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Abstract

In this paper, we consider a horizontal liquid layer in the presence of a stationary temperature
gradient. Speci4cally, we calculate the structure factor neglecting gravity, but taking into account
the 4nite height of the liquid layer. For this purpose, we consider the linearized Boussinesq
equations, in the limit of negligible Rayleigh number, supplemented with Langevin noise terms
and assuming free-slip boundary conditions. The nonequilibrium temperature !uctuations are
obtained by expanding the solution in a complete set of orthogonal functions satisfying the
boundary conditions. It is shown that the 4nite height of the system restricts the spatial range of
the temperature !uctuations not only in the direction of the temperature gradient, but also in the
horizontal direction away from the boundaries. It is demonstrated that the q−4 dependence of
the structure factor in the absence of 4nite-size e ects now crosses over to a q2 dependence for
very small values of the wave number q. Estimates of the wave numbers where light-scattering
experiments will be a ected by these 4nite-size e ects are presented. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction and motivation

Questions concerning the nature of hydrodynamic !uctuations in !uids in stationary
thermal nonequilibrium states are of current active interest. It turns out that the density
or temperature !uctuations in such nonequilibrium states become long-ranged even in
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the absence of any convective instabilities [1]. As originally predicted by kinetic theory
[2] and from !uctuating hydrodynamics [3–6], the structure factor, which determines
the intensity of Rayleigh scattering, diverges as q−4 for small values of the scattering
wave number q. This algebraic divergence of the correlation functions at small wave
numbers has been con4rmed in a number of experiments [7–9].
The divergence of the structure factor as q−4 cannot go on inde4nitely up to wave

numbers corresponding to macroscopic wavelengths. Speci4cally, one can identify two
sources that will cause deviations from the q−4 behavior at very small wave numbers.
Firstly, gravity causes the q−4 divergence to be quenched and the structure factor to
reach a constant value in the limit q → 0 as elucidated by SegrHe et al. [10,11]. This
gravitationally induced saturation of the q−4 divergence has been con4rmed by Vailati
and Giglio [12,13] in some ultra-low-angle light-scattering experiments. Secondly, since
the temperature gradient is applied to a liquid layer with a 4nite height, 4nite-size
e ects will also cause a deviation from the q−4 divergence at very small wave numbers.
However, such 4nite-size e ects on the q dependence of the structure factor at small
wave numbers have not yet been analyzed in detail and providing such an analysis
of the 4nite-size e ects is the goal of the present paper. We shall 4nd that 4nite-size
e ects may be comparable to gravity e ects in the interpretation of ultra-low-angle
scattering experiments in liquids.
To focus on the e ects of the boundaries, we shall evaluate the structure factor of a

liquid in stationary thermal nonequilibrium states neglecting gravity e ects. Neglecting
gravity means that our results apply to fully stable thermal nonequilibrium states where
convection is absent. For the sake of simplicity, we shall adopt free-slip boundary
conditions [14]. Using stick boundary conditions would be more realistic [15], but
we shall 4nd that use of free-slip boundary conditions will yield physically plausible
estimates for the wave numbers where deviations from the q−4 divergence will appear.
Our results complement some results obtained by Kirkpatrick and Cohen [16] and

by Schmitz and Cohen [4]. Kirkpatrick and Cohen [16] analyzed the equal- and
unequal-time correlation functions for free-slip boundary conditions close to the con-
vective instability induced by gravity. We are studying here the same problem but in a
di erent limit, namely, when the e ect of gravity is negligible and the system is fully
stable. Another di erence is that Kirkpatrick and Cohen used kinetic theory whereas
we are using here !uctuating hydrodynamics. Schmitz and Cohen [4] considered some
aspects of the spatial dependence of the correlation function, but their discussion of
4nite-size e ects again pertains to a situation close to the 4rst convective instability.
Malek Mansour et al. [17,18] have considered the e ects of the boundaries on

some correlation functions in a !uid subjected to a stationary temperature gradient.
They have used the same method as we do, namely, solving the linearized !uctuating
hydrodynamic equations in terms of a complete set of orthogonal functions that ful4ll
the boundary conditions. But, to simplify the hydrodynamic equations, they made the
assumption that the thermal expansion coeOcient of the !uid vanishes. This is equiva-
lent to assuming that the density !uctuations are caused only by pressure !uctuations.
Hence, their calculations are concerned with Brillouin scattering, whereas here we shall
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investigate Rayleigh scattering. It is for the Rayleigh spectrum for which accurate ex-
perimental information on nonequilibrium !uctuations has been obtained [7–9,12,13].
Bena et al. [19] have recently published results from !uctuating hydrodynamics with
boundary conditions in the case of Kolmogorov !ow. It means that they have con-
sidered boundary modi4cations to the nonequilibrium velocity autocorrelation function.
But as a consequence of the hydrodynamic simpli4cations adopted, this treatment again
does not include the Rayleigh component of the structure factor.
We shall proceed as follows. In Section 2, we review the derivation of the well

known expression for the structure factor in a liquid layer subjected to a stationary tem-
perature gradient without taking into account the presence of boundaries. In Section 3,
we then consider the modi4cations in the derivation needed to incorporate the e ects of
the 4nite height of the layer. In Section 4, we discuss the spatial decay of the structure
factor as a result of the 4nite height of the liquid layer. We shall make a comparison
with some spatial dependence of the correlation functions, reported by Schmitz and
Cohen [4]. We shall also address the problem of the long-range nature of the spatial
correlations resulting from the nonequilibrium heat di usion equation [20–23]. Finally,
in Section 5, we shall present a detailed analysis of the 4nite-size e ects as they will
appear in low-angle light-scattering experiments. Our conclusions are summarized in
Section 6.

