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a b s t r a c t

Fluctuating hydrodynamics, originally developed for fluctuations in fluids in equilibrium, can be extended
to deal also with thermally excited hydrodynamic fluctuations in non-equilibrium states. After first
reviewing some results earlier obtained for temperature fluctuations in fluids subjected to an exter-
nally imposed temperature gradient, we use in this paper fluctuating hydrodynamics to determine the
enhancement of velocity fluctuations in laminar fluid flow. Adopting the case of planar Couette flow as
a representative example, we show how the fluctuations of the wall-normal component of the veloc-
eywords:
ouette flow
luctuating hydrodynamics
aminar flow
rr–Sommerfeld equation
quire equation

ity and of the wall-normal component of the vorticity can be obtained as solutions of a stochastic
Orr–Sommerfeld equation and a stochastic Squire equation, respectively. By solving these fluctuat-
ing hydrodynamic equations we obtain quantitative estimates of the flow-induced non-equilibrium
enhancements of the velocity and vorticity fluctuations as a function of the Reynolds number and of
the wave number of the fluctuations.
elocity fluctuations
orticity fluctuations

. Introduction

The theory of fluctuations in fluids that are in thermodynamic
quilibrium is well developed [1], with a theoretical framework for
hermally excited fluctuations in fluids in thermodynamic equilib-
ium states being provided by Landau’s fluctuating hydrodynamics
2,3]. More recently, it has been demonstrated that fluctuating
ydrodynamics can be extended to deal with thermally excited
uctuations in fluids in stationary non-equilibrium states, pre-
icting non-equilibrium enhancements of the fluctuations [4].
oreover, while fluctuations in equilibrium are generally spatially

hort ranged on any hydrodynamic scale except for states near a
ritical point, fluctuations in fluids in non-equilibrium states turn
ut to be always long ranged, even far away from any hydrody-
amic instability. As a consequence, non-equilibrium fluctuations
re affected by the presence of boundaries.

In previous work we have examined in considerable detail
emperature and concentration fluctuations in fluids and fluid mix-
ures subjected to an externally imposed temperature gradient

s reviewed in [4]. The purpose of the present paper is to elu-
idate how fluctuating hydrodynamics can be used to determine
hermally excited velocity fluctuations in laminar fluid flow. To
llustrate the method of fluctuating hydrodynamics we shall con-
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sider specifically laminar flow in a fluid layer bounded by two
horizontal plates, commonly referred to as planar Couette flow
[5,6]. Many investigators have studied the effect of external pertur-
bations on laminar flow [7–11]. Fluctuating hydrodynamics enables
us to determine the intrinsic velocity fluctuations that are always
present, even in the absence of any externally imposed noise.
As shown recently [12,13], the intrinsic wall-normal velocity and
vorticity fluctuations can be deduced by solving stochastic mod-
ifications of the well-known deterministic Orr–Sommerfeld and
Squire equations, respectively. In this paper we shall further ana-
lyze the physical properties of these solutions without repeating
the somewhat intricate mathematic details of the solution pro-
cedures. We shall make a quantitative comparison between the
two contributions to the fluctuations and further investigate the
anisotropic nature of the intrinsic velocity and vorticity fluctuations
in laminar flow.

We shall proceed as follows. In Section 2 we briefly review the
method of fluctuating hydrodynamics and its extension to non-
equilibrium states using a one-component fluid in a temperature
gradient as an example. In Section 3 we initiate the applica-
tion of fluctuating hydrodynamics to treat velocity fluctuations
in laminar flow and specify the stochastic Orr–Sommerfeld and
Squire equations for the wall-normal velocity and vorticity fluc-

tuations, respectively. In Section 4 we discuss the solution of the
stochastic Orr–Sommerfeld equation for the wall-normal velocity
fluctuations, and in Section 5 the solution of the stochastic Squire
equations for the wall-normal vorticity fluctuations. We conclude
with a discussion of the results in Section 6.

