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Mesoscopic non-equilibrium thermodynamics of non-isothermal
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We show how the law of mass action can be derived from a thermodynamic basis, in the presence

of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution

gives the law of mass action for the forward and the reverse contributions to the net chemical

reaction. In addition we derive the fluctuation–dissipation theorem for the fluctuating

contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any

other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics;

namely quasi-stationary transport across a high activation energy barrier, and local equilibrium

along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered.

The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the

presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully

reconciled with non-equilibrium thermodynamics.

1. Introduction

Non-isothermal systems, where reaction and diffusion take

place, are typical in the chemical process industry,1 and also in

biological systems.2 The chemical reaction is always central in

these systems, because the rate of the reaction often will

determine how fast chemicals can be produced. A high rate

can be realized when the reaction is far from equilibrium. But

an operation far from equilibrium is also an operation in

which the energy dissipation is large. With the present interest

to save valuable resources, chemical reactors should be studied

also from the perspective of obtaining a more energy-efficient

operation, in addition to maintaining the production of

chemicals. In biological systems, one may expect that energy

efficiency is an issue of survival, especially under harsh

conditions.3 In such cases and probably many others, a

thermodynamic description will be important to understand

the transport phenomena involved.2,4 Studies of minimum

energy dissipation (minimum lost work), for instance, start

with an expression for the entropy production, see ref. 5–7. In

other words, a description of transport processes from a

thermodynamic perspective of the second law is required.

Chemical reactions are inherently non-linear processes, and

are most successfully described in the field of reaction kinetics

by the law of mass action.8,9 The concentrations of a reacting

mixture and the kinetic coefficients for the forward and backward

reactions are then related at thermodynamic equilibrium, with

the ratio of the kinetic coefficients giving the thermodynamic

equilibrium constant. The driving force for the reaction at

constant temperature and pressure is well described by the

reaction Gibbs energy. The reaction rate is not commonly

expressed as a function of the reaction Gibbs energy. This is

not surprising, because classical non-equilibrium thermo-

dynamics10,11 assumes a linear relation between these two

variables, and experimental evidence indicates that this is only

correct very close to chemical equilibrium. Further development

of a rate equation from non-equilibrium thermodynamics has

been hampered by the difficulty of overcoming this problem.

The first to address this problem successfully was Kramers,12

who described the reaction as a diffusion process along a

reaction coordinate. This predated the introduction of

mesoscopic non-equilibrium thermodynamics, which has

further opened up this new possibility. This extension, to be

explained in detail below, introduces new variable(s) at a level

of description below the one used in macroscopic thermo-

dynamics. The extension in the context of non-equilibrium

thermodynamics was first proposed by Prigogine and Mazur,13

see also ref. 14 and 15. By integrating over these variables to

obtain the thermodynamic level, one can describe several

phenomena, which are non-linear on the macroscopic level,

and which retain a linear force-flux relation on the mesocopic

level. This applies not only to chemical reactions,16 but for

instance also to adsorption,17 nucleation,18 electrode over-

potentials19 and active transport in biology.2 The number of

cases studied is now growing fast. The coupling of chemical

reactions to other processes is then important.4,16,20–23 In our

analysis the chemical reaction is embedded in a system with

flow. Thermodynamic coupling between the thermodynamic

driving forces and their conjugate thermodynamic forces

follows from the entropy production. All flows that could

couple to the chemical reaction (like diffusion flows) are

present in the entropy production. This coupling will been

taken into account. The systems considered are isotropic and

as a consequence there is no coupling in the force–flux
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relations between fluxes (flows) with a different tensorial

character. Further coupling as a consequence of the balance

equations will be systematically accounted for. Both types of

coupling may lead to contributions to fluxes against the

direction imposed by their primary driving forces.23 In our

description we follow the monograph by de Groot and

Mazur,14 to which we refer for further clarification. Coupling

in the context of non-equilibrium thermodynamics means that

one flux is not only related to its main driving force, but to all

other driving forces with the same tensorial character. One

long-range aim of the present effort is to derive corresponding

results for the realistic case, when the chemical reaction is a

non-linear function of its driving force. The present work lays

the foundations for that, and gives the fluctuation–dissipation

theorem. The analysis will be restricted to chemical reactions

in a closed system. That is, there are no buffers, which add or

remove components in order to keep the chemical potential of

these components at a given value. Our aim is to study heat

and mass transport due to a temperature gradient across such

a chemically reacting system.

Non-equilibrium thermodynamics is not only a theory for

transport processes, it is also a theory for fluctuations. It has

been demonstrated that the fluctuating contributions to the

thermodynamic fluxes in a non-equilibrium system satisfy the

fluctuation–dissipation theorem just like they do in equilibrium.24

This is what the condition of local equilibrium implies for the

fluctuations. As explained in the monograph by Ortiz de

Zárate and Sengers,24 the behavior of the resulting density

and temperature fluctuations is, however, very different from

the equilibrium behavior. In this paper the fluctuation–

dissipation theorem shall be given for fluctuations on the

mesoscopic level, for a mixture of reacting components in a

temperature gradient. A study of the nature of these fluctuations,

may be important for a better understanding of coupling

on the mesoscopic level, for instance in biology.2,4 Such a

coupling is not yet sufficiently understood.

The theory of non-equilibrium thermodynamics is based on

the assumption of local thermodynamic equilibrium. The

validity of this assumption has been established by molecular

dynamics simulations in several cases.25–27 Fluctuations and

the resulting correlation functions away from equilibrium were

then not considered. One of the major findings has been that

although local equilibrium is valid for the description of the

mean values of thermodynamic fields, it is no longer valid for

the description of the fluctuations around their average

non-equilibrium values.24 In a previous paper Ortiz de Zárate

et al.28 analyzed this problem for a reaction-diffusion problem

with a temperature gradient using a linear approximation for

the description of the reaction. For the reaction-diffusion

problem the assumption of local equilibrium has to be

extended to be valid also along the reaction coordinate. In

particular it has to be specified what this assumption implies

for the fluctuating contributions. In this and a subsequent

paper we shall extend the results of Ortiz de Zárate et al.28 to

the more realistic nonlinear description.

The paper is written in a terminology that, as far as possible,

is common to chemists. We present the balance equations and

the transport equations for a simple reacting mixture in a

temperature gradient in section 2. The balance equations are

written for the macroscopic as well as the mesoscopic level.

From the entropy production we derive the flux–force relations

on the mesoscopic level in sections 2.2–2.5. By integration

over the reaction coordinate, we give a derivation of a

generalization of the law of mass action in which the concen-

trations of the components are replaced by fugacities. The

fluctuation–dissipation theorem on the mesoscopic level is

presented in section 3. Again we are able to integrate along

the reaction coordinate. The result is a realistic nonlinear

description of the reaction with well-defined fluctuating

contributions to the associated heat and mass fluxes.

2. Mesoscopic non-equilibrium thermodynamics of

a chemically reacting fluid mixture

As a representative elementary reaction, consider a reversible

association-dissociation reaction, like in a mixture of atoms

and a molecule:

2A " A2, (1)

From a macroscopic point of view, only two states are

relevant, the reactant state and the product state. The reaction

Gibbs energy per unit of mass results from the difference

between the chemical potentials of these states

Dg = mA2
� mA. (2)

Here Dg is measured in units of J kg�1, for reasons to be

explained below. The stoichiometric coefficient of 2 in front of

mA which follows when the unit is J mol�1, disappears then in

front of mA. Classical non-equilibrium thermodynamics

postulates a linear relation between the reaction rate r and

the conjugate thermodynamic force �Dg/T. This is only valid

when |DgM/RT| { 1, where M is the molar mass of the

reaction complex (see below). We use the reaction Gibbs

energy rather than the affinity, see ref. 14 for a definition.

As an alternative, reaction kinetics9 describes the reaction

from a microscopic point of view. The probability for the

reactant A to collide with A and to produce A2 is proportional

to the concentration of A squared. Likewise the probability

that the product A2 splits up is proportional to the concentration

of A2. Whether 2A succeeds to make A2 or not depends on a

number of variables, like their velocities, their rotational

velocity relative to each other, their interaction energy and

the interparticle distance. One may envision a series of

configurations in energy space on the way from reactant to

product. These are so-called internal states, different from the

beginning and end states in eqn (2).

