5~3.5! cm. Since the top
sapphire was supported along its perimeter which had a
6-6
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DYNAMICS OF FLUCTUATIONS IN A FLUID BELOW . . . PHYSICAL REVIEW E69, 021106 ~2004!
ameter of 10 cm~i.e., considerably larger than the cell wal!,
the force exerted on the cell top by the bottom plate and
wall caused a slight bowing of the initially flat top. Over th
entire sample diameter this yielded a radial cell-spac
variation corresponding to about one circular fringe wh
illuminated with an expanded parallel He-Ne laser bea
This variation of the thickness by about 0.3mm assured tha
convection would start in the cell center, rather than be
nucleated inhomogeneously near the cell wall. Assumin
parabolic radial profile for the cell spacing, we estimate t
the spacing was uniform to much better than 0.1% over
1.331.3 mm2 area near the cell center which was actua
used for the shadowgraph images. The actual sample th
ness was measured interferometrically@33# and found to be
34.3mm.

B. Properties of SF6 near the critical point

The thermodynamic properties of sulfur hexafluoride
the critical region can be calculated from a equation dev
oped by Wyczalkowska and Sengers@43#. For the viscosity
we used a fit of data from Refs.@44,45# to a smooth function.
This approach neglects a small anomaly of the viscosity
the critical point. We used fits of smooth functions to t
conductivity data from Refs.@46–51#.

The measurements were made at constant pressureP and
at constant mean sample temperatureT̄. The mean tempera
ture was adjusted so that the densityr(T̄) was the critical
density rc5742 kg m23. The imposed temperature diffe
enceDT caused a density variation of the sample along
isobar. This is illustrated in Fig. 2 for the conditions of th
present experiments, namely forP538.325 bars andT̄
546.50 °C. At r5rc , we have s534.0, DT51.59
31025 cm2/s, andtv[d2/DT50.738 s.

FIG. 2. The temperature-density plane near the critical poin
SF6. The dashed line indicates the coexistence curve separa
liquid and vapor. The vertical dotted line is the critical isocho
The solid circle is the critical point withTc545.567 °C, Pc

537.545 bars,rc50.742 g/cm3. The solid line represents the iso
bar P538.325 bars used in our measurements, and the heavy
tion of this line shows the temperature-density range on the iso
which is spanned by the sample with thicknessd534.3mm when
DT50.22 °C.
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C. Symmetric departures from the Oberbeck-Boussinesq
approximation

Much of the theoretical work on RB convention was do
in the OB approximation@26,27#, which assumes that th
fluid properties do not vary over the imposed temperat
interval, except for the density where it provides the buoy
force @28#. Specifically, for the theory developed in Sec. II
be valid it is necessary that the spatial variations of the v
ous physical properties are negligible over distances of
order of the wavelengths of the fluctuations. Unfortunate
this assumption ceases to be valid for our experiment in
critical region of a fluid, but to the best of our knowledge
systematic theoretical approach dealing with the effects
such spatial variations on the wave-number dependenc
the fluctuations is not yet available. Non-OB effects for t
deterministicsystem have been considered by a number
investigators, most systematically by Busse@52# in the con-
text of a hydrodynamic stability analysis. At leading ord
they break the reflection symmetry of the system about
horizontal midplane, and at the onset of convection th
yield a transcritical bifurcation to a hexagonal pattern@36#,
instead of the roll pattern of pure OB convection. When t
mean temperature corresponds to the critical isochorer
5rc , this effect is of modest size. Although several prop
ties contribute, we illustrate this by showing the isoba
thermal expansion coefficient in Fig. 3 along the isobar
Fig. 2 as an example. One can approximatea as a sum of
two contributions, one of which is antisymmetric and t
other one symmetric about the mean temperature~and thus
approximately also about the horizontal midplane! of the
sample. Only the antisymmetric part is considered in
theory@52#. Its smallness near the onset of convection is s
from the similar values ofa at the top and bottom of the ce
~open circles in the figure!. A quantitative calculation of the
parameterP introduced by Busse@52# „see Eqs.~13! in Ref.
@36#… yieldsP520.23. This value indicates that, within ou
experimental resolution, only rolls should be seen near on
This is indeed the case@13#. However, the variation ofa
which is symmetric about the midplane is quite large. It do
not break the reflection symmetry about that plane and t

f
ng
.