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:sengers@umd.edu
dx.doi.org/10.1016/j.jnnfm.2010.01.020
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. Fluctuating hydrodynamics

.1. Fluctuating temperature equation

In fluctuating hydrodynamics one introduces fluctuating dissi-
ative fluxes in the balance equations for momentum and energy
2–4]. For instance, from the balance of energy one obtains for the
hange of the temperature T as a function of the time t at constant
ressure p a balance equation of the form

cp

[
∂T

∂t
+ v · ∇T

]
= −∇ · Q. (1)

ere � is the mass density, cp the isobaric specific heat capacity, v
he fluid velocity and Q the heat flux, which is written as

= −�∇T + ıQ, (2)

here � is the thermal-conductivity coefficient. That is, the lin-
ar phenomenological laws for the thermodynamic fluxes, like
ourier’s law for heat conduction here, are only satisfied “on aver-
ge” and to be supplemented by a fluctuating flux ıQ such that on
verage 〈ıQ〉 = 0.

Substitution of Eq. (2) into Eq. (1) yields a “fluctuating” equation
or the temperature:

cp

[
∂T

∂t
+ v · ∇T

]
= �∇2T − ∇ · ıQ. (3)

o determine the thermally excited fluctuations one writes

= T0 + ıT(r, t), (4)

nd

= v0 + ıv, (5)

here T0 is the average local temperature and v0 the average local
ow velocity.

.2. Temperature fluctuations in thermodynamic equilibrium

In thermodynamic equilibrium T0 is a constant independent of
ocation r and time t, while v0 = 0. Substituting the expressions (4)
nd (5) for the fluctuating temperature and velocity in Eq. (3) and
nly retaining terms linear in the fluctuations one obtains

cp
∂ıT

∂t
= �∇2ıT − ∇ · ıQ. (6)

he equilibrium correlation functions for the components ıQi of
he fluctuating heat flux ıQ are given by the fluctuation–dissipation
heorem [2–4,14]:

ıQi(r, t) · ıQj(r
′, t′)〉 = 2kB�T2ıijı(r − r′)ı(t − t′), (7)

here kB is Boltzmann’s constant and T=T0. Upon taking the spatial
ourier transforms of Eqs. (6) and (7), one readily obtains for the
ime-dependent correlation function of the temperature fluctua-
ions as a function of the wave number q:

ıT∗(q, t) · ıT(q′, t′)〉 = SE
T exp(−aT q2|t − t′|)(2�)3ı(q − q′), (8)

here aT ≡ �/�cp is the thermal diffusivity and where SE
T is the
ntensity of the equilibrium temperature fluctuations which is
ndependent of the wave number q:

E
T = kBT2

�cp
. (9)
onian Fluid Mech. 165 (2010) 925–931

2.3. Temperature fluctuations in non-equilibrium

To elucidate the extension of fluctuating hydrodynamics to non-
equilibrium stationary states we consider as an example a fluid
layer with height L confined between two horizontal plates at
different stationary temperatures. This arrangement is commonly
referred to as the Rayleigh–Bénard problem whose dynamic fea-
tures are governed by the Rayleigh number Ra defined as [15]

Ra = ˛pL4g · ∇T0

�aT
, (10)

where ˛p is the thermal expansion coefficient, � the kinematic vis-
cosity, g the gravitational force, and ∇T0 the imposed temperature
gradient.

We first consider the case in which the plates are heated from
above, so that Ra is negative. For any negative value of Ra the fluid
remains hydrodynamically stable without any macroscopic fluid
motion. Then the average local temperature T0(r) in Eq. (4) depends
linearly on the z-coordinate in the wall-normal direction, but the
average fluid velocity v0 in Eq. (5) continues to be zero. It then
follows from Eq. (3) that Eq. (6) for the temperature fluctuations
changes into:

�cp

[
∂ıT

∂t
+ ıv · ∇T0

]
= �∇2ıT − ∇ · ıQ. (11)

We see that the second term on the left-hand side of Eq. (11) causes
now a coupling between the temperature fluctuations and the
velocity fluctuations through the presence of the temperature gra-
dient ∇T0. Hence, in addition to Eq. (11), we also need to consider
the fluctuating Navier–Stokes equation for ıv at constant pressure
which reads in first approximation

∂ıv
∂t

= �∇2ıv + 1
�

∇ · ı�, (12)

where ı� is a fluctuating stress tensor whose equilibrium correla-
tion functions for its components ı�ij are given by [2–4,14]