In the mesoscopic formulation, the reaction path taken by

the reaction over an energy barrier is considered. A distinction

is made between the different states transversed, from the state

of two separate atoms via the states during the collision all the

way to the final molecule. The sequence of internal states is

specified by the reaction coordinate g, see de Groot and

Mazur,14 section X.6. We will assume that for the reaction

considered, eqn (1), one single scalar g-coordinate is sufficient.

We will not consider cases where an extension of the analysis

to more than one reaction coordinate is needed.4,16,21 At any

value of g we speak of the reaction complex. For g = 0 the
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reaction complex consists of the reactants and for g = 1 it

consists of the products. The choice of 0 and 1 as the beginning

and end of the reaction coordinate can be done without loss of

generality. Mass is conserved, and the reaction complex has

always the molar mass of A2. The chemical reaction is

modelled as a diffusion process in g-space over an energy

barrier. Typically such energy barrier has a maximum at g0,
which is large in the sense that the energy per kg of reaction

complexes is large compared to the thermal energy RT/M. The

energy at g0 is referred to as the transition state energy. The

larger the transition state energy is, the slower is the reaction.

This picture, common in reaction kinetics since Eyring,9

is also important in mesoscopic non-equilibrium thermo-

dynamics. Following Kramers,12,14 the reaction can be seen

as a diffusion process along the reaction coordinate g. Along

the reaction coordinate the probability that a reaction complex

is in the state g at a position r and at time t is given by c(r,g,t).
The integral of this probability distribution over g is equal to

one. The approach of Kramers has been extended to include

fluctuating contributions by Pagonabarraga et al.16

2.1 Mesoscopic thermodynamics

Having introduced the key concept of a probability distribution

c(r,g,t), the first step of mesoscopic non-equilibrium thermo-

dynamics is to establish thermodynamics along the mesoscopic

g-coordinate. It follows from the Gibbs–Shannon entropy

postulate that the specific entropy (in J K�1 kg�1) for the

probability distribution c(r,g,t) is given by:

sðr; tÞ ¼ � R

M

Z 1

0

cðr; g; tÞ ln cðr; g; tÞdg; ð3Þ

where M = 2MA = MA2
is the total molar mass of the

reaction complex. Along the g-coordinate we can consider

entities with different values of g as different species in

ordinary thermodynamics of multi-component systems. Then,

we can define partial specific properties for each value of g, like
s(r,g,t) for the entropy, by:

sðr; tÞ ¼
Z 1

0

cðr; g; tÞsðr; g; tÞdg; ð4Þ

and similarly for other extensive thermodynamic variables.

From eqn (3) and (4), it immediately follows that s(r,g,t) =
� (R/M) ln c(r,g,t). The local version of the Euler equation reads:

Tðr; tÞsðr; tÞ ¼ hðr; tÞ �
Z 1

0

cðr; g; tÞmðr; g; tÞdg; ð5Þ

where h(r,t) is the specific enthalpy and where we introduced a

chemical potential m(r,g,t) for each g-species. At the ends of

the reaction coordinate the chemical potentials are given by

m(r,0,t) = mA (r,t) and m(r,1,t) = mA2
(r,t), which are the Gibbs

energy of the reactants before the reaction starts and the

Gibbs energy of the products after the reaction ends, in J kg�1.

From the Gibbs–Shannon postulate, eqn (3), we deduce that this

chemical potential is given in terms of the temperature T(r,t) and

the probability distribution c(r,g,t) by

mðr; g; tÞ ¼ RTðr; tÞ
M

ln cðr; g; tÞ þ hðr; g; tÞ; ð6Þ

where h(r,g,t) is the partial specific enthalpy, defined similarly to

eqn (4) for the partial specific entropy. We want to stress that

eqn (6) for the chemical-potential is the most general expression

for the probability distribution c(r,g,t) along the g-coordinate.
It is a direct consequence of the Gibbs–Shannon postulate.

Therefore, use of eqn (6) for m(r,g,t) does not imply any restriction

in the validity of the developments presented in this paper. In

particular it does not assume ideal behavior of mA (r,t) and mA2

(r,t), as we will explain in more detail below.

The essential property of h(r,g,t) is that there is a high

barrier at some transition state g0 separating two flat regions.

A schematic representation of such an partial specific enthalpy

as a function of g is shown in Fig. 1, where we suppress the

explicit r,t dependence for ease of notation. The maximum at

the transition state g0 is large compared to the thermal energy

RT/M. The enthalpy at g0 is referred to as the transition state

energy. As further clarified in section 2.4, the larger the

transition state energy the slower the reaction.

In equilibrium the chemical potential and the temperature

will be independent of r,t and g and we have

meq ¼
RTeq

M
ln ceqðgÞ þ heqðgÞ: ð7Þ

For the equilibrium probability distribution this gives

ceqðgÞ ¼ exp
M

RTeq
ðmeq � heqðgÞÞ

� �
: ð8Þ

Both heq and ceq only depend on g and not on r,t in equilibrium.

It follows from eqn (8) that the equilibrium probability is very

small around the transition state g0. See in this context Fig. 2.

In the Figure the non-equilibrium solid line only differs visibly

from the equilibrium dashed line for g between g0 and 1. The

reason why the difference is small between 0 and g0 is on the

one hand that we divide by c0 � c(0), and on the other hand

that the chemical potential is in good approximation constant

in this region. For g between g0 and 1 the chemical potential is

also in good approximation constant, but it has a different

value from the one between 0 and g0, when the system is not in

equilibrium.

As mentioned in the introduction, the theory of non-

equilibrium thermodynamics is based on the assumption of

local thermodynamic equilibrium. For the reaction-diffusion

problem local equilibrium implies that we will assume that the

thermodynamic relations, given by eqn (3)–(6), are valid not

only in equilibrium but also away from equilibrium.

Fig. 1 The partial specific enthalpy along the reaction coordinate.
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2.2 Balance laws

We consider a reaction in a volume element at flow. In

addition to the flow field there is a temperature and concen-

tration variation across the system. The balance laws relevant

to our problem are14,w the balance of mass

@rðr; g; tÞ
@t

¼ �r � ðrðr; g; tÞvðr; tÞ þ Jðr; g; tÞÞ

� @rðr; g; tÞ
@g

; ð9Þ

the balance of momentum

@

@t
ðrðr; tÞvðr; tÞÞ ¼ �rpðr; tÞ � r � ½rðr; tÞvðr; tÞvðr; tÞ

�Pðr; tÞ�; ð10Þ

When we use the comoving time derivative, D/Dt =

@/@t+v(r,t) � r, these equations can be written as:

Drðr; g; tÞ
Dt

¼ �rðr; g; tÞr � vðr; tÞ � r � Jðr; g; tÞ

� @rðr; g; tÞ
@g

; ð11Þ

rðr; tÞDvðr; tÞ
Dt

¼ �rpðr; tÞ þ r �Pðr; tÞ: ð12Þ

For the balance of energy one finds

rðr; tÞDuðr; tÞ
Dt

¼ rðr; tÞTðr; tÞDsðr; tÞ
Dt

þ pðr; tÞ
rðr; tÞ

Drðr; tÞ
Dt

þ rðr; tÞ
Z 1

0

mðr; g; tÞDcðr; g; tÞ
Dt

dg

¼ �r � Jqðr; tÞ � pðr; tÞr � vðr; tÞ:

ð13Þ

In eqn (9) we assume that there are no inert components so

that the mass density of reaction complexes in the state g at the
location r at time t is given by r(r,g,t) = r(r,t)c(r,g,t). As

c(r,g,t) is normalized, the integral of r(r,g,t) over g gives r(r,t).

It is straightforward to extent the analysis to systems where

one or more components are inert. In the balance laws (10)

and (13), p is the pressure, u is the specific internal energy and s

is the specific entropy. Furthermore, the diffusion flux,

J(r,g,t) = r(r,g,t)(v(r,g,t) � v(r,t)), in the balance of

mass (9) is related to the difference between the velocity of

the reaction complex, v(r,g,t), and the center of mass

(barycentric) velocity, v(r,t). These velocities are related by

rðr; tÞvðr; tÞ ¼
R 1
0 rðr; g; tÞvðr; g; tÞdg. When the barycentric

velocity field is unequal to zero and one wants to describe

flow phenomena, it is convenient to use fluxes relative to the

barycentric velocity. In order to simplify the notation we will

usually only specify whether a variable does or does not

depend on g. The chemical potential along the reaction

coordinate is given at the end by the chemical potentials of

the reactants, m(r,0,t) = mA, and the product, m(r,1,t) = mA2
.