ec-
ar

FIG. 3. The thermal expansion coefficienta along the isobar
P538.325 bars. The heavy part of the line terminated by two o
circles indicates the temperature range spanned by the sample
d534.3mm andDT5DTc50.44 °C.
6-7
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permits the existence ofrolls at onset rather than requiring
hexagonal plan form. Behavior similar to that ofa is found
for the specific heatcP and for the Rayleigh number. Eve
for the deterministic system there is at present no theore
treatment of these higher-order non-OB effects. Thus we p
ceed empirically by examining the variation ofR as a func-
tion of vertical position or local sample temperature. If w
neglect the temperature dependence of the thermal con
tivity and assume that the local temperature in the fluid la
still varies linearly as a function ofz, we obtain the Rayleigh
number profiles shown in Fig. 4. The curve at the top is
the experimental valueDT5DTc50.44 °C corresponding to
the onset of convection. The other curves, from top to b
tom, correspond toDT/DTc50.860, 0.699, 0.430, and 0.26
For DT50.44°C one sees that the localR(rc).3190 far
exceeds the valueRc51708 for the uniform system. On th
other hand, near the top and bottom of the sample the locR
is well below the onset of convection for the homogeneo
system. The data in Fig. 4 show that, though we find ro
above threshold, non-OB effects cannot be completely
glected in our experiments. We shall return to the influen
of non-OB effects on the comparison between experim
and theory in Sec. V.

D. Sample temperature

The bath temperatureTbath and the bottom-plate tempera
ture TBP were adjusted so as to hold the mean sample t
perature constant. This temperature was chosen so tha
mean density corresponded to the critical densityrc . Be-
cause of the small sample thickness the thermal resistan
the sample was comparable to that of the top and bot
confining plates. This fact required a special procedure
assure that the sample was indeed at the temperature c
sponding torc . Before a run at a given fixed pressure w
started, we measured the power of shadowgraph image
the fluctuations at a fixed imposedDText5(TBP2Tbath) as a
function of the mean temperatureT̄ext5(TBP1Tbath)/2 of the
system consisting of the bottom plates, the sample, and
top plate as determined by the bath temperature and

FIG. 4. The Rayleigh numberR @see Eq.~1!# along the isobar
P538.325 bars ford534.3mm. From top to bottom, the curve
are for DT/DTc51.000, 0.860, 0.699, 0.430, and 0.269 withDTc

50.44 °C.
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bottom-plate thermistor. This temperature difference is
sum of those across the bottom aluminum plateDTAl , across
the boundary between the aluminum plate and the bot
sapphireDTb1, across the bottom sapphireDTsb, across the
sample DT, across the top sapphireDTst , and across a
boundary layer above the top sapphire in the water b
DTb2. From estimates of the thermal resistances of th
sections we findDT/DText50.473. Thus, at the onset of con
vection, we measuredDText,c50.930 °C and deducedDTc
50.44 °C.

E. Analysis of shadowgraph images

At each DT, three shadowgraph-image sequenc
I i(x,t j ),i 51, . . . ,N with N51024, andj 50,1,2 were ac-
quired. For each sequence, a different exposure timet j was
used, namelyt050.500 s, t150.350 s, andt250.200 s.
The time intervaldt between the images was typically 1 s or
2 s, which was large enough for the images to be nea
uncorrelated. The images of each sequence were averag
provide a background imageI 0(x,t j ), as discussed in Sec
III. Then, for each image of the sequence, a dimension
shadowgraph signalIi(x,t j ) was computed, in accordanc
with Eq. ~10!. The mean~overx) value of a typicalIi(x,t j )
was within the range60.01, indicating adequate stability o
the light intensity and image-acquisition system. Next,
two-dimensional Fourier transform of each shadowgraph
nal in the sequence was computed, and the modulus sq
calculated, obtaining series ofuIi(q,t j )u2 for further analy-
sis. Typical shadowgraph signals and the squares of
moduli of their Fourier transforms are shown in Fig. 5. T
nearly uniform angular distribution of the transforms illu
trates the rotational invariance of the Rayleigh-Be´nard
system.

FIG. 5. Shadowgraph signals~left column, 1.331.3 mm2) and
the moduli squared of their Fourier transforms~right column! for
DT50.189 ~top row! and DT50.378 K ~bottom row!. The expo-
sure time was 500 ms.
6-8
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As explained in Sec. III, due to the rotational invarian
of RB convection in the horizontal plane, the modul
squared Fourier transformed shadowgraph signals have
tional symmetry, and for an infinitely extended sample th
would depend only on the modulusq of the wave vectorq.
However, the finite spatial extent of the images leads to r
dom angular fluctuations ofuIi(q,t j )u2. To reduce these fluc
tuations, we performed azimuthal averagesuIi(q,t j )u2 over
thin rings in Fourier space~the angular average is denoted
the overline and depends only onq and t j ). Now for each
shadowgraph measurementI i(x,t j ) the integral