〈ı�ij(r, t) · ı�kl(r
′, t′)〉 = 2kBT0��(ıikıjl + ıilıjk)ı(r − r′)ı(t − t′),

(13)

while any cross-correlations between the components of ıQ and
ı� are absent. In the fluctuating Navier–Stokes equation (12) we
have for the moment neglected a contribution from gravity and
assumed ∇ · ıv = 0. There has been some confusion of the meaning
of this assumption in the context of fluctuating hydrodynamic [16].
The incompressible-flow assumption is commonly adopted in fluid
dynamics, since it is expected to be valid when the fluid velocity
is small compared to the speed of sound [2]. However, when this
assumption is combined with the expression (5) for the fluctuating
velocity, it follows that in the limit of zero velocity ∇ · ıv = 0, which
implies that only two of the three components of the fluid velocity
can fluctuate independently [13]. Thus in the context of fluctuating
hydrodynamics use of the incompressible-flow assumption strictly
assumes an incompressible fluid [17].

Since the fluid is still at rest, one might naively expect that the
temperature fluctuations still could be given by Eq. (8), but now
with the local-equilibrium values of SE

T and aT . However, because of
the coupling between temperature and velocity fluctuations which
is absent in equilibrium, this strong local-equilibrium assump-
tion is not valid. Instead one adopts a weaker local-equilibrium
assumption, namely that the correlation functions for the fluctu-

ating dissipative fluxes (also referred to as noise terms) are still
given by their equilibrium expressions (7) and (13) with the local-
equilibrium values for �, �, �, and T = T0 [18]. Although these
local-equilibrium properties depend on the temperature, it has
been found that in practice they can be approximated by their
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Fig. 1. Normalized non-equilibrium enhancement �SNE
T

(q)/SNE
0 of the temperature
J.V. Sengers, J.M. Ortiz de Zárate / J. Non

verage values in the fluid layer [19,20]. From Eqs. (11) and (12) it
ollows that the temperature fluctuations will contain two dynamic

odes, a heat mode with a decay rate determined by the thermal
iffusivity aT and a viscous mode with a decay rate determined
y the kinematic viscosity � [18,21,22]. However, in this paper we
hall restrict our attention to the intensity of the fluctuations given
y the equal-time correlation functions.

For the intensity of the temperature fluctuations in a fluid sub-
ected to a temperature gradient ∇T0 one obtains an expression of
he form:

ıT∗(q, t)ıT(q′, t)〉 ≡ ST (q, q′) = SE
T [1 + �SNE

T (q)](2�)3 ı(q − q′),

(14)

here �SNE
T (q) represents a non-equilibrium enhancement of the

emperature fluctuations, which depends on the wave vector q as

SNE
T (q) = SNE

0

q̃2
‖

q̃6
. (15)

n this equation q̃ = qL is a dimensionless wave number, q̃‖ is the
agnitude of the component of q parallel to the horizontal plates,
hile the coefficient SNE

0 accounts for the dependence of the non-
quilibrium enhancement on the (local) values of the physical
roperties and the magnitude of the temperature gradient:

NE
0 = (Pr − 1)(cp/T)L4

�2 − a2
T

(∇T0)2, (16)

here Pr = �/aT is the Prandtl number. We note that, apart from
negligible contribution from an adiabatic temperature gradient,

NE
0 is equal to the symbol S̃NE

0 in [23], but differs from the symbol
˜NE

0 in [24] by a factor Pr + 1. From Eq. (15) we see that the non-
quilibrium enhancement of the temperature fluctuations attains
ts largest value for wave vectors q̃ = q̃‖ in the direction perpendic-
lar to the temperature gradient so that for such fluctuations

SNE
T (q) = SNE

0
1
q̃4

, (q̃ = q̃‖, q → ∞). (17)

rom Eqs. (16) and (17) we conclude that the non-equilibrium
nhancement of the temperature fluctuations will be proportional
o the square of the temperature gradient and inversely propor-
ional to the fourth power of the wave number. This dependence
f the non-equilibrium enhancement on both temperature gradi-
nt and wave number has been verified experimentally with high
ccuracy [19,25,26].