2. Structure factor of a liquid subjected to a stationary temperature gradient

We consider a liquid layer between two horizontal plates separated by a distance L.
The liquid layer is subjected to a temperature gradient in the Z-direction by maintaining
the plates at two di erent temperatures. The size of the system in the horizontal X -
and Y -directions is much larger than the size L in the Z-direction.
To determine the structure factor of the liquid, we start from the linearized Boussi-

nesq equations supplemented with Langevin noise terms, as 4rst used by Swift and
Hohenberg in studying the onset of Rayleigh–B+enard convection [24,25]. Use of the
Boussinesq approximation to the hydrodynamic equations implies that we neglect the
sound modes and consider only density !uctuations caused by temperature !uctua-
tions or, equivalently, by entropy !uctuations [26]. While the !uctuating Boussinesq
equations are commonly used to analyze !uctuations close to the Rayleigh–B+enard
instability [24–27], we shall consider here a thermal nonequilibrium liquid that re-
mains in a quiescent, fully stable, state for which the gravity term in the !uctuating
hydrodynamics equations can be neglected.
Omitting the gravitational term, we can write the linearized !uctuating Boussinesq

equations as

@
@t
(∇2w) = 
∇2(∇2w) + F1 ;

@�
@t

= DT ∇2�+ �w + F2 ; (1)
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where, in the notation of Chandrasekhar [14], � (= �T ) represents the local !uctuation
of the temperature T and w(= �
z) denotes the !uctuation of the Z-component of the
!uid velocity v. The coeOcient 
 is the kinematic viscosity and the coeOcient DT , as
usual, is identi4ed with the thermal di usivity of the liquid. The coeOcient �=dT=dz
represents the magnitude of the temperature gradient which, as mentioned above, is
assumed to act in the Z-direction. Again following Chandrasekhar [14], we 4nd it
convenient to consider Eq. (1) for ∇2w, rather than an equation for the !uctuating
!uid velocity �v. Finally, F1 and F2 represent the contributions from rapidly varying
short-range !uctuations and are related to a random current tensor �T and a random
heat !ux �Q in such a way that [25]

F1 =
1
�
{∇ × [∇× (∇ · (�T))]}z ;

F2 =−DT

�
∇ · (�Q) ; (2)

where � and � are the density and the thermal conductivity of the !uid, while the
subscript z in Eq. (2) indicates that F1 is to be identi4ed with the Z-component of
the vector between the curly brackets. In Eqs. (1) and (2), it is assumed that both 

and DT depend only weakly on temperature so that the variation of these properties
as a function of z are negligibly small; in practice, this is a very good approximation
[28]. Moreover, the Boussinesq approximation assumes the liquid to be incompressible
[14,24], so that the coeOcient DT both in Eqs. (1) and (2) can indeed be identi4ed
with the thermal di usivity �=�cP , where cP is the speci4c isobaric heat capacity.
In the absence of any boundary conditions, a temporal and spatial Fourier transfor-

mation can be applied to Eq. (1) to obtain a set of equations for the !uctuations in the
vertical component of the velocity w(!; q) and for the !uctuations in the temperature
�(!; q) as a function of the frequency ! and the wavevector q:(−q2(i!+ 
 · q2) 0

−� i!+ DT · q2

)
·
(
w(!; q)

�(!; q)

)
=

(
F1(!; q)

F2(!; q)

)
: (3)

The solution for w(!; q) and �(!; q) can be readily obtained by inverting the matrix
appearing in Eq. (3). Rayleigh scattering probes density !uctuations caused by the
temperature !uctuations and the relationship between the Rayleigh component of the
structure factor S(!; q) and the autocorrelation of temperature !uctuations is given by

〈� ∗(!; q) · �(!′; q′)〉= 1
�2�2

S(!; q) (2�)4�(!− !′)�(q − q′) ; (4)

where � is the thermal expansion coeOcient of the liquid. To deduce the correlation
function 〈� ∗(!; q) · �(!′; q′)〉 of the temperature !uctuations from Eq. (3), we need
the correlation functions for the Langevin noise terms F1 and F2. In nonequilibrium
!uctuating hydrodynamics it is assumed that the correlation functions of the random
current tensor and the random heat !ux retain their local-equilibrium values [26,29,30].
This assumption has been veri4ed experimentally even for temperature gradients in
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excess of 200 K cm−1 [28]. From the expressions for the correlation functions of the
random current tensor �T and the random heat !ux �Q as, for instance, given by
Eqs. (3:12) in Ref. [26], and from the de4nition (2) of F1 and F2, we obtain