The equations above contain convection terms and are

therefore fully applicable also when there is turbulence.

We readily identify on the right-hand side (RHS) of the

balance laws (9)–(13) four fluxes. Two of them are vectors: the

diffusion flux J(r,g,t) of the reaction complex in the state g and
the energy flux Jq(r,t) (or total heat flux) in the barycentric

frame of reference. Moreover, we have on the RHS of the mass

balance (9) a scalar flux, r(r,g,t), which is a diffusion flux along

the internal g-coordinate in mass per unit volume and unit

time and unit g. This internal diffusion flux represents the

chemical reaction, as elucidated below. The last flux is the

(deviatoric) stress tensor P(r,t), which appears on the RHS of

the momentum balance (10) and is a second-order tensor. We

note that in the balance of momentum (10), external forces

(buoyancy) have been neglected, while in the balance of energy

(13) we have also neglected viscous heating. Moreover, in

eqn (13) we employ material time derivatives to simplify the

notation. For the same reason we will from now on suppress

the explicit r,t dependence when this is not confusing.

The diffusion fluxes are not independent, since from their

definition it follows that
R 1
0 JðgÞdg ¼ 0.14 Therefore,

if we integrate the mass-balance law over g, we obtain

@tr + r�(rv) = �r(1) + r(0) = 0. In the last identity we

have used that the reaction is closed so that r(1) = r(0) = 0.

Using these constraints, we express the set of balance laws as:

Dr
Dt
þ rr � v ¼ 0; ð14aÞ

r
DcðgÞ
Dt

¼ �r � JðgÞ � @rðgÞ
@g

; ð14bÞ

r
Dv

Dt
þrp ¼ r �P; ð14cÞ

rcp
DT

Dt
� aT

Dp

Dt
þ r

Z 1

0

hðgÞDcðgÞ
Dt

dg ¼ �r � Jq; ð14dÞ

where cp is the isobaric specific heat capacity of the mixture,

a its thermal expansion coefficient and where

hðgÞ ¼ mðgÞ � T
@mðgÞ
@T

� �
p;c

¼ mðgÞ � TsðgÞ ð15Þ

is the partial specific enthalpy along the reaction coordinate.

Fig. 2 The natural logarithm of the probability distribution divided

by its value at g = 0, for equilibrium (dashed line) and away from

equilibrium (solid line).

w The discussion in Chapter 2 of de Groot and Mazur carries over to
the present case if one replaces the discrete index labeling the compo-
nents by the continuous label g labeling the reaction complexes.
Similar to that case the momentum density and the internal energy
density should not be split into separate contributions for the different
reaction complexes.
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Alternatively, we can express the set of working equations in

terms of the molar concentration of molecules [A](g) = r(g)/M,

which is more customary in the chemical literature, and where

we have used the fact that the total molar mass of the reaction

complex M = 2MA = MA2
is independent of g along the

reaction coordinate. This second approach implies modifications

in eqn (14b) and (d), which have to be expressed in terms of

[A2], so that eqn (14) become:

Dr
Dt
þ rr � v ¼ 0; ð16aÞ

D½A�ðgÞ
Dt

þ ½A�ðgÞr � v ¼ �r � J0ðgÞ � @r
0ðgÞ
@g

; ð16bÞ

r
Dv

Dt
þrp ¼ r �P; ð16cÞ

rcp
DT

Dt
� aT

Dp

Dt
þ
Z 1

0

dgMhðgÞ

� D½A�ðgÞ
Dt

þ ½A�ðgÞr � v
� �

¼ �r � Jq:
ð16dÞ

where the term Mh(g) corresponds to the partial enthalpy of

the reaction complex along the reaction coordinate g in

J mol�1, J0(g) = J(g)/M is the diffusion flux expressed in

moles of the reaction complex per m2 and s, and similarly

r0(g) = r(g)/M the internal diffusion flux expressed in terms of

moles of the reaction complex produced per unit volume. The

product Mh(g) in the RHS of eqn (16d), with the help of (15),

can be expressed as:

MhðgÞ ¼ m0ðgÞ � T
@m0ðgÞ
@T

� �
p;c

; ð17Þ

where m0(g) = M m(g) corresponds to the chemical potential of

the reaction complex A(g) along the reaction coordinate in

J mol�1. Hence, the product Mh(g) is closely related to the

enthalpy of the chemical reaction (1), also in J mol�1.

We conclude that the set of balance equations, whether

formulated in terms of mass densities or in terms of molar

concentrations, have a completely parallel structure. The

following developments can be translated from one language

to the other just by replacing c(g) with [A](g), rDtc(g) with

Dt[A](g) + [A](g) r�v, J(g) with J0(g), r(g) with r0(g) and by

multiplying h(g) everywhere by a factor M/r. We have chosen

to use here version (14), but we emphasize that the other

possibility is completely equivalent.

As usual, the RHS of the balance laws (14) or (16) contains

fluxes that need be related to the physical gradients in the

system. This is considered next.

2.3 The flux–force relations

The complete non-equilibrium thermodynamic formulation of

the system under study requires, in addition to the balance

laws (14), the consideration of the entropy production _S of

the system as a function of the position and time. Generalizing

the results in the monograph by de Groot and Mazur,14 to

which we refer for further clarification, one obtains:

_S ¼� Jq �
rT
T2
�
Z 1

0

JðgÞ � r mðgÞ
T

dg

þPðsÞ :
ðrvÞðsÞ

T
�
Z 1

0

rðgÞ
T

@mðgÞ
@g

dg;

ð18Þ

where the superscript (s) indicates that the viscous part of the

pressure tensor is symmetric. This implies that only the

symmetric part of the tensor of velocity derivatives (rv)(s)
contributes to _S. The symmetric tensors can both be written

as the sum of a symmetric traceless part, indicated by a

superscript (st), and a contribution due to the trace

P(s) = P(st) + P 1, (19)

(rv)(s) = (rv)(st) + 1
3
(r � v) 1, (20)

Here 1 is the unit tensor and P = 1
3
trP = 1

3
trP(s). Upon

substitution of eqn (19) and (20) into eqn (18) the entropy

production of the system becomes

_S ¼� Jq �
rT
T2
�
Z 1

0

JðgÞ � rmðgÞ
T

dgþPðstÞ :
ðrvÞðstÞ

T

þP
r � v
T
�
Z 1

0

rðgÞ
T

@mðgÞ
@g

dg:

ð21Þ

The entropy production in eqn (21) has the typical structure: it

is linear in the fluxes. As is well known, the quantities

multiplying each of the five fluxes in eqn (21) are the corres-

ponding conjugate thermodynamic forces. The first two

flux–force pairs are vectorial, the third is traceless symmetric

tensorial and the last two terms are scalar.

In our analysis it has been assumed that the diffusion

flux along the internal g-coordinate, r(g), vanishes at both

g = 0 and g = 1. The reaction is closed. This is appropriate

for the problems we intend to consider. It is possible to

consider cases for which r(0) and r(1) are unequal to zero.

In that case there is exchange of reactants and/or products

with one or more buffers. This leads to entropy fluxes at the

ends of the reaction coordinate, which would have to be

considered.