Eqs. (15) and (17) represent the enhancement in the limit of
arge wave numbers (q → ∞). For decreasing value of the wave
umber one needs to retain a gravitational term in the fluctuating
avier–Stokes Eq. (12)[27]. Moreover, because of the long-ranged
ature of the non-equilibrium temperature fluctuations encom-
assing the entire vertical spatial dimension of the fluid layer
23,28], the fluctuations are affected by boundary conditions. The
resence of boundaries breaks down the translational invariance
f the system along the vertical z-direction. Consequently, because
f the presence of boundaries, two-point correlation functions of
hermodynamic variables are no longer proportional to delta func-
ions ı(qz − q′

z), like in Eq. (14). Difficulties caused by this fact can
e overcome by averaging over the height of the layer, (qz � 0), to
btain correlation functions with wave vectors q‖ in the horizon-
al plane, in which plane they are not only translationally invariant
ut, in the case of the Rayleigh–Bénard problem, also isotropic.
An analysis of these two-point correlation functions in the hori-
ontal plane shows that the main effect of the boundary conditions
s to cause the non-equilibrium enhancement to vanish proportion-
lly to q2 in the limit q → 0, with an amplitude that depends on the
ctual boundary conditions. In the case of somewhat less realistic
fluctuations with wave vector q̃ = q̃‖ as a function of q̃ at Ra = +1650 (solid curve)
and Ra= −25, 000 (dotted curve) for Pr = 5. The plots represent a first-order Galerkin
approximation for rigid-boundary conditions [24]. The dotted line represents the
asymptotic 1/q4 solution for large wave numbers.

stress-free boundary conditions, the fluctuating equations (11) and
(12) can be solved analytically and one obtains for q̃ = q̃‖ [23]:

�SNE
T (q)=SNE

0
17

20160
q̃2, (q̃=q̃‖, q → 0 for stress-free boundaries).

(18)

For more realistic rigid boundaries we have obtained an estimate
in a first-order Galerkin approximation [24]:

�SNE
T (q) � SNE

0
3 (Pr + 1)

896 (21Pr + 5)
q̃2,

(q̃ = q̃‖, q → 0 for rigid boundaries), (19)

which depends somewhat on the value of the Prandtl number Pr.
Hence, the non-equilibrium enhancement as a function of the wave
number q exhibits a crossover from a q−4 dependence for large q
to a q2 dependence for small q. While the limiting behavior for
large and small q is independent of the Rayleigh number Ra, the
non-equilibrium enhancement at intermediate values of q strongly
depends on Ra. To illustrate the wave-number dependence we
show in Fig. 1 plots of the normalized non-equilibrium enhance-
ment �SNE

T (q)/SNE
0 at q̃ = q̃‖ as a function of q̃ for a negative and

a positive value of Ra. For negatives values of Ra (i.e., when the
fluid layer is heated from above) the non-equilibrium enhancement
exhibits a broad maximum at intermediate values of q̃, a feature
that has been confirmed experimentally for the similar case of non-
equilibrium concentration fluctuations in a concentration gradient
[29]. For positive values of Ra (i.e., when the fluid layer is heated
from below) the maximum enhancement of the nonequilibrium
temperature fluctuations increases rapidly as Ra approaches a crit-
ical value Rac and one recovers the known limiting behavior [30,31]
of the temperature fluctuations asymptotically close to the onset
of convection at Ra = Rac and q̃ = q̃c [4].

3. Application of fluctuating hydrodynamics to velocity
fluctuations

Having validated fluctuating hydrodynamics for describing
fluctuations of physical properties in fluids in stationary non-
equilibrium states as discussed in the preceding section, we are now
ready to apply the same method to evaluate the non-equilibrium

enhancement of velocity fluctuations in laminar fluid flow. For this
purpose we consider the simplest case, namely that of a liquid
under incompressible laminar flow (thus with uniform density �)
between two horizontal boundaries separated by a distance 2L as
indicated schematically in Fig. 2. This arrangement is commonly
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Fig. 2. Schematic representation of planar laminar Couette flow.

eferred to as planar Couette flow or plane Couette flow. We adopt
coordinate system with the X-axis in the streamwise direction,

he Y-axis in the spanwise direction, and the Z-axis in the wall-
ormal direction [5,11]. The average fluid velocity v0 = {vx, vy, vz} =
	̇z, 0, 0} in the X direction in Eq. (5) depends on the vertical coordi-
ate z with a constant shear rate 	̇ . Since the average velocity v0 is
o longer zero, the Navier–Stokes equation (12) for the fluctuating
elocity ıv changes into [4,32]:

∂ıv
∂t

+ 	̇z
∂ıv
∂x

+ 	̇ x̂ıvz = − 1
�

∇ıp + �∇2ıv + 1
�

∇ · ı�, (20)

here x̂ is the unit vector in the streamwise direction. In obtaining
q. (20) we have continued to adopt the incompressibility assump-
ion ∇ · ıv = 0 as was done in the preceding section.