〈F∗
1 (!; q) · F1(!′; q′)〉= 2kBT



�
q2‖ q

4(2�)4�(!− !′)�(q − q′) ;

〈F∗
2 (!; q) · F2(!′; q′)〉= 2kBT 2�

�2c2P
q2(2�)4�(!− !′)�(q − q′) ;

〈F∗
1 (!; q) · F2(!′; q′)〉= 〈F∗

2 (!; q) · F1(!′; q′)〉= 0 ; (5)

where q‖ represents the modulus of the component of the wavevector q in the XY plane:(
q‖ =

√
q2x + q2y

)
, i.e., the component of q perpendicular to the temperature gradient.

The symbol kB represents Boltzmann’s constant. From Eqs. (3)–(5) one obtains for
the dynamic structure factor S(!; q) of a nonequilibrium liquid in the Boussinesq
approximation the following expression:

S(!; q) = �2�T kBT
�− 1
�

2DTq2

!2 + D2
T q4

+
�2�kBT
(
2 − D2

T )

�2q2‖
q6

[
P

2DT q2

!2 + D2
T q4

− 2 
 q2

!2 + 
2q4

]
; (6)

where � denotes the heat-capacity ratio cP=cV , �T the isothermal compressibility and P=

=DT the Prandtl number. In deriving Eq. (6), we have used the thermodynamic relation
�2DT = [(� − 1)=�]��T =T . We note that in this paper the parallel and perpendicular
directions are de4ned with respect to the horizontal plane, as was done by Cohen and
coworkers [4,15,16,26], but unlike the notation used by SegrHe et al. [10,11].
Eq. (6) for the Rayleigh spectrum was 4rst obtained by Kirkpatrick et al. [2] and has

been reproduced by many investigators [3,4,6]. The nonequilibrium dynamic structure
factor S(!; q) as given by Eq. (6), consists of an equilibrium contribution independent
of the temperature gradient �, and two nonequilibrium contributions proportional to the
square of the temperature gradient �. The nonequilibrium contributions to the structure
factor are anisotropic and depend on the magnitude of the horizontal component of
the wave vector q.
In this paper, we focus our attention on the static structure factor, S(q) = (2�)−1×∫
d!S(!; q), which determines the total intensity of the Rayleigh scattering [12]. From

Eq. (6) we obtain

S(q) = �2�T kBT
�− 1
�

{
1 +

(cP=T ) (P − 1)
(
2 − D2

T )

�2q2‖
q6

}
: (7)

We note from Eq. (7) that the nonequilibrium enhancement of the structure factor
is proportional to q2‖=q

6 and, hence, diverges as q−4 when q→ 0. Such an alge-
braic wave-number divergence is a general characteristic feature of the nonequilibrium
!uctuations [1].
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3. Finite-size e!ects on the nonequilibrium structure factor

As discussed in Section 1, modi4cations to the bulk expression (7) for the nonequi-
librium structure factor are expected due to the presence of gravity and boundaries.
The e ects of gravity have already been considered in the literature, and we focus
here on the modi4cations to Eq. (7) due to the presence of boundaries at z = 0 and
at z = L. As in Section 2, we introduce Fourier transforms in time and space but, to
accommodate the e ect of the boundary conditions in the Z-direction, we restrict the
spatial Fourier transformation to the XY plane. Hence, from Eq. (1) we arrive at the
following set of linear di erential equations:


i!
[
d2

dz2
− q2‖

]
− 


[
d2

dz2
− q2‖

]2
0

−� i!− DT

[
d2

dz2
− q2‖

]


(
w(!; q‖; z)

�(!; q‖; z)

)

=

(
F1(!; q‖; z)

F2(!; q‖; z)

)
; (8)

where q‖ is now a wavevector in the XY plane. As is often done in the literature
[16,24], we assume free-slip boundary conditions and perfectly conducting walls, so
that

�(!; q‖; z) = 0 at z = 0; L ;

w(!; q‖; z) = 0 at z = 0; L ;

@2w(!; q‖; z)
@ z2

= 0 at z = 0; L : (9)

Note that these boundary conditions imply the absence of any possible !uctuations in
the temperature and velocity of the !uid adjacent to the walls.
To search for a solution of Eq. (8), we represent w(!; q‖; z) and �(!; q‖; z) as a

series expansion in a complete set of eigenfunctions of the di erential operator satis-
fying the boundary conditions (9). An appropriate set of eigenfunctions is the Fourier
sine basis in the [0; L] interval [14]. We thus assume(

w(!; q‖; z)

�(!; q‖; z)

)
=

∞∑
N=1

(
AN (!; q‖)

BN (!; q‖)

)
sin
(
N�
L
z
)
: (10)