Next, to ‘‘close’’ the balance laws (14) and to obtain the

equations of irreversible thermodynamics, one needs to introduce

the linear phenomenological laws. Various formulations are

possible and they are related to each other by a redefinition of

the fluxes. The final hydrodynamic equations obtained (see

eqn (60) and (61) below) for different choices of fluxes used to

establish the phenomenological laws are fully equivalent. We

shall use as fluxes the vectors Jq, J(g), the symmetric traceless

tensor P(st), and the scalars P, r(g). Then, taking into account

that the two vectorial fluxes are coupled by virtue of the Curie

principle, and assuming that the system is isotropic, one
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obtains in mesoscopic non-equilibrium thermodynamics the

following linear phenomenological laws:

Jq ¼ �Lqq
rT
T2
�
Z 1

0

LqJðgÞr
mðgÞ
T

dg; ð22aÞ

JðgÞ ¼ �LJqðgÞ
rT
T2
� LJJðgÞr

mðgÞ
T

; ð22bÞ

PðstÞij ¼ Z
@vi
@xj
þ @vj
@xi
� 2

3
dijr � v

� �
; ð22cÞ

P = Zv r � v, (22d)

rðgÞ ¼ �LrðgÞ
1

T

@mðgÞ
@g

: ð22eÞ

These are the flux equations for the mesoscopic level that

follow from the entropy production. We see that there is

coupling between the heat and mass flux, but not between

other fluxes. Even though P and r(g) are both scalar, we have

neglected possible coupling terms between these fluxes,

because they are usually small. Such coupling terms give a

so-called chemical viscosity. We refer to the monograph by

Kuiken29 pp. 133–135 for more details. The phenomenological

laws, (22c) and (22d), for the two contributions to the

stress tensor are expressed in the common way,14 in terms of

the shear viscosity Z and the bulk viscosity Zv. The other

phenomenological laws (22a)–(22e) are written in terms of

Onsager coefficients Lqq, LJJ(g), LqJ(g), LJq(g) and Lr(g), that
satisfy the Onsager relation LqJ(g) = LJq(g). In writing the

above phenomenological laws we assumed that J(g) and r(g)
are true physical fluxes which only depend on their conjugate

forces at the same value of g.
In order to relate the flux equations for the mesoscopic level

to measurement, we need to integrate over the internal

coordinate. Because
R 1
0 JðgÞdg ¼ 0, it follows that the integral

on the RHS of eqn (22b) over g is zero independent of

the choice of the temperature and the chemical potential

gradients. This implies, by using also the Onsager relation in

the first equality, that
R 1
0 LJqðgÞdg ¼

R 1
0 LqJðgÞdg ¼ 0 andR 1

0 LJJðgÞr½mðgÞ=T � dg ¼ 0. We shall use these properties when

we integrate below.

2.4 Transport along the reaction coordinate

In this subsection we discuss what happens along the reaction

coordinate g. At each point in space r at time t the state or the

reaction is described by the probability distribution c(r,g,t) of
the reaction complexes to be in the state g. The time rate of

change of c(r,g,t) is given by eqn (14b), and the diffusion flux

along the internal g-coordinate is given by the phenomeno-

logical eqn (22e). Substitution of eqn (6) and (22e) into

eqn (14b) yields:

Dcðr; g; tÞ
Dt

¼ � 1

rðr; tÞr � Jðr; g; tÞ

� @

@g
Dr

@

@g
cðr; g; tÞ þMcðr; g; tÞ

RTðr; tÞ
@

@g
hðr; g; tÞ

� �
;

ð23Þ

where we introduced the following diffusion coefficient along

the g-coordinate

Drðr; tÞ �
RLrðr; g; tÞ
Mrðr; g; tÞ ¼

RLrðr; g; tÞ
Mrðr; tÞcðr; g; tÞ : ð24Þ

In first approximation the Onsager coefficient Lr(r,g,t) will be
proportional to c(r,g,t)12 and the diffusion coefficient Dr is

therefore in good approximation independent of the reaction

coordinate g. As indicated in eqn (24), the diffusion coefficient

along the reaction coordinate may still depend on r,t. Upon

substitution of eqn (6) and (24) into eqn (22e), one obtains

rðr; g; tÞ ¼ �Drðr; tÞrðr; tÞ exp �
Mhðr; g; tÞ
RTðr; tÞ

� �

� @

@g
exp

Mmðr; g; tÞ
RTðr; tÞ

� �
:

ð25Þ

The energy barrier along the g-coordinate has a maximum

at g0 which is large compared to RT/M. As a consequence the

reaction rate r is small. A quasi-stationary state develops such

that r(r,g,t) is in good approximation independent of g along

the reaction coordinate. This is illustrated for a special case in

Fig. 3. Close to the ends of the g-coordinate r(r,g,t) goes to

zero. We have therefore in good approximation

r(r,g,t) = r(r,t)Y(g)Y(1 � g), (26)

where Y is the Heaviside function, which is one for a positive

argument and zero for a negative argument. Upon substitution

of eqn (26) into eqn (25) we obtain

rðr; tÞYðgÞYð1� gÞ ¼ �Drðr; tÞrðr; tÞ exp �
Mhðr; g; tÞ
RTðr; tÞ

� �

� @

@g
exp

Mmðr; g; tÞ
RTðr; tÞ

� �
:

ð27Þ

It should be noted that the derivative of the reaction rate with

respect to g gives two contributions proportional to a delta

function near the end of the reaction coordinate, which, as one

can see in Fig. 3, are just inside the 0,1 domain. Integration of

this derivative over g therefore has �r(r,t) contributions at the
end of the g-coordinate and not a half times these values.

Fig. 3 Representation of a prototypical flow along the reaction

coordinate for a quasi-stationary state. Note that r(g) vanishes at the
two ends of the interval, but changes only close to these endpoints.
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If we bring the exponential factor containing h to the left in

eqn (27), we can integrate this equation over g and obtain

rðr; tÞ¼�Drðr; tÞrðr; tÞ
exp

Mmðr; g; tÞ
RTðr; tÞ

� �
� exp

Mmðr; 0; tÞ
RTðr; tÞ

� �
Z g

0

exp
Mhðr; g0; tÞ
RTðr; tÞ

� �
dg0

8>><>>:
9>>=>>;:

ð28Þ

Use of eqn (6) yields

rðr; tÞ ¼ �Drðr; tÞrðr; tÞ

�
cðr; g; tÞ exp MhðgÞ

RTðr; tÞ

� �
� cðr; 0; tÞ exp Mhð0Þ

RTðr; tÞ

� �
Z g

0

exp
Mhðr; g0; tÞ
RTðr; tÞ

� �
dg0

8>><>>:
9>>=>>;:

ð29Þ

In the quasi-stationary state, the chemical potential is in good

approximation constant in the domains between 0 and g0 and
between g0 and 1. As illustrated by the example in Fig. 4, in the

regions around 0 and 1, where the probability is sizeable, the

chemical potential is in good approximation constant.

The changeover is around g = g0 where the probability is

negligible. We have therefore

m(r,g,t) = m(r,0,t)Y(g0 � g) + m(r,1,t)Y(g � g0)

� mA(r,t)Y(g0 � g) + mA2
(r,t)Y(g � g0), (30)

where we have identified the chemical potential at g= 0 with a

pair of atoms and at g= 1 with a molecule. Combining eqn (6)

and (30) we obtain for the probability distribution along the

g-coordinate

cðr;g;tÞ¼ exp
M

RTðr;tÞðmAðr;tÞ�hðr;g;tÞÞ
� �

Yðg0�gÞ

þ exp
M

RTðr;tÞðmA2
ðr;tÞ�hðr;g;tÞÞ

� �
Yðg�g0Þ

¼ cðr;0;tÞexp M

RTðr;tÞðhðr;0;tÞ�hðr;g;tÞÞ
� �

Yðg0�gÞ

þcðr;1;tÞexp M

RTðr;tÞðhðr;1;tÞ�hðr;g;tÞÞ
� �

Yðg�g0Þ:

ð31Þ

Therefore, the combination of a barrier-shape h(r,g,t) with a

quasi-stationary r(r,g,t) allows us to group states along the

g-coordinate in two classes. The first class contains all states

with 0 r g og0 and the second class contains all states with g0
o gr 1. The states in the first class are in equilibrium with the

reactants, while those in the second class are in equilibrium

with the products. The total probabilities to find reactants and

products at the position r at time t are

c2Aðr; tÞ �
Z g0

0

cðr; g; tÞdg

¼ cðr; 0; tÞ
Z g0

0

exp
M

RTðr; tÞ ðhð0Þ � hðgÞÞ
� �

dg;

cA2
ðr; tÞ �

Z 1

g0

cðr; g; tÞdg

¼ cðr; 1; tÞ
Z 1

g0

exp
M

RTðr; tÞ ðhð1Þ � hðgÞÞ
� �

dg:

ð32Þ

We define cA2
(r,t) � c(r,t) and c2A(r,t) � 1 � c(r,t). Given that

there is a single product of the reaction A2 with a stochiometric

coefficient 1, cA2
(r,t)� c(r,t) is equal to the concentration of A2

at the position r at time t. The reactants have a stoichiometric

coefficient 2 and as a consequence c2A(r,t) = c2A(r,t), where

cA(r,t) is the concentration of A at the position r at time t, see

Pagonabarraga et al.16 Substituting these relations into eqn (29)

for the diffusion flux along the internal g-coordinate we obtain

rðr; tÞ ¼ Drðr; tÞrðr; tÞZ 1

0

exp
Mhðr; g; tÞ
RTðr; tÞ

� �
dg

� c2Aðr; tÞZ g0

0

exp � MhðgÞ
RTðr; tÞ

� �
dg
� cA2

ðr; tÞZ 1

g0

exp � MhðgÞ
RTðr; tÞ

� �
dg

8>>><>>>:
9>>>=>>>;:

ð33Þ

This can be written as

r(r,t) = k+(r,t) c2A(r,t) � k�(r,t)cA2
(r,t)

= k+(r,t) c2A(r,t) � k�(r,t)cA2
(r,t), (34)

where the rate coefficients are:

kþðr; tÞ ¼
Drðr; tÞrðr; tÞZ 1

0

exp
MhðgÞ
RTðr; tÞ

� �
dg
Z g0

0

exp � MhðgÞ
RTðr; tÞ

� �
dg
;

k�ðr; tÞ ¼
Drðr; tÞrðr; tÞZ 1

0

exp
MhðgÞ
RTðr; tÞ

� �
dg
Z 1

g0

exp � MhðgÞ
RTðr; tÞ

� �
dg

:

ð35Þ

Eqn (34) is the law of mass action of Guldberg and Waage.8

Thus, unlike classical non-equilibrium thermodynamics, the

mesoscopic extension of the theory reproduces the law of mass

action. It is also clear from the thermodynamic derivation that

the kinetic coefficients are Arrhenius-like.

Fig. 4 The chemical-potential profile along the g-coordinate. The

data have been obtained from eqn (28) together with Fig. 1 for h(g)
and Fig. 3 for r(g).
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In the further analysis it is convenient to write eqn (28) in

the form

rðr; tÞ ¼ � Drðr; tÞrðr; tÞZ 1

0

exp
Mhðr; g; tÞ
RTðr; tÞ

� �
dg

� exp
MmA2

ðr; tÞ
RTðr; tÞ

� �
� exp

MmAðr; tÞ
RTðr; tÞ

� �� �

¼� Lrðr; tÞR
M

1� exp �
MðmA2

ðr; tÞ � mAðr; tÞÞ
RTðr; tÞ

� �� �

¼� Lrðr; tÞR
M

1� exp �MDgðr; tÞ
RTðr; tÞ

� �� �
; ð36Þ

where

Lrðr; tÞ ¼
MDrðr; tÞrðr; 1; tÞ

R

Z 1

0

exp
Mðhðr; g; tÞ � hðr; 0; tÞÞ

RTðr; tÞ

� �
dg

¼
MDrðr; tÞrA2

ðr; tÞ

R

Z 1

0

exp
Mhðr; g; tÞ
RTðr; tÞ

� �
dg
Z 1

g0

exp �Mhðr; g; tÞ
RTðr; tÞ

� �
dg

¼ M

R
k�ðr; tÞrA2

ðr; tÞ; ð37Þ

and where the Gibbs energy of the reaction is Dg(r,t) =

mA2
(r,t) � mA(r,t). Eqn (36) is the thermodynamic form of

the law of mass action. It contains activities of the reactants

and products rather than concentrations, and can thus be said

to be more general than the formulation which uses the

ideality assumption. While the law of mass action (34) uses

the probabilities for the forward and backward reactions,

mesoscopic non-equilibrium thermodynamics shows that one

should use the fugacities fi = exp(Mimi/RT) rather than the

densities ri. This gives a different physical understanding.

Eqn (36) is the most appropriate form to be used in entropy

production minimization, see e.g., ref. 5,7 or in descriptions of

chemical reactions in general. Eqn (37) gives a useful relation

between the rate coefficients Lr and k�, which in many cases

is known from experiments. We propose to calculate the

thermodynamic rate coefficient Lr from experimental data in

this manner. Many data are then readily available for a

thermodynamic analysis.6,7,30

Using the expression for the concentration of A2 which

follows from eqn (32) one obtains from eqn (14b) by integrating

from g0 to 1:

rðr; tÞDcðr; tÞ
Dt

¼ �r � Jðr; tÞ þ rðr; tÞ; ð38Þ

where

Jðr; tÞ �
Z 1

g0

Jðr; g; tÞdg ¼ �
Z g0

0

Jðr; g; tÞdg; ð39Þ

To obtain the last term in eqn (38) we used that the diffusion

flux along the internal g-coordinate is such that @r(r, g, t)/@g

has a contribution r(r,t)d(1 � g) which is just inside the

integration domain; see the explanation under eqn (26) and

(27) to clarify why there is no factor of 1/2. This term gives the

slow conversion of reactants to products, which is equal to the

reaction rate.

From eqn (15) and (30) it follows that

h(r, g, t) = h(r, 0, t)Y(g0 � g) + h(r, 1, t)Y(g � g0)

� hA(r,t)Y(g0 � g)+hA2
(r,t)Y(g � g0). (40)

Substitution of this expression into the integral containing

h(r, g, t) in eqn (14d) and use of the definition of c(r,t) given

below eqn (32) yieldsZ 1

0

hðr; g; tÞDcðr; g; tÞ
Dt

dg ¼ ½hAðr; tÞ � hA2
ðr; tÞ�Dcðr; tÞ

Dt

¼ � Dhðr; tÞDcðr; tÞ
Dt

;

ð41Þ

where Dh is the enthalpy of the reaction, see Fig. 1.

2.5 Transport coefficients in the presence of a chemical

reaction

Substitution of eqn (30) for the chemical potential into

eqn (22a) for the heat flux yields

Jq ¼ �Lqq
rT
T2
� LqJr

mA2
� mA
T

¼ �Lqq
rT
T2
� LqJr

Dg
T
; ð42Þ

where the coupling coefficient is given by

LqJ ¼
Z 1

g0

LqJðgÞdg ¼ �
Z g0

0

LqJðgÞdg: ð43Þ

Integrating eqn (22b) from g0 to 1 one obtains

J ¼ �LJq
rT
T2
� LJJr

mA2
� mA
T

¼ �LJq
rT
T2
� LJJr

Dg
T
; ð44Þ

where

2LJJ ¼
Z 1

g0

LJJðgÞdg: ð45Þ

In the derivation of eqn (44) we have used that the integral of

J(g) over g is equal to zero, so that:

Z 1

0

LJJðgÞr
mðgÞ
T

dg ¼
Z 1

g0

LJJðgÞdgr
mA2

T

þ
Z g0

0

LJJðgÞdgr
mA
T
¼ 0

ð46Þ
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By using eqn (34), (42) and (44) the phenomenological

eqn (22c)–22(e) become

Jq ¼ �Lqq
rT
T2
� LqJr

Dg
T
; ð47Þ

J ¼ �LJq
rT
T2
� LJJr

Dg
T
; ð48Þ

Pij ¼ Z
@vi
@xj
þ @vj
@xi
� 2

3
dijr � v

� �
; ð49Þ

P = Zv r � v (50)

r ¼ LrR

M
1� exp

MDg
RT

� �� �
: ð51Þ

As we explained between eqn (34) and (37), eqn (51) is

consistent with the law of mass action given in eqn (34). As

we showed in the previous subsection, the coefficient Lr

associated with the chemical reaction, can be related to the

rate constant k�, see eqn (37). We prefer to give the reaction

rate with the Onsager coefficient Lr, to underline its thermo-

dynamic basis. Finally we see that linear phenomenological

laws of traditional non-equilibrium thermodynamics are

recovered for small deviations, MDg { RT, from chemical

equilibrium.14

In order to be able to compare with experiments, we relate

the phenomenological coefficients to the well-known transport

coefficients. In the case of the coupled equations for J and Jq,

this is achieved by expressing first the gradient in the reaction

Gibbs energy in eqn (48) in terms of pressure, temperature and

concentration gradients. This procedure yields:

Jq ¼ � Lqq �
L2
Jq

LJJ

" #
rT
T2
þ LqJ

LJJ
J; ð52Þ

J ¼ �fLqJ � LJJDhg
rT
T2

� LJJ

T

@Dg
@p

� �
T ;c

rp� LJJ

T

@Dg
@c

� �
p;T

rc:
ð53Þ

On comparing this with the phenomenological equations for

binary systems31

Jq ¼ �lrT þ Dhþ kT
@Dg
@c

� �
p;T

( )
J; ð54Þ

J ¼ �rD rcþ kT

T
rT þ kp

p
rp

� �
; ð55Þ

we can express the Onsager coefficients in terms of the usual

transport coefficients: thermal conductivity l, mutual diffusion

coefficient D, dimensionless thermal diffusion ratio kT

and dimensionless barodiffusion ratio kp. The resulting

expressions are:

D ¼ LJJ

rT
@Dg
@c

� �
p;T

; l ¼ 1

T2
Lqq �

L2
qJ

LJJ

" #
;

rDTkT ¼ LqJ � LJJDh; kp ¼ p
@Dg
@p

� �
T ;c

@Dg
@c

� ��1
p;T

:

ð56Þ

The expressions show that the coefficients differ significantly

from the corresponding coefficients without a chemical reaction.

The value of D has a contribution from the concentration

variation in Dg, which can be substantial. The coupling

coefficient LqJ = LJq can be large, because Dh can be of

appreciable magnitude. This can be seen more clearly by

defining the heat of transfer

q� ¼ Jq

J

� �
T

¼ LqJ

LJJ
¼ Dhþ kT

@Dg
@c

� �
p;T

: ð57Þ

The sign of the coefficient may also vary. The barodiffusion

ratio is independent of the Onsager coefficients; it is an

equilibrium property and not related to a dissipative process.

Barodiffusion seems to be important only in geological

problems, and is negligibly small for ordinary fluid mixtures.

Hence, we neglect barodiffusion here, which means that we

neglect the dependence of the specific Gibbs energy difference

on pressure in eqn (53), so that Dg = Dg(T, c) only.

2.6 Hydrodynamic equations

Next, we substitute the phenomenological eqn (47)–(50) into

the set of balance laws, eqn (14a), (14c), (38), (14d), and use

eqn (41) in eqn (14d), so as to obtain the set of differential

equations from which the spatiotemporal evolution of the

velocity, the temperature and the concentration of the mixture

can be evaluated. If we neglect the dependence of the Onsager

coefficients on pressure, concentration or temperature, the

hydrodynamic equations can be written as:

Dr
Dt
þ rr � v ¼ 0;

r
Dv

Dt
¼ �rpþ Zr2vþ 1

3
Zþ Zv

� �
rr � v;

r
Dc

Dt
¼ �LqJr2 1

T

� �
þ LJJr2 Dg

T

� �

� LrR

M
1� exp �MDg

RT

� �� �
;

rcp
DT

Dt
� aT

Dp

Dt
þ rDh

Dc

Dt
¼ �Lqqr2 1

T

� �
þ LJqr2 Dg

T

� �
;

ð58Þ

which, combined with the equations of state p= p(r, T, c) and
Dg = Dg(p, T, c) C Dg(T, c) constitute the hydrodynamic

equations of the chemically reacting mixture under consideration.

We have used the fact that the chemical potential along the
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internal coordinate is constant separately for reactants and

products and have used the enthalpy of the chemical reaction,

Dh = hA2
� hA. As discussed in Section 2.2, these equations

can be expressed in terms of the molar concentration, [A2],

multiplying by the corresponding factors involving the molar

mass, MA2
. For example, the molar enthalpies of the chemical

reaction is obtained multiplying Dh by the factor MA2
.

Again, it is usually advantageous to express the second pair

of the hydrodynamic eqn (58) in terms of the ordinary trans-

port coefficients: l, D, kT, instead of the Onsager coefficients

LJJ, etc. This can be achieved by inverting eqn (56) and

substituting the result into eqn (58). Furthermore, it can be

assumed that:

r2 1

T

� �
’� 1

T2
r2T ;

r2 Dg
T

� �
’� Dg

T2
r2T þ 1

T
r2ðDgÞ

’ � 1

T2
Dg� T

@Dg
@T

� �
c

� �
r2T þ 1

T

@Dg
@c

� �
T

r2c;

ð59Þ

where terms proportional to the square of gradients, like

(rT)2, (rm)2 etc., have been neglected, since they are second

order in the fluxes as can be immediately seen by inverting the

phenomenological relations (47)–(50). In addition, we recall

that we may neglect barodiffusion and, consequently, the

dependence of the reaction Gibbs energy on the pressure, see

eqn (56). Then, substitution of eqn (59) into the second pair of

eqn (58), and use of the well-known transport coefficients, give

the hydrodynamic equations in their more classical form,

namely:

Dc

Dt
¼ D r2cþ kT

T
r2T

� �
� LrR

rM
1� exp �MDg

RT

� �� �
; ð60Þ

DT

Dt
¼ ½aþDED�r2T þDT

kT
EDr2c

þ LrRT

rM
Dbh 1� exp �MDg

RT

� �� �
; ð61Þ

where in the energy eqn (61) we have introduced a thermal

diffusivity

a ¼ l
rcp � aTð@p=@TÞr;c

; ð62Þ

a dimensionless Dufour effect ratio

ED ¼
rk2T

Tðrcp � aTð@p=@TÞr;cÞ
@Dg
@c

� �
p;T

; ð63Þ

which measures the importance of the Dufour effect, and a

dimensionless specific enthalpy of reaction:

Dbh ¼ ðrDh� aTð@p=@cÞr;T
ðrcp � aTð@p=@TÞr;cÞT

: ð64Þ

This dimensionless specific enthalpy of reaction Dĥ shows up

multiplying the last term in the energy balance eqn (61); it thus

causes a heating due to the chemical reaction. This term is

important and cannot be neglected.

3. Fluctuations in a chemically reacting mixture

In this section we discuss the theory of thermodynamic

fluctuations for a chemically reacting system. In particular

we will combine the description of fluctuations along the

reaction coordinate with the fluctuations in the stress tensor,

the heat flux and the diffusion of the reaction complex through

space. We will first discuss the fluctuation source terms in the

fluxes and then give the generic formulation in terms of the

fluctuation–dissipation theorem.

3.1 Fluctuating hydrodynamics

Following the general guidelines of fluctuating hydro-

dynamics24 we formulate the stochastic version of the hydro-

dynamic eqn (58) for the mesoscopic level by the following

three-step procedure: This has been done before, but for

simpler cases where there are either no internal variables31–35

or for chemical reactions using the mesoscopic description.16

1. The fluxes (in our case Jq, J(g), P(st), P and r(g)) reflect
the random nature of molecular motion, so they must be

considered as stochastic variables with a probability distribution

to be specified below. As a consequence, both the temperature

and the concentration also become stochastic variables whose

spatiotemporal evolutions depend on the stochastic fluxes

through the balance laws (14), as the balance laws (14)

continue to hold even in the presence of fluctuations.

2. Because of stochastic phenomena, the phenomenological

relationships (22a)–(22e) are only valid on ‘‘average’’. This

means that when fluctuations are present, eqn (22a)–(22e)

must be replaced by:

Jq ¼ �Lqq
rT
T2
�
Z 1

0

LqJðgÞr
mðgÞ
T

dgþ dJq; ð65Þ

JðgÞ ¼ �LJqðgÞ
rT
T2
� LJJðgÞr

mðgÞ
T
þ dJðgÞ; ð66Þ

PðstÞij ¼ Z
@vi
@xj
þ @vj
@xi
� 2

3
dijr � v

� �
þ dPðstÞij ; ð67Þ

P = Zv r � v + dP (68)

rðgÞ ¼ �LrðgÞ
1

T

@mðgÞ
@g
þ drðgÞ; ð69Þ

where dJq(r,t), dJ(r, g, t), dP
(st)
ij (r,t), dP(r,t), dr(r, g, t) are the

random contributions to Jq(r,t), J(r, g, t), P(st)
ij (r,t), P(r,t),

r(r, g, t). We will refer to the other terms on the right-hand side

as the deterministic contributions. For ease of notation we do

not indicate the r and t dependence explicitly.