Pi~t j !5E
0

`

2pq uIi~q,t j !u2 dq ~18!

is the total power and, by Parseval’s theorem, has to be e
to the variance of the originalIi(x,t j ). We used Eq.~18! as
a check of consistency for the entire procedure of taking
Fourier transform, of calculating the modulus squared a
the azimuthal average over thin rings, and of assigning
each ring aq value. Finally, we averaged over theN indi-
vidual uIi(q,t j )u2 of eacht j series, to obtain the experimen
tal shadowgraph structure factorSs(q,t j )[^uIi(q,t j )u2&.

For the remainder of this paper we shall use the exp
mentally determined cell spacingd534.3mm to scaleq ac-
cording to q̃5qd. Two examples of the produc
2pq̃Ss(q̃,t j ), both for P538.325 bars,T̄546.5 °C, and
DT50.189 °C, are shown in Fig. 6. The solid squares are
t250.200 s, whereas the solid circles are fort050.500 s.
As discussed in the preceding section, the relationship~12!
between the experimental shadowgraph structure fa
Ss(q̃,t j ) and the corresponding fluid structure factorS(q̃,t j )
involves the optical transfer functionT(q̃). Nevertheless, we
observe some qualitative agreement of the experimenta
sults for 2pq̃Ss(q̃,t) in Fig. 6 and the theoretical results fo

FIG. 6. Experimental shadowgraph structure factor 2pq̃Ss(q̃,t)

as a function of the dimensionless wave numberq̃. These results

are forP538.325 bars,T̄546.5 °C, andDT50.189 °C. The solid
squares~solid circles! are for t50.200 s (t50.500 s). The open
symbols are the corresponding background measurements foDT
50.
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S(q̃,t) shown in Fig. 1. The expected maximum nearq̃

5q̃c is present, and the decrease asq̃ vanishes is consisten
with the predictedq̃2 dependence. The longer averaging
the random fluctuations diminishes 2pq̃ Ss(q̃,t), which was
one of the features noted after Fig. 1 forS(q̃,t).

The experimental structure factorSs(q̃,t j ,DT) depends
on the Rayleigh number and, hence, onDT. For DT50,
instrumental~mostly camera! noise is expected to be th
dominant contribution, i.e., the contribution from the equili
rium fluctuations is negligible and the theoretical equilibriu
structure, given by Eq.~15!, is expected to be unobservab
in our experiments. Examples of the shadowgraph struc
factors forDT50 are shown by the open symbols in Fig.
One sees that 2pq̃Ss(q̃,t j ,0) is well represented by a
straight line, corresponding to white noise. At largeq̃,
2pq̃Ss(q̃,t j ,0) merges smoothly into the data fo
2pq̃Ss(q̃,t j ,DT) with the samet j , as one would expect.

A detailed comparison between the experimental and
theoretical structure factors requires knowledge of the opt
transfer functionT(q̃), which depends on the details of th
experimental optical arrangement. It involves, for instan
the size of the pinhole and the focal length of the lens use
make the ‘‘parallel’’ beam, and the spectral width of the lig
source@40#. In the present work the spatial structures to
determined~the fluctuation wavelengths! had length scales
@typically O(50 mm)] that are one or two orders of magn
tude smaller than those of more conventional RB exp
ments. For this reason, we found it difficult to obtainT(q̃)
for our instrument with sufficient accuracy to avoid signi
cant distortion ofS(q̃). We circumvented the difficulty of the
optical transfer function by deriving thedynamicproperties
of the fluctuations from ratios ofSs(q̃,t j ) with different val-
ues oft j . To account for the instrumental white noise, b
fore taking such ratios, we subtracted the measu
Ss(q̃,t j ,0) in the absence of a temperature gradient fr
Ss(q̃,t j ,DT) to yield

dSs~ q̃,t j ,DT!5Ss~ q̃,t j ,DT!2Ss~ q̃,t j ,0!. ~19!

After this background subtraction, we formed forj 51,2 the
ratio

R~ q̃,t j ,t0 ,DT![
t j

2 dSs~ q̃,t j ,DT!

t0
2 dSs~ q̃,t0 ,DT!