Since the di erential operator in Eq. (8) depends only on the modulus of q‖, the
problem has cylindrical symmetry and the solution will depend only on the magnitude
q‖ of the vector q‖.
To deduce the coeOcients AN (!; q‖) and BN (!; q‖) from Eqs. (8), we also need to

represent the random noise terms F1(!; q‖; z) and F2(!; q‖; z) in terms of a Fourier
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sine series:(
F1(!; q‖; z)

F2(!; q‖; z)

)
=

∞∑
N=1

(
F1; N (!; q‖)

F2; N (!; q‖)

)
sin
(
N�
L
z
)
; (11)

with (
F1; N (!; q‖)

F2; N (!; q‖)

)
=

2
L

∫ L

0

(
F1(!; q‖; z)

F2(!; q‖; z)

)
sin
(
N�
L
z
)
dz : (12)

Representing the random noise terms by Eq. (11), one readily deduces from Eqs. (8),

AN (!; q‖) =− F1; N (!; q‖)
[N 2�2=L2 + q2‖] [i!+ 
 · (N 2�2=L2 + q2‖)]

(13)

and

BN (!; q‖) =
1

[i!+ DT (N
2�2
L2 + q2‖)]

×

F2; N (!; q‖)− �F1; N (!; q‖)[

N 2�2
L2 + q2‖

] [
i!+ 


(
N 2�2
L2 + q2‖

)]

 : (14)

In analogy to Eq. (4), the Rayleigh component of the structure factor is proportional
to the autocorrelation function of the temperature !uctuations:

〈� ∗(!; q‖; z) · �(!′; q′‖; z
′)〉= 1

�2�2
S(!; q; z; z′)(2�)3�(!− !′)�(q − q′) : (15)

To compute this quantity we need to calculate the correlations between the di erent
Fourier components of the random noise terms, which involve integrals like

〈F∗
1; N (!; q‖) · F1; M (!′; q′‖)〉=

4
L2

∫ L

0

∫ L

0
〈F∗

1 (!; q‖; %) · F1(!′; q′‖; &)〉

×sin
(
N�
L
%
)
sin
(
M�
L
&
)
d& d% (16)

and similar integrals for the correlation functions 〈F∗
2; N · F2; M 〉, 〈F∗

1; N · F2; M 〉 and
〈F∗

2; N · F1; M 〉. From Eqs. (2) and (12) we obtain the following expressions for these
correlation functions:

〈F∗
1; N (!; q‖) · F1; M (!′; q′‖)〉

=2kBT


�
2
L
q2‖

(
q2‖ +

N 2�2
L2

)2
�NM (2�)3�(!− !′)�(q‖ − q′‖) ;

〈F∗
2; N (!; q‖) · F2; M (!′; q′‖)〉

=
2kBT 2�
�2c2P

2
L

(
q2‖ +

N 2�2
L2

)
�NM (2�)3�(!− !′)�(q‖ − q′‖) ; (17)

〈F∗
1; N (!; q‖) · F2; M (!′; q′‖)〉= 〈F∗

2; N (!; q‖) · F1; M (!′; q′‖)〉= 0 :
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In this calculation, because of the short-range nature of the random !uctuations, we
continue to assume that the correlation functions of the random current tensor and the
random heat !ux retain their local-equilibrium values [26]. This assumption remains
valid as long as L is a macroscopic distance much larger than the molecular distances
in the liquid.
From Eqs. (13) to (15) and (17) we readily obtain an explicit expression for the

dynamic structure factor S(!; q‖; z; z′). Integration over the frequency ! then yields
for the static structure factor S(q‖; z; z′) = (2�)−1

∫
d!S(!; q‖; z; z′):

S(q‖; z; z′) = SE(q‖; z; z′) + SNE(q‖; z; z′) ; (18)

where

SE(q‖; z; z′) = �2�T kBT
�− 1
�

2
L

∞∑
N=1

sin
(
N�
L
z
)
sin
(
N�
L
z′
)

= �2�T kBT
�− 1
�

�(z − z′) (19)

and

SNE(q‖; z; z′) = �2�T kBT
�− 1
�

(cP=T )(P − 1)�2

(
2 − D2
T )

S̃NE(q‖; z; z′) (20)

with

S̃NE(q‖; z; z′) = 2L3
∞∑
N=1

q2‖L
2

(q2‖L
2 + N 2�2)3

sin
(
N�
L
z
)
sin
(
N�
L
z′
)
: (21)

SE(q‖; z; z′), given by Eq. (19), represents the equilibrium contribution to the struc-
ture factor and does not depend either on the temperature gradient � or the boundary
conditions. As in the case of the bulk solution, SE is short ranged (a delta function). The
fact that the equilibrium structure factor is not a ected by the presence of boundaries
is well known and has been discussed in the literature (see, e.g., Ref. [16]).
SNE(q‖; z; z′), given by Eq. (20), represents the nonequilibrium contribution to the

structure factor and, as in the absence of boundaries, this contribution is again propor-
tional to the square of the temperature gradient �. To determine the dependence of the
nonequilibrium contribution to the structure factor on the height L, we need to sum
the Fourier series (21). For this purpose, we start from the relation