It is convenient to introduce dimensionless variables defined by

r̃ = r

L
, q̃ = qL, t̃ = 	̇t, ıp̃ = ıp

�L2	̇2
,

ṽ = ıv
L	̇

, ı�̃ = ı�

�L2	̇2
, (21)

o that Eq. (20) can be rewritten as

∂ıṽ
∂t̃

+ z̃
∂ıṽ
∂x̃

+ x̂ıṽz = −∇̃ıp̃ + 1
Re

∇̃2
ıṽ + ∇̃ · ı�̃, (22)

here Re is the Reynolds number of the flow:

e = L2	̇

�
. (23)

or the correlation function for the components of the fluctuating
tress tensor we adopt the local equilibrium version of Eq. (13),
hich in terms of the dimensionless components �̃ij become:

ı�̃ij(r̃, t̃) · ı�̃kl(r̃
′, t̃′)〉 = 2

kBT0�

�	̇3L7
(ıikıjl + ıilıjk)ı(r̃ − r̃′)ı(t̃ − t̃′).

(24)

n principle the local temperature T0 exhibits a shallow parabolic
rofile as a function of the vertical coordinate z as a result of viscous
eating [33]. However, previous work [20] has indicated that the
ffect of any height dependence of temperature on the intensity of
he fluctuations is very small and we take the temperature T0 to be

niform and independent of the height, as is usually done in the

iterature dealing with planar Couette flow.
In the remainder of this paper we shall only use dimension-

ess variables and to simplify the notation we shall from now on
elete the tildes indicating dimensionless variables explicitly. From
onian Fluid Mech. 165 (2010) 925–931

Eq. (22) we see that there is no coupling between velocity fluctua-
tions and temperature fluctuations, but there is a potential coupling
between velocity fluctuations and pressure fluctuations. However,
for a incompressible fluid with ∇ · ıv = 0 the pressure term can
be eliminated by taking a double rotational of Eq. (22) so that one
obtains for the fluctuations ıvz of the wall-normal velocity compo-
nent vz [12]

∂∇2ıvz

∂t
+ z

∂∇2ıvz

∂x
− 1

Re
∇4ıvz = {∇ × ∇ × ∇ · ı�}z. (25)

As mentioned earlier, in an incompressible fluid only two velocity
components can fluctuate independently. As the second fluctuating
component it is convenient to consider the fluctuations ıωz of the
wall-normal component of the vorticity:

ıωz = ∂ıvx

∂y
− ∂ıvy

∂x
. (26)

An equation for the wall-normal-vorticity fluctuations is obtained
by taking a single curl of Eq. (22), so that

∂ıωz

∂t
+ z

∂ıωz

∂x
− ∂ıvz

∂y
− 1

Re
∇2ıωz = {∇ × ∇ · ı�}z. (27)

On the left-hand sides of Eqs. (25) and (27) one recognizes the
well-known Orr–Sommerfeld equation and the well-known Squire
equation in the fluid-dynamics literature for the wall-normal veloc-
ity vz and the wall-normal vorticity ωz [5,6]. Hence, fluctuating
hydrodynamics shows that the intrinsic velocity and vorticity
fluctuations that are always present, even in the absent of any
external perturbations, can be obtained by solving a stochastic
Orr–Sommerfeld Eq. (25) for ıvz and then solving a stochastic
Squire Eq. (27) for ıωz . The correlation functions for the noise terms
on the right-hand sides of Eqs. (25) and (27) can readily be deduced
from Eq. (24).

4. Wall-normal velocity fluctuations in laminar flow

A procedure for solving the stochastic Orr–Sommerfeld Eq. (25),
without incorporating boundary conditions, has been presented by
Lutsko and Dufty [34,35]. The solution for the wall-normal velocity
fluctuations can be written in the form