, ~20!

wheret0 is the longest exposure timet050.500 s. The ra-
tios R obtained fort j50.200 s as a function ofq̃ are shown
in Fig. 7 for four values of the temperature differenceDT.
The shadowgraph transfer functionT(q̃) cancels and is no
longer contained inR. In addition, for the ratiosR, it is
irrelevant whether we use the definition of the structure f
tor considered in Sec. II or the shadowgraph definition d
played in Fig. 6, the latter including a factor 2pq̃. Thus, we
are allowed to use Eq.~14! for dSs, so that
6-9
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R~ q̃,t j ,t0 ,DT!5
t jG~ q̃!211exp@2t jG~ q̃!#

t0G~ q̃!211exp@2t0G~ q̃!#
. ~21!

One sees thatR depends only ont0 ,t j ,q̃, andG(q̃,DT). At
eachq̃ andDT, only the decay rateG is unknown and thus
can be determined from the experimental value ofR.

V. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY

In Fig. 8 we show the decay rateG as a function ofq̃. The
symbols represent the experimental values deduced from
data forR displayed in Fig. 7 by solving Eq.~21!. From top
to bottom, the data sets are forDT/DTc5 0.269, 0.430,
0.698, and 0.861. The curves represent the theoretical va
calculated from Eq.~8! with tv50.738 s~the value derived
from the fluid properties at the mean temperature and at
critical density!. The topmost~dash-double-dotted! line is for
equilibrium: DT50 ~i.e., R50). The remaining four curves
are for the values ofDT/DTc of the data sets, if we adopt th
Boussinesq estimate

ROB5~DT/DTc!Rc , ~22!

with Rc51730 ~the value obtained from the Galerkin a
proximation used in this paper@30#! for the Rayleigh number
in Eq. ~2!. One sees that the predictions, based on the Bo
inesq approximation, do not agree very well with the expe
ment. However, both theory and experiment reveal clear
minimum of G nearq̃.3 which becomes more pronounce
asDT approachesDTc . For the larger values ofDT/DTc the
experimental values ofG have a maximum nearq̃55. We
expect that this is due to nonlinear effects in the phys
system which lead to second-harmonic generation. This p
nomenon is not contained in the theory.

FIG. 7. The ratioR(q̃,t j ,t0 ,DT) @see Eq.~20!# based ont j

50.200 s andt050.500 s. From top to bottom the data are f
DT50.118, 0.189, 0.307 and 0.378 °C. The onset of convec
occurred atDTc50.440 °C.
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We believe that the major disagreement between the m
surements and the calculation is due to symmetric non-
effects discussed in Sec. IV C. Since there is no quantita
theory, we proceeded empirically and explored the possi
ity that non-OB effects can be accommodated to a large
tent by multiplying the experimentalDT/DTc used to esti-
mate R by an adjustable scale factor. We introduced
adjustable parameterf R,k which was allowed to be differen
for eachDTk and used

Rk5 f R,kROB ~23!

for the Rayleigh number. In addition, we introduced a sin
adjustable scale factor for all data sets which adjusted
length scale of the experiment so as to yield a corrected w
number

q̃corr5 f qq̃ ~24!

to be used in the fit of the theory to the data. We expectf q to
compensate for experimental errors in the cell spacing an
the spacing between the pixels of the images, to be with
few percent of unity, and to be the same for the runs at
DT. Finally, we treated the vertical relaxation timetv as an
adjustable parameter. We note thattv5d2/DT depends on the
cell spacing, and thus any error in the length scale will le
to an error in the time scaletv . One also might expecttv to
depend onDT because quadratic non-OB effects would
larger at largerDT; but it turned out that a single value fortv
for the runs at allDT was sufficient to describe all the dat
We carried out a simultaneous least-squares fit of Eq.~21! to
a group of 11 data sets ofG, such as those in Fig. 8, based o
t050.500 s andt j50.200 s. Each data set was for a diffe
ent DTk , and collectively they spanned the range 0.

n

FIG. 8. Results forG(q̃,DT), in units of inverse seconds, ob
tained from the values ofR shown in Fig. 7@see Eq.~21!#. The
symbols are the same as in Fig. 7. The top~dash-double-dotted!
curve is the prediction forDT50. The remaining curves are th
theoretical predictions@see Eq.~8!# for the values ofDT of the data
~see Fig. 7!.
6-10
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DYNAMICS OF FLUCTUATIONS IN A FLUID BELOW . . . PHYSICAL REVIEW E69, 021106 ~2004!
<DTk /DTc<0.86. A separate fit was done to the seco
group of nine available data sets based ont050.500 s and
t j50.350 s. For each group we simultaneously adjus
f q ,tv , and 11 or 9f R,k . We obtained the same resultf q
50.94460.010 from both groups. The fit also gavetv
50.55160.02 (0.56560.029) s for the group based ont j
50.200 (0.350) s. Qualitatively consistent with the e
pected influence of the symmetric non-OB effects, the fit
value of tv is somewhat smaller than the value 0.738 s e
mated forr5rc and the experimental valued534.3mm. As
said above, part of this difference is attributable to the er
in d indicated by the result obtained forf q . In Fig. 9 we
show the results for the productG̃5Gtv for the four ex-
amples displayed in Fig. 8 as a function off qq̃, together with
the corresponding predictions generated by using the va
of f R,k from the fit. Except for the second-harmonic cont
bution at largeq̃ and DT, the adjusted theory agrees qui
well with the data.