∞∑
N=0

1
(N 2 + '2)

sin
(
N�
L
z
)
sin
(
N�
L
z′
)

=
�
4'

1
sinh('�)

{
cosh

['�
L
(L− |z − z′|)

]
− cosh

['�
L

(
L− (z + z′)

)]}
(22)

which is valid for z; z′ ∈ [0; L] and for real '. Eq. (22) can be obtained by simple
algebra from formula 1.445 in Ref. [31]. By di erentiating Eq. (22) twice with re-
spect to the variable ', we implement the summation of the series in Eq. (21). The
result is a long expression, not particularly informative, which can be easily obtained
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Fig. 1. Normalized nonequilibrium structure factor L−3S̃NE(q‖; z = L=2; z′) as a function of z′=L for two
di erent values of q‖ (solid curve is for q‖ = 16=L and dashed curve is for q‖ = 22=L). The dotted curves
are extrapolations outside the [0; L] interval.

by the reader. We shall use the result thus obtained for SNE(q‖; z; z′) in the sequel,
while explicit expressions to be obtained upon further integration will be presented in
Sections 5 and 6.
The 4nite-size e ects on the nonequilibrium structure factor are all contained in

Eq. (21) for the normalized nonequilibrium structure factor SNE(q‖; z; z′). As an ex-
ample, we show in Fig. 1 L−3S̃NE(q‖; z; z′) as a function of z′=L at z = L=2 for two
di erent values of the horizontal wave number q‖. We see that S̃NE(q‖; z; z′) is peaked
at z = z′. Two remarks about the behavior of S̃NE can be made. Firstly, S̃NE is con-
tinuous in the interval [0; L] (actually it is so along the full real axis). Secondly, as a
consequence of the boundary conditions, S̃NE goes to zero and has in!ection points at
both ends of the interval, i.e., at z′ = 0 and L for any z. To indicate the behavior of
S̃NE as a function of z′ at the ends of the [0; L] interval more clearly, we also show
part of the extrapolated behavior (dotted curves) in Fig. 1.
Eqs. (20) and (21) are the actual expressions that we have obtained for the nonequi-

librium structure factor in a liquid layer with 4nite height L using free-slip boundary
conditions. The remaining part of this paper is concerned with a discussion of some
physical consequences arising from the 4nite height of the system.

4. Correlations in real space

In order to elucidate how the correlation functions become long-ranged in real
space, we need to consider the inverse Fourier transform of SNE(q‖; z; z′), which can be
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Fig. 2. Normalized correlation function L−1G̃NE(r‖; z; z′) in the Z-direction (r‖ = 0) as a function of z′=L
for z = L=4 (——) and for z = L=2 (- - - - -).

expressed as

GNE(r‖; z; z′) = �2�T kBT
�− 1
�

(cP=T ) (P − 1)�2

(
2 − D2
T )

G̃NE(r‖; z; z′) ; (23)

with

G̃NE(r‖; z; z′) =
∫ ∞

0
q‖J0(q‖r‖)S̃NE(q‖; z; z′) dq‖ : (24)

Here r‖ is the cylindrical radial variable and J0(x) the Bessel function of the 4rst kind
and of order zero [31]. We have not been able to evaluate integral (24) exactly in the
general case. Fortunately, there are two interesting particular cases for which integral
(24) can be evaluated explicitly:
(i) The 4rst case corresponds to r‖ = 0, which yields the nonequilibrium equal-time

correlation function along the Z-axis. After performing integration (24), we obtained
in this case

G̃NE(r‖ = 0; z; z′) =
L
4

[ |z + z′| − |z − z′|
2L

− zz′

L2

]
: (25)

As an example, we show in Fig. 2, the normalized correlation function L−1G̃NE(r‖ =
0; z; z′) as a function of z′=L, for two di erent values of z=L. This nonequilibrium
real-space equal-time correlation function along the Z-axis is always positive, has a
maximum at z = z′ and decreases monotonically from this maximum, reaching zero
at both ends of the interval. The real-space correlation function in the Z-direction is
nonlocal, long-ranged and does not involve any intrinsic length scale, i.e., the correla-
tion encompasses the entire system only to be cut o by the 4nite size of the system
itself. The algebraic exponent characterizing the long-range nature of the correlation
in the direction coincident with the temperature gradient equals 1. We note that for
points near the center of the liquid layer, where z � z′ � L=2, expression (25) for
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Fig. 3. Semi-logarithmic plot of the normalized correlation function L−1G̃NE(r‖; z; z′) in the central plane
of the liquid layer (z = z′ = L=2) as a function of r‖=L.