〈ıv∗
z(q, t) · ıvz(q′, t)〉 ≡ Cz(q, q′) = CE

z [1 + �CNE
z (q)] (2�)3ı(q − q′),

(28)

where CE
z represents the intensity of the fluctuations of an individ-

ual velocity component in an incompressible fluid in the absence of
flow [12] and where �CNE

z (q) is the enhancement of the intensity
of the wall-normal velocity fluctuations in the presence of flow. The
non-equilibrium enhancement of the temperature fluctuations,
discussed in Section 2, originated from two coupled fluctuating
hydrodynamic equations, that is, from a coupling of two hydro-
dynamic modes, namely one mode associated with temperature
fluctuations and another mode associated with the fluctuations of
the velocity at the same value of the wave number q. The non-
equilibrium enhancement of the wall-normal velocity fluctuations
arises from a single fluctuating hydrodynamic equation, but the
term z(∂∇2ıvz/∂x) in Eq. (25) causes a coupling between fluctua-
tions of the same hydrodynamic mode with different values of the
wave number q, as has earlier been pointed out by Lutsko and Dufty
[34] and by Wada and Sasa [36].
To elucidate the anisotropic nature of the non-equilibrium
enhancement of the velocity fluctuations and vorticity fluctuations,
we specify the wave vectors q = {qx, qy, qz} and q‖ = {qx, qy, 0} in
terms of spherical coordinates with the polar angle � measured
from the Z axis in the wall-normal direction and the azimuthal
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the stochastic Squire equation (27) reproduces the intensity of the
vorticity fluctuations in the absence of flow and does not contribute
to any enhancement of these fluctuations in the presence of flow.
Hence, the enhancement �WNE

z (q) in Eq. (34) arises solely form
the cross coupling between vorticity and velocity fluctuations. For
Fig. 3. Spherical coordinates for representing the wave vectors q and q‖ .

ngle ϕ in the XY plane such that ϕ = 0 corresponds to the stream-
ise direction and ϕ = �/2 to the spanwise direction as indicated

n Fig. 3. Thus

qz = q cos �, q‖ = q sin �,
qx = q sin � cos ϕ, qy = q sin � sin ϕ.

(29)

or large wave numbers q we obtain [12]

CNE
z (q) = Re

2q2
cos ϕ sin 2� − Re2

2q4
cos2 ϕ cos 2� sin2 � (q → ∞),

(30)

hich does not depend on any boundary conditions. Eq. (30) shows
hat the non-equilibrium enhancement of the wall-normal velocity
uctuations is highly anisotropic. We first note that the enhance-
ent vanishes when q‖ = 0 (� = 0), that is, when the wave vector

s in the direction of the shear gradient, just as the enhancement
15) of the temperature fluctuations vanishes when the wave vec-
or is in the direction of the temperature gradient. The first term
n (30) is proportional to q−2, which corresponds to a r−1 depen-
ence in real space. This term is the one found by Tremblay et al.
32] and Lutsko and Dufty [34] but it actually vanishes when q = q‖
� = �/2). Instead for q = q‖ the enhancement of the wall-normal
elocity fluctuations becomes

CNE
z (q) = Re2

2q4
cos2 ϕ (q = q‖, q → ∞), (31)

hich agrees with the asymptotic behavior found by Wada and
asa [36].

Just as in Eq. (17), the dependence on q−4 implies long-ranged
orrelations over macroscopic length scales, so that for smaller q
he enhancement is affected by the boundary conditions. As was the
ase for a fluid under a temperature gradient, inclusion of boundary
onditions breaks down translational invariance along the wall-
ormal direction [12]. Again, we can average over the height of the

ayer to obtain two-point correlation functions with wave vector

‖ on the horizontal plane, where they are translationally invariant.
owever, in contrast with the case of the Rayleigh–Bénard problem,

or planar Couette flow two-point velocity correlations continue
o be anisotropic in the parallel plane. In a previous publication,
e have evaluated the enhancement of the wall-normal-velocity
uctuations with no-slip boundary conditions in a second-order
alerkin approximation, and found in the limit of small wave num-
ers [12]
CNE
z (q) � 2Re2