3. To completely specify the probability distribution of the

random fluxes (dJq(r,t) and the like), we need not only the first

moment, but all the other moments of their probability

distributions. When the system is in a global equilibrium state,
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the probability distributions of the random fluxes are gener-

ated by a set of Gaussian stochastic processes. Hence, only the

first and second moments are required to specify them com-

pletely. The first moments are:

hdJq(r,t)i = hdJ(r, g, t)i = hdP(st)(r,t)i
= hdP(r,t)i = hdr(r, g, t)i = 0. (70)

Here h. . .i is the average over the functional probability

distribution. The second moments are given by:

hdJ�q;kðr; tÞ � dJq;lðr0; t0Þi ¼ 2kBLqq;0ðr; tÞdkldðt� t0Þdðr� r0Þ;
ð71Þ

hdJ�kðr; g; tÞ � dJlðr0; g0; t0Þi ¼ kBLJJ;0ðr; g; tÞdkl dðt� t0Þ

� dðr� r0Þdðg� g0Þ;
ð72Þ

hdJ�kðr; g; tÞ � dJq;lðr0; t0Þi ¼ 2kBLJq;0ðr; g; tÞ dkl

� dðt� t0Þ dðr� r0Þ;
ð73Þ

hdP�ijðr; tÞ � dPklðr0; t0Þi

¼ 2kBðTZÞ0ðr; tÞ dikdjl þ dildjk �
2

3
dijdkl

� �
dðt� t0Þdðr� r0Þ;

ð74Þ

hdP*(r,t) � dP(r0, t0)i= 2kB(TZv)0(r,t) d(t � t0) d(r � r0),

(75)

hdr*(r, g, t) � dr(r0, g0, t0)i = 2kBLr,0(r, g, t) d(t � t0)

� d(r � r0)d(g � g0). (76)

where kB is the Boltzmann constant. These equations are a

generalization of the Fluctuation–Dissipation Theorem, which

gives the stochastic properties of the fluxes when the system is

in a global equilibrium state,31 to the case under consideration.

New is the use of the mesoscopic description along the

reaction coordinate in the context of other transport processes.

For the description of fluctuations along the reaction coordinate

alone, we refer to Pagonabarraga et al.16 Fluctuations around

equilibrium are described with the equilibrium values of the

Onsager coefficients in eqn (71)–(76). We recall that the

Onsager coefficients for the stress tensor are proportional to

TZ and TZv, and note that the fluctuation–dissipation theorem

for the random stress, written as in eqn (74), clearly shows the

symmetry under permutation of indices: i by j, or k by l. When

the mixture is not in global equilibrium, the assumption of

local equilibrium remains valid, also for the fluctuations in the

above equations.24 All Onsager coefficients on the right-hand

side of eqn (71)–(76) are then evaluated at the pressure p0(r,t),

temperature T0(r,t) and probability distribution c0(r, g, t) of
the deterministic solution found when the random contributions

to the fluxes are neglected. In the fluctuation–dissipation

theorem the Onsager coefficients therefore have a subscript

zero. The reason why there should be no factor 2 in front

of kBLJJ,0 will become clear below. As explained in the

monograph by Ortiz de Zárate and Sengers24 for a number

of cases, the correlation functions of the temperature and the

concentrations do not satisfy local equilibrium when the

mixture is not in global equilibrium. Long-range correlations

develop also in a chemically reacting mixture, which will be

considered in a subsequent publication.

Together with the balance laws (14), the properties of the

fluctuating contributions to the thermodynamic fluxes given

above completely specify the mesoscopic description of the

reaction-diffusion in a temperature gradient. They not only

specify the behavior along the reaction coordinate, but also

embed this in the background of the diffusion problem for heat

and mass. This will enable us to not only study properties like

how heat conduction is modified by the reaction but also

how long-range correlations develop under non-equilibrium

conditions for systems where the reaction kinetics has a

realistic nonlinear behavior.

3.2 Fluctuations along the reaction coordinate

Before we proceed we first discuss what happens along the

reaction coordinate. At each point in space r the state or the

reaction is described by the probability distribution c(r, g, t).
The time rate of change of this quantity is given by (14b):

rðr; tÞDcðr; g; tÞ
Dt

¼ �r � Jðr; g; tÞ þ @rðr; g; tÞ
@g

: ð77Þ

The reaction rate along the reaction coordinate is now given by

rðr; g; tÞ ¼ �Lrðr; g; tÞ
1

Tðr; tÞ
@mðr; g; tÞ

@g
þ drðr; g; tÞ: ð78Þ

For the chemical potential we can use eqn (6). Substituting

eqn (78) and (6) into eqn (77) we obtain:

rðr; tÞDcðr; g; tÞ
Dt

¼�r � Jðr; g; tÞ � rðr; tÞ @
@g

Drðr; tÞ

� @

@g
cðr; g; tÞ þMcðr; g; tÞ

RTðr; tÞ
@

@g
hðr; g; tÞ

� �

þ @drðr; g; tÞ
@g

; ð79Þ

where J(r, g, t) is given by eqn (66) and contains the fluctuating

part dJ(r, g, t). Furthermore we used that the diffusion coeffi-

cient along the g-coordinate defined in eqn (24) is

constant. The energy barrier along the g-coordinate has a

maximum at g0 which is high compared to RT/M. As a

consequence the total reaction rate r is small. A quasi-

stationary state develops such that the total reaction rate is

independent of g.
Using eqn (6) and (24) one obtains for the total reaction rate

rðr; tÞ ¼ �Drðr; tÞrðr; tÞ exp �
Mhðr; g; tÞ
RTðr; tÞ

� �

� @

@g
exp

Mmðr; g; tÞ
RTðr; tÞ

� �
þ drðr; g; tÞ for 0ogo1:

ð80Þ

An important aspect of this equation is that the deterministic

and the random contribution to the reaction rate separately
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are functions of g. It is only their sum, which is independent

of g. Multiplying this equation with the exponential factor

containing f we can integrate this equation and we obtain

rðr; tÞ¼�Drðr; tÞrðr; tÞ
exp

Mmðr; 1; tÞ
RTðr; tÞ

� �
� exp

Mmðr; 0; tÞ
RTðr; tÞ

� �
Z 1

0

exp
Mhðr; g; tÞ
RTðr; tÞ

� �
dg

8>>><>>>:
9>>>=>>>;

þ drðr; tÞ ¼ �Drðr; tÞrðr; tÞ

�
cðr; 1; tÞ exp Mhðr; 1; tÞ

RTðr; tÞ

� �
�cðr; 0; tÞ exp Mhðr; 0; tÞ

RTðr; tÞ

� �
Z 1

0

exp
Mhðr; g; tÞ
RTðr; tÞ

� �
dg

8>>><>>>:
9>>>=>>>;

þ drðr; tÞ; ð81Þ

where

drðr; tÞ �

Z 1

0

exp
Mhðr; g; tÞ
RTðr; tÞ

� �
drðr; g; tÞdgZ 1

0

exp
Mhðr; g; tÞ
RTðr; tÞ

� �
dg

: ð82Þ

The random contribution to the reaction rate dr(r,t) is therefore a
weighted average of the random reaction rate along the

reaction coordinate g. It shows that the contribution in

the neighborhood of the transition state is dominating its

behavior. In order to assure that dr(r,t) is again Gaussian we

replace T(r,t) by T0(r,t) in eqn (82), thereby assuming non-

Gaussian contributions due to possible correlations between

dT(r,t) = T(r,t) � T0(r,t) and dr(r, g, t) to be negligible.