G̃NE(r‖ = 0; z; z′) reduces to

G̃NE(r‖ = 0; z; z′) =
L
16

[
1− 2

|z − z′|
L

]
: (26)

(ii) The second interesting case for which integral (24) can be evaluated exactly is
for z=z′=L=2, in which case G̃NE depends only on the radial variable r‖. G̃NE(r‖; z=
L=2; z′=L=2) represents the nonequilibrium equal-time correlation function in the plane
parallel to the boundaries at mid-height of the cell, i.e., the plane at maximum distance
from the boundaries. Integration of Eq. (24) in this case yields

G̃NE(r‖; z = L=2; z′ = L=2) =
r‖
2�

{ ∞∑
N=0

1
2N + 1

K1

(
(2N + 1)�r‖

L

)

− �r‖
2L

∞∑
N=0

K0

(
(2N + 1)�r‖

L

)}
; (27)

where K0 and K1 are modi4ed Bessel functions of the second kind. In Fig. 3, we have
plotted the normalized correlation function L−1G̃NE(r‖; z=L=2; z′=L=2) as a function
of r‖=L. From Eq. (27) we conclude that for r‖=L�1 the real-space correlation function
will vary with r‖ as

G̃NE =
L
16

(
1− 3r‖

L

)
; (28)

which con4rms the existence of long-ranged correlations in the direction perpendicular
to the temperature gradient, consistent with Eq. (7) for the nonequilibrium structure
factor. On the other hand, for r‖=L�1, using the asymptotic expansion of the Bessel
functions, we obtain

G̃NE =
L
4�2 (2− s)

√
�s
2
exp(−s) ; (29)
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with s= �r‖=L. Hence, the 4nite size of the liquid layer not only restricts the long-range
nature of the correlations in the direction coincident with the temperature gradient, but
also in the direction perpendicular to the temperature gradient. Fig. 3 shows how the
correlations in a plane perpendicular to the temperature gradient rapidly vanish as the
radial distance r‖ approaches values of the order of L. This is also evident from the
r‖ dependence of the correlation function, which switches from a linear dependence in
Eq. (28) for r‖=L�1 to an exponential dependence in Eq. (29) for r‖=L�1.
The temperature gradient not only induces long-range spatial correlations in the di-

rection perpendicular to the temperature gradient (for r‖=L�1), but also in the direction
coincident with the temperature gradient as has been elucidated by several previous in-
vestigators on the basis of the nonequilibrium heat-di usion equation [17,23,32,33].
Considering only the heat-di usion equation means neglecting any coupling between
temperature and velocity !uctuations. Therefore, this approach only applies to nonequi-
librium !uctuations with q‖ = 0, which is equivalent to considering real-space corre-
lations along the direction of the gradient. The existence of long-range correlations in
the direction of the temperature gradient has been con4rmed by numerical integration
[20], by computer simulations [34] and by a lattice-gas automaton approach [35]. Our
expression (26) for the correlation function in the direction of the temperature gradient
is in agreement with that obtained by Malek Mansour and coworkers [20,23], as is
evident from a comparison of our Fig. 2 with Fig. 1 in Ref. [23].
We note that the long-range correlations in the direction perpendicular to the tem-

perature gradient are caused by a coupling between the temperature !uctuations and
the transverse momentum !uctuations [2–6]. This coupling vanishes in the direction
of the temperature gradient, as is evident upon substituting q‖ = 0 in Eq. (7). The
long-range correlations in the direction of the temperature gradient follow from solv-
ing the heat-di usion equation in the presence of boundary conditions. The signi4cance
of our results is that we have obtained an expression, given by Eq. (21), which includes
the e ects of the boundary conditions in the correlations in all spatial directions.
It is worth mentioning that our results are consistent with the work of Schmitz and

Cohen [4] regarding the spatial nature of the correlations in the absence of boundary
conditions. If one substitutes r‖ = 0 into Eq. (3.13a) of Ref. [4], one obtains the
result that the nonequilibrium part of the correlation function is directly proportional to
−2|z− z′| in agreement with the dependence on |z− z′| in our Eq. (26) for the interior
points of the liquid layer. However, our Eq. (26) di ers from the result of Schmitz and
Cohen by an additional term proportional to L which diverges in the limit L → ∞ and,
therefore, was not considered by Schmitz and Cohen. Furthermore, if one substitutes
z = z′ into Eq. (3.13a) of Ref. [4], one obtains the result that the nonequilibrium part
of the correlation function is proportional to −3r‖ to be compared with our Eq. (28)
for the correlations in the direction perpendicular to the temperature gradient and far
from the boundaries, when r‖=L�1.
As can be seen from Fig. 3, the correlation function in the direction parallel to

the boundaries has a minimum close to r‖ = L (actually for our boundary conditions
at r‖=L = 1:1542). This value corresponds approximately to the size of the rolls that
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Fig. 4. Schematic representation of a nonequilibrium light-scattering experiment. qi is the wave vector of the
incident light and qs is the wave vector of the scattered light. The magnitude q= |qi − qs| of the scattering
wave vector is related to the scattering angle - by q=2q0 sin(-=2), where q0 is the magnitude of the wave
vector qi of the incident light in the liquid.

appear at the 4rst convective instability [27]. The fact that the correlation function
has a horizontal structure on a length scale of order L is to be expected as a direct
consequence of the boundary conditions with and without gravity.