2079
q2 cos2 ϕ (q = q‖, q → 0). (32)

ence, just like the non-equilibrium enhancement of the tempera-
ure fluctuations in a temperature gradient, also the enhancement
onian Fluid Mech. 165 (2010) 925–931 929

of the wall-normal-velocity fluctuations in laminar flow exhibits a
crossover from a q−4 dependence for large q to a q2 dependence
for small q. From Eqs. (31) and (32) we see that the enhancement
of the wall-normal velocity fluctuations vanishes when the wave
vector q‖ = {0, qy} is in the spanwise direction (ϕ = �/2) and has
its maximum when the wave vector q‖ = {qx, 0} is in the stream-
wise direction (ϕ = 0). We also note from Eqs. (31) and (32) that
the enhancement in both limits is proportional to the square of
the Reynolds number. In Fig. 4 we have plotted the normalized
enhancement �CNE

z (q)/Re2 for q‖ = {qx, 0} in the streamwise direc-
tion as a function of qx for two values of the Reynolds number,
Re = 20 and Re = 300, obtained in a second-order Galerkin approx-
imation [12]. The structure of the enhancement at intermediate
values of the wave number at the larger value of Re is thought to be
related to a confluent singularity proportional to q−4/3, first noticed
by Lutsko and Dufty [35], and recovered by Wada and Sasa [36] and
by us [12].

5. Wall-normal vorticity fluctuations in laminar flow

A procedure for solving the stochastic Squire equation (27) has
been presented in [13]. In analogy to Eq. (28) the solution can be
written in the form

〈ıω∗
z (q, t) · ıωz(q′, t)〉 ≡ Wz(q, q′)=WE

z [1+�WNE
z (q)] (2�)3ı(q − q′)

(33)

where WE
z represents the intensity of an individual vorticity com-

ponent of an incompressible fluid in the absence of flow and where
�WNE

z (q) is the enhancement of the wall-normal vorticity fluctu-
ations in the presence of flow. One can notice a difference in the
structure of the stochastic Squire Eq. (27) when compared with
the stochastic Orr–Sommerfeld Eq. (25). First, the term z(∂ıωz/∂x)
in Eq. (27), just like the term z(∂∇2ıvz/∂x) in Eq. (25), causes a
coupling of the hydrodynamic mode associated with the vorticity
fluctuations with different wave numbers q; we refer to this cou-
pling mechanism as “self coupling”. In addition the term ∂ıvz/∂y in
Eq. (27) causes a cross coupling between the vorticity fluctuations
and the velocity fluctuations. It turns out that, unlike the case of
the stochastic Orr–Sommerfeld equation (25), the self coupling in
Fig. 4. Normalized enhancement �CNE
z (q)/Re2 of the wall-normal-velocity fluc-

tuations with dimensionless wave vectors q = q‖ = {qx, 0, 0} in the streamwise
direction as a function qx , at Re=20 and Re=300. The dotted line represents the
asymptotic 1/2q4 solution for large wave numbers.



930 J.V. Sengers, J.M. Ortiz de Zárate / J. Non-Newt

F 2

a
a
w

q

�

i
o
l
o
s

�

F
n
{
w
�
t
t
s
i
t

F
v

ig. 5. Normalized enhancement �WNE
z (q)/Re of the wall-normal-vorticity fluctu-

tions with dimensionless wave vectors q = q‖ = {0, qy, 0} in the spanwise direction
s a function qy . The dotted line represents the asymptotic 1/2q4 solution for large
ave numbers.

= q‖ we obtain in the limit of large q [13]

WNE
z (q) = Re2

2q4
sin2 ϕ (q = q‖, q → ∞), (34)

ndependent of the boundary conditions. Again, the incorporation
f boundary conditions lead us to study two-point vorticity corre-
ations with wave vector q‖ on the horizontal plane, after averaging
ver the height of the layer [13]. In that case, it was found that for
mall parallel q, in a second-order Galerkin approximation [13]

WNE
z (q) � 3Re2

364
q2 sin2 ϕ (q = q‖, q → 0). (35)

rom Eqs. (34) and (35) we see that the enhancement of the wall-
ormal vorticity fluctuations vanishes when the wave vector q‖ =
qx, 0} is in the streamwise direction (ϕ = 0) and has its maximum
hen the wave vector q‖ = {0, qy} is in the spanwise direction (ϕ =
/2), just opposite to what we found in the preceding section for
he wall-normal velocity fluctuations. In Fig. 5 we show a plot of
he normalized enhancement �WNE

z (q)/Re2 for q‖ = {0, qy} in the
panwise direction as a function of qy. In this case the enhancement
s proportional to Re2 for all values of the Reynolds number, so that
he normalized enhancement �WNE

z (q)/Re2 is independent of Re.

ig. 6. Contours of constant enhancements �CNE
z (q) and �WNE

z (q) of the wall-normal-ve
ectors q = q‖ = {qx, qy} in the XY plane, at Re = 100.
onian Fluid Mech. 165 (2010) 925–931