The properties of dr(r,t) follow from those of dr(r, g, t) by
integration. Thus dr(r,t) is again Gaussian white noise with

hdr(r,t)i = 0. For the second moment we find

hdr�ðr; tÞdrðr0; t0Þi

¼
Z 1

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

� ��2

�
Z 1

0

Z 1

0

exp
M

R

hðr; g; tÞ
T0ðr; tÞ

þ hðr0; g0; tÞ
T0ðr0; t0Þ

� �� �
� hdr�ðr; g; tÞdrðr0; g0; t0Þidgdg0

¼ 2kB

Z 1

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

� ��2

�
Z 1

0

exp
2Mhðr; g; tÞ
RT0ðr; tÞ

� �
Lr;0ðr; g; tÞdg dðt� t0Þ dðr� r0Þ

¼ 2Dr;0ðr; tÞmA2
r0ðr; tÞ

Z 1

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

� ��2

�
Z 1

0

exp
2Mhðr; g; tÞ
RT0ðr; tÞ

� �
c0ðr; g; tÞdg dðt� t0Þ dðr� r0Þ;

ð83Þ

where mA2
= M/NAv is the mass of an A2 molecule.

NAv is Avogrado’s number. We can use a combination of

eqn (31) and (32) for the density profile along the reaction

coordinate in the absence of fluctuations. This gives

c0ðr; g; tÞ ¼ c2A;0ðr; tÞ
exp �Mhðr; g; tÞ

RT0ðr; tÞ

� �
R g0
0

exp �Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

Y ðg0 � gÞ

þ cA2;0ðr; tÞ
exp �Mhðr; g; tÞ

RT0ðr; tÞ

� �
Z 1

g0

exp �Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

Yðg� g0Þ:

ð84Þ

Substituting this expression into eqn (83) one obtains

hdr�ðr; tÞdrðr0; t0Þi ¼ 2Dr;0ðr; tÞmA2
r0ðr; tÞ

�
Z 1

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

� ��2

� c2A;0ðr; tÞ

Z g0

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dgZ g0

0

exp �Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

8>><>>:

þ cA2;0ðr; tÞ

Z 1

g0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dgZ 1

g0

exp �Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

9>>>=>>>;
� dðt� t0Þ dðr� r0Þ: ð85Þ

With the rate coefficients given in eqn (35) this can be

written as:

hdr�ðr; tÞdrðr0; t0Þi

¼ 2mA2
kþ;0ðr; tÞc2A;0ðr; tÞ

Z g0

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dgZ 1

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

8>>><>>>:

þ k�;0ðr; tÞcA2;0ðr; tÞ

Z 1

g0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dgZ 1

0

exp
Mhðr; g; tÞ
RT0ðr; tÞ

� �
dg

9>>>=>>>;
� dðt� t0Þdðr� r0Þ:

ð86Þ

When the energy barrier is high the dominant contribution to

the integrals in eqn (86) occurs around g0. One then obtains

hdr*(r,t)dr(r0, t0)i = mA2
[k+,0(r,t)c2A,0(r,t)

+ k�,0(r,t)cA2
,0(r,t)] d(t � t0) d(r � r0).

(87)
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With the help of eqn (34) and (36) this can alternatively be

written as

hdr�ðr; tÞdtðr0; t0Þi

¼ �kBLr;0ðr; tÞ 1� exp �MDg0ðr; tÞ
RT0ðr; tÞ

� �� �
dðt� t0Þdðr� r0Þ:

ð88Þ

For the case that fugacities should be used rather that mass

fractions in the law of mass action, the correct expressions

follow from eqn (88). As pointed out in 16 eqn (87) and (88)

are equivalent to a corresponding expression given by Keizer.36

3.3 Integrated phenomenological relationships with

fluctuations

Using eqn (65)–(68) we have

Jqðr; tÞ ¼ � Lqqðr; tÞ
rTðr; tÞ
T2ðr; tÞ �

Z 1

0

LqJðr; g; tÞr
mðr; g; tÞ
Tðr; tÞ dg

þ dJqðr; tÞ;

Jðr; tÞ ¼ �
Z 1

g0

LJqðr; g; tÞ
rTðr; tÞ
T2ðr; tÞ dg

�
Z 1

g0

LJJðr; g; tÞr
mðr; g; tÞ
Tðr; tÞ dg

þ
Z 1

g0

dJðr; g; tÞdg: ð89Þ

Similarly to the derivation of eqn (42) and (44) we find

Jqðr; tÞ ¼ � Lqqðr; tÞ
rTðr; tÞ
T2ðr; tÞ � LqJðr; tÞr

Dgðr; tÞ
Tðr; tÞ þ dJqðr; tÞ;

Jðr; tÞ ¼ � LJqðr; tÞ
rTðr; tÞ
T2ðr; tÞ � LJJðr; tÞr

Dgðr; tÞ
Tðr; tÞ þ dJðr; tÞ;

ð90Þ

where the coupling coefficient is given by eqn (44) and (45).

Furthermore

dJðr; tÞ �
Z 1

g0

dJðr; g; tÞdg: ð91Þ

It follows from eqn (70) through (73) that the random heat

flux and the integrated random mass flux are Gaussian white

noise with zero averages

hdJq(r,t)i = 0 and hdJ(r,t)i = 0. (92)

The fluctuation–dissipation theorem for dJq(r,t) is given by

eqn (71). For the correlations of dJq(r,t) and dJ(r0, t0) we have

hdJ�q;kðr; tÞ � dJlðr0; t0Þi

¼ dJ�q;kðr; tÞ �
Z 1

g0

dJlðr0; g; t0Þdg
* +

¼ 2kB

Z 1

g0

LJq;0ðr; g; tÞdgdkldðt� t0Þdðr� r0Þ

¼ 2kBLJq;0ðr; tÞdkldðt� t0Þdðr� r0Þ:

ð93Þ

For the correlations of dJ(r,t) and dJ(r0, t0) we have

hdJ�kðr; tÞ � dJlðr0; t0Þi

¼
Z 1

g0

dJ�kðr; tÞdg �
Z 1

g0

dJlðr0; g0; t0Þdg0
* +

¼ kB

Z 1

g0

LJJ;0ðr; g; tÞdgdkldðt� t0Þdðr� r0Þ

¼ 2kBLJJ;0ðr; tÞdkldðt� t0Þdðr� r0Þ;

ð94Þ

where we used eqn (45). It should be noted that one now has

the usual factor 2 on the right-hand side of this equation. This

was the reason why this factor should not be used in eqn (73).

The phenomenological coefficients can be related again to

the well-known transport coefficients. This can be achieved by

inverting eqn (56) and substituting the result into the above

equations. Using the equations given above it is now possible

to study both the deterministic behavior and the fluctuations

in a reaction diffusion system with flow. In a subsequent paper

we will in particular analyse how the correlation functions of

the temperature and the mass densities are modified in a non-

equilibrium stationary state.

4. Discussion and conclusions

In this paper we have obtained two important results. The first

is that we give a general theory for the description of reaction-

diffusion in a temperature gradient using mesoscopic

non-equilibrium thermodynamics. This description not only

yields the balance equations and the flux–force relations to be

used in a deterministic description, but was also extended to

include random contributions to the thermodynamic fluxes for

which a fluctuation–dissipation theorem was presented. In

view of the large value of the transition state energy barrier

along the reaction coordinate, we were able to obtain both the

deterministic equations along the reaction coordinate and the

fluctuating equations.

Integration over the reaction coordinate then lead to our

second important result, which is a realistic nonlinear description

of the reaction (the law of mass action) and the inclusion of

fluctuating source terms with well-defined properties. In all

cases, these properties were found embedded in the diffusion

problem for heat and mass with the corresponding fluctuating

contributions. The second result puts us in a position to

analyze many important properties for the system.

In this paper we have given the general theory for the

description of reaction-diffusion in non-isothermal systems

using mesoscopic non-equilibrium thermodynamics. The reaction

was described using as internal variable the probability

distribution of the reaction complex along the reaction

coordinate. Using the large value of the transition state energy

compared to the thermal energy, it was then possible to

integrate along the reaction coordinate to obtain the law

of mass action, together with well defined fluctuating

contributions. As far as we know this is the first time such

results were derived for a description which incorporates the

law of mass action.
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Mesoscopic non-equilibrium thermodynamics is a theory

that also gives a systematic treatment of the fluctuations. We

used this to formulate the fluctuation–dissipation theorem for

the random contributions to the thermodynamic fluxes for

non-equilibrium states.

In a subsequent paper we will analyze how the long-range

contributions to the correlation functions of the temperature

and the mass densities are modified by these nonlinear

contributions in the presence of a stationary temperature

gradient.

Acknowledgements
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