5. Consequences for light-scattering experiments

In this section, we evaluate the e ects due to the 4nite height of the !uid layer as
they could be observed in light-scattering experiments. For this purpose we consider an
experimental arrangement like the ones employed by Sengers and coworkers [7,8,28,36]
or by Vailati and Giglio [12,13]. A schematic representation of such a light-scattering
experiment is shown in Fig. 4. The scattering medium is a thin horizontal !uid layer
bounded by two parallel plates whose temperatures can be controlled independently
so as to establish a temperature gradient across the !uid layer. The horizontal plates
are furnished with windows allowing laser light to propagate through the !uid in the
direction (anti)parallel to the temperature gradient. Light scattered over an angle -
arises from !uctuations with a wave number such that [37]

q= 2q0 sin(-=2) ; (30)

where q0 is the wave number of the incident light inside the !uid medium. To observe
any 4nite-size e ects one needs to observe the scattered-light intensity at small wave
numbers q and, hence, at very small scattering angles.
From electromagnetic theory [37] it follows that the scattering intensity S(q) is

obtained from an integration of the structure factor (18) over the scattering volume,
so that [4]

S(q‖; q⊥) =
1
L

∫ L

0

∫ L

0
e−iq⊥(z−z′)[SE(q‖; z; z′) + SNE(q‖; z; z′)] dz dz′ : (31)
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In Eq. (31) we have assumed that the scattering volume extends over the full height
of the !uid layer as is the case in small-angle light scattering from thin !uid layers. In
this situation, scattered light received in the collecting pinhole of the detector indeed
arises from all the points illuminated by the laser beam inside the !uid layer. From
Eqs. (19), (20) and (31) it follows that the scattered-light intensity S(q‖; q⊥) will only
depend on the magnitudes q‖ and q⊥ of the parallel and perpendicular components of
the scattering wave vector q. From Eq. (30) and the geometrical arrangement shown
in Fig. 4, we note that q‖ and q⊥ are related to the scattering angle - by

q‖ = q cos(-=2) = 2q0 sin(-=2) cos(-=2) ;

q⊥ = q sin(-=2) = 2q0 sin
2(-=2) : (32)

Substitution of Eq. (19) into Eq. (31) yields for the equilibrium contribution
SE(q‖; q⊥) to the scattered-light intensity

SE(q‖; q⊥) = �2�T kBT
�− 1
�

; (33)

which is the traditional formula for the isotropic Rayleigh-scattering intensity [37].
Hence, the boundary conditions do not a ect the Rayleigh scattering from a liquid in
thermal equilibrium as long as the height L is large enough so that the correlation
functions for the random noise terms retain the equilibrium values given by Eqs. (17).
Eq. (33) for the equilibrium contribution to the Rayleigh-scattering intensity also re-
mains valid in the presence of gravity, although gravity does a ect the spectral distri-
bution of the Rayleigh scattering [10].
Substituting Eq. (20) for SNE(q‖; z1; z2) into Eq. (31), after performing the sum-

mation in Eq. (21) and the integration in Eq. (31), we obtain for the total Rayleigh-
scattering intensity (equilibrium plus nonequilibrium) S(q‖; q⊥)

S(q‖; q⊥) = �2�T kBT
�− 1
�

[
1 +

(cP=T )(P − 1)
(
2 − D2

T )
�2S̃NE(q‖; q⊥)

]
; (34)

with

S̃NE(q‖; q⊥) = L4
q̃2‖
q̃6
[1 + H (q̃‖; q̃⊥)] (35)

and

H (q̃‖; q̃⊥) =

[
15q̃4‖ − 10 q̃2‖ q̃

2
⊥ − q̃4⊥

4q̃3‖ (q̃
2
‖ + q̃2⊥)

]
cos(q̃⊥)− cosh(q̃‖)

sinh(q̃‖)

−
[
7q̃2‖ − q̃2⊥

4q̃2‖

]
1− cosh(q̃‖) cos(q̃⊥)

sinh2(q̃‖)

+

[
q̃2‖ + q̃2⊥
4q̃‖

]
[1 + cosh2(q̃‖)] cos(q̃⊥)− 2 cosh(q̃‖)

sinh3(q̃‖)
: (36)
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Fig. 5. Double-logarithmic plot of the wave number dependence of the nonequilibrium contribution S̃NE(q),
given by Eq. (37), for a !uid layer with a height L = 1 mm.

In Eqs. (34)–(36) we have introduced q̃‖=q‖ L and q̃⊥=q⊥ L as dimensionless wave
numbers.
The function H (q̃‖; q̃⊥) in Eq. (35) accounts for the 4nite-size e ects on the scat-

tering intensity. As L → ∞; H → 0 and we recover expression (7) for the Rayleigh-
scattering intensity in the absence of boundary conditions. For low-angle scattering
experiments, where the long-range nonequilibrium !uctuations can be investigated, we
have q̃‖ � q̃ and q̃⊥ � 0. In this case, the normalized nonequilibrium contribution to
the scattering intensity can be approximated by

S̃NE(q) =
L4

q̃4

{
1 +

q̃2[cosh(q̃)− 1] + sinh(q̃)[7 q̃ − 15 sinh(q̃)]
4 q̃ sinh(q̃)(cosh(q̃) + 1)