Both the enhancement of the velocity fluctuations and of the
vorticity fluctuations are anisotropic functions of the wave vector
q‖. In Fig. 4 we showed the enhancement of the wall-normal-
velocity fluctuations for wave vectors q = q‖ in the streamwise
direction and in Fig. 5 we showed the enhancement of the
wall-normal-vorticity fluctuations for wave vectors q = q‖ in the
spanwise direction. In Fig. 6 we show contours of constant actual
enhancements �CNE

z (q) and �WNE
z (q) for wave vectors q = q‖ =

{qx, qy} in the first quadrant of the XY plane for Re = 100. We recall
that in first approximation the enhancements are proportional to
the square of the Reynolds number as seen from Figs. 4 and 5.
We note from the labels of the constant enhancement curves in
Fig. 6 that the enhancement �WNE

z (q) caused by a cross coupling
of velocity and vorticity fluctuations is generally more significant
than �CNE

z (q) arising from self coupling. It is also possible to evalu-
ate the non-equilibrium energy amplification resulting from these
fluctuations and again one finds that the dominant contribution to
the non-equilibrium energy amplification is the one resulting from
the cross coupling between velocity and vorticity fluctuations [13].

We remark that the main effect of thermal noise in plane Couette
flow is to enhance vorticity fluctuations in the plane parallel to the
walls with a spanwise modulation given by qy � 1.6, corresponding
to the maximum observed in Fig. 5 and in the right panel of Fig. 6.
These vorticity fluctuations, of course, have to be added to the aver-
age velocity v0, which is in the streamwise direction. The overall
effect will produce very elongated rolls or streaks, consistent with
a spanwise modulation of the streamwise velocity. It is interesting
to note that the appearance of streaks is the first step in a generic
nonlinear unstabilization process proposed by Waleffe [37] for lam-
inar flows. This self-sustained process initiated by streaks has been
used to predict the generic existence of traveling waves in laminar
flows, a prediction that was subsequently observed experimentally
[38].

6. Discussion

In this paper we have provided strong evidence that the method

of fluctuating hydrodynamics [2,3], originally developed for fluc-
tuations in fluids in equilibrium, can be extended to deal with
fluctuations in fluids in stationary non-equilibrium states. After
reviewing previous results obtained for temperature fluctuations
in a fluid subjected to a stationary temperature gradient, we have

locity and wall-normal-vorticity fluctuations, respectively, for dimensionless wave
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hown how fluctuating hydrodynamics can also be used to derive
he enhancement of velocity and vorticity fluctuations in lami-
ar fluid flow illustrating the method for the case of isothermal
lanar Couette flow. We have found the presence of two mode-
oupling mechanisms in laminar flow, namely self coupling of the
ame hydrodynamic modes and cross coupling between velocity
nd vorticity fluctuations. We have found that the cross coupling is
he most significant mechanism contributing to the enhancement
f the fluctuations in laminar flow.

The enhancement of the fluctuations is anisotropic and depends
n the direction of the wave vector q. Furthermore, in contrast
o equilibrium states, the fluctuations are spatially long ranged,
ven far away from any hydrodynamic instability. For wave vec-
ors q = q‖ perpendicular to either the temperature gradient in a
on-isothermal fluid or to the shear gradient in laminar flow we
nd that the enhancements of the fluctuations exhibit a crossover

rom a q−4 dependence for large q to a q2 dependence for small q,
s shown in Figs. 1, 4, and 5.

The non-equilibrium enhancement of the temperature fluctua-
ions in fluids subjected to a temperature gradient depends on the
ave number q and on the Rayleigh number Ra as shown in Fig. 1.

he maximum enhancement increases with increasing values of
a and diverges at a critical value Rac corresponding to the onset
f thermal convetion. However, the enhancement of the velocity
nd vorticity fluctuations increases with increasing values of the
eynolds number Re, roughly as Re2, but remains finite for any
nite value of Re. Hence, like traditional hydrodynamic-instability
nalysis investigating the effects of externally imposed perturba-
ions [5,6,9], also the intrinsic fluctuations predicted by fluctuating
ydrodynamics do not yield a critical value of the Reynolds number
hat can be associated with a transition from laminar to turbulent
ow. To solve the problem of the transition from laminar to tur-
ulent flow other physical mechanisms will have to be considered
9,39,38].
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