The values obtained forf R,k are given in Fig. 10. The two
groups (t j50.200 s andt j50.350 s) agree very well with
each other, showing that consistent results are obtained
different exposure times. Also shown is a fit to the data s
with t j50.200 s in which the individualf R,k were replaced
by a quadratic function which was forced to pass throu
f R,k51 at DT5DTc . This fit gave

f R~DT/DTc!52.7422.87
DT

DTc
11.13S DT

DTc
D 2

. ~25!

This two-parameter representation off R fits the data equally
well.

One sees thatf R is largest at the smallestDT, indicating
that the estimateR5ROB @see Eq.~22!# becomes worse a
DT decreases. This is to be expected because the approx

FIG. 9. Results forGtv as a function off qq̃, using the values
tv50.551 s andf q50.944 from the least-squares fit described in t
text. The data and symbols correspond to those in Fig. 8. The cu
indicate the corresponding theoretical results obtained from Eq~8!
by using the scale factors of the Rayleigh numberf R,k from the
least-squares fit.
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tion for f R must approach unity asDT approachesDTc in

order for G(q̃c ,DTc) to vanish. As a simplest empirical a
tempt to include non-OB effects in the comparison betwe
experiment and theory, we define, in analogy to Eq.~22!, a
non-Boussinesq Rayleigh number

RNOB~DT!5
^R~r!&

^R~r!&c
Rc , ~26!

where as beforeRc51730 and where the angular brack
indicates an average over the spanned temperature~and thus
density! range along the isobar. The averaged critical R
leigh number̂ R(r)&c is equal to^R(r)& for DT5DTc . It
turns out that̂ R(r)&c51120 for our experiment. This ap
proximation corresponds to a redefined

f R~DT!5
DTc

DT

^R~r!&

^R~r!&c
. ~27!

We note that by definitionf R(DTc)51 and thusR51730 as
it should be. Equation~27! is plotted in Fig. 10 as a dashe
line. One sees that this simplest non-OB model accou
very well for the experimental data off R . Of course, it
would be very helpful to have a proper theory~rather than an
empirical model! of this interesting effect.

VI. SUMMARY

In this paper we have reported on experimental and th
retical studies of the dynamics of thermal fluctuations bel
the onset of Rayleigh-Be´nard convection in a thin horizonta
fluid layer bounded by two rigid walls and heated from b
low. Starting from the fluctuating linearized Boussine

es

FIG. 10. Values of the fit parameterf R,k obtained from the least-
squares fit described in the text. Solid symbols correspond tG
based on exposure timest050.500 s andt j50.200 s. For the open
symbols t j was 0.350 s. The solid curve is the polynomialf R

52.7422.87DT/DTc11.13(DT/DTc)
2 which passes through th

point ~1,1!. The dashed curve represents^R&/^R&c and was calcu-
lated from values ofR such as those shown in Fig. 4.
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equations, we derived theoretical expressions for the
namic structure factor and the decay rates and amplitude
the hydrodynamic modes that characterize the dynamic
the fluctuations. The dynamic structure factor is domina
by a slow mode with a decay rate that vanishes as the R
leigh numberR becomes equal to its critical valueRc for the
onset of convection.

We used the shadowgraph method to determine the r
R of shadowgraph structure factors obtained with differ
camera exposure times. From the theoretical results for
dynamic structure factor, we derived a relationship betw
this ratio and the decay rates of the fluctuations. Using
result and the experimental values ofR, we obtained experi-
mental decay-rate data for a wide range of temperature
dients below the onset of Rayleigh-Be´nard convection in sul-
fur hexafluoride near its critical point. Quantitativ
agreement between the experimental decay rates and the
oretical prediction could be obtained when allowance w
ev

ys

,

s

02110
y-
of
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d
y-
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made for some experimental uncertainty in the small spac
between the plates and an empirical estimate was emplo
for symmetric deviations from the Oberbeck-Boussinesq
proximation which are expected in a fluid with its mean de
sity on the critical isochore.
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