}
: (37)

Eq. (37) is valid up to an order sin2(-=2) in terms of the scattering angle -. The
simpli4ed form of the normalized structure factor S̃NE(q), as given by Eq. (37), is
shown in Fig. 5 as a function of q on a double-logarithmic scale and for the case of
L = 0:1 cm, which is the typical height of !uid layers in low-angle nonequilibrium
Rayleigh-scattering experiments [9,12,36]. We have also evaluated the more complete
expressions, Eqs. (35) and (36), using q0=1:5×105 cm−1, which is a typical wavevector
of the light sources employed in scattering experiments. The complete result, thus
obtained, is indistinguishable from approximation (37) in the range of wave numbers
displayed in Fig. 5. It can be shown that for large values of the wave number q, the
term inside the curved brackets in Eq. (37) approaches unity and we recover the q−4

dependence of the scattering intensity in the absence of 4nite-size e ects. However,
such q−4 dependence cannot go on inde4nitely with decreasing wave numbers and, as
shown in Fig. 5, the 4nite size of the system causes a crossover to a q2 dependence
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of the scattering function at very small wave numbers. For q → 0 the function H (q̃)
behaves as

H (q̃)
q→0→ −1 + 17

20160
q̃6 ; (38)

indeed compensating the divergent q−4 dependence when 4nite-size e ects are ne-
glected, causing an asymptotic dependence on q2 as shown in Fig. 5. From Eq. (38)
we may de4ne a characteristic wave number:

q× =
(
20160
17

)1=6 1
L
� 3:25

L
; (39)

which for L=0:1 cm corresponds to q× � 33 cm−1. From Fig. 5, we see that S̃NE(q̃)
exhibits a maximum at q � q×, so that q× may be interpreted as a “crossover” wave
number separating the q−4 dependence and the q2 dependence of the scattering function.
As mentioned in Section 1, not only the 4nite size of the system, but also gravity

will cause deviations from the q−4 dependence of the scattering intensity. SegrHe et al.
[10] have predicted that the q−4 divergence will saturate to a constant value indepen-
dent of q for small wave numbers. This prediction has been con4rmed experimentally
[12,13]. From Fig. 5, we conclude that the quenching of the q−4 divergence as a result
of 4nite-size e ects is even stronger, causing the nonequilibrium contribution to the
scattering function to vanish as q → 0. The result, that the crossover from the q−4

divergence to the q2 dependence as a result of the 4nite size of the system occuring
at wave numbers around q× � �=L, seems intuitively plausible. The observation that
the scattering function vanishes as q → 0 is a consequence of the imposed condition
of the absence of temperature and velocity !uctuations at the boundaries.
The gravitationally induced saturation of the q−4 divergence occurs at a “roll-o ”

wave number qRO such that [10]

qRO =
(
g��

DT

)1=4
; (40)

where g is the gravitational acceleration constant. For toluene subjected to a temperature
gradient � = 100 K cm−1, we 4nd that qRO � 70 cm−1 [7,10]. From Fig. 5, we note
that, at this wave number, deviations from the q−4 behavior due to 4nite-size e ects
are substantial. Thus, we conclude that, at least in one-component liquids, the 4nite-size
e ects may be equally important as the deviations from the q−4 divergence due to
gravity.
Small-angle nonequilibrium scattering experiments so far performed in one com-

ponent liquids (toluene and n-hexane) have probed wave numbers down to q �
1500 cm−1 [28]. However, Vailati and Giglio [12] have demonstrated the feasibility
of performing ultra-low-angle scattering experiments, probing wave numbers q down
to values as small as 20 cm−1.
Eq. (37) yields the scattering intensity as a function of q � q‖ for small scattering

angles. Finite-size e ects in nonequilibrium light-scattering experiments at any value
of the scattering angle - can be deduced from Eqs. (35) and (36). However, we note
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that Eq. (31) and hence Eq. (35) do not include any possible e ects of the 4nite size
of the scattering volume in the X - and Y -directions.

6. Conclusions

In this paper, we have evaluated the structure factor in a horizontal liquid layer of
4nite height L subjected to a vertical stationary temperature gradient. Rayleigh scatter-
ing, probes the density !uctuations that arise from temperature !uctuations (at constant
pressure). We have shown that the 4nite height of the layer restricts the extent of
the long-range nature of the correlations not only in the direction coincident with the
temperature gradient, but also in the direction perpendicular to the temperature gra-
dient. Speci4cally, we have elucidated how the well-known q−4 dependence of the
structure factor in the presence of a temperature gradient is quenched by the 4nite
size of the system, yielding a crossover to a q2 dependence at very small scattering
angles. We 4nd that for a liquid like toluene, the deviations from the q−4 dependence
at small wave numbers are just as important as deviations caused by the presence of
gravity. Therefore, for a quantitative interpretation of ultra-low-angle light-scattering
experiments, it may be important to account both for gravity and 4nite-size e ects
simultaneously. This will be considered in a future publication.
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