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Abstract

Thermal fluctuations in fluids and fluid mixtures in stationary non-
equilibrium states are spatially long ranged. This long-ranged nature of the
non-equilibrium fluctuations is caused by a coupling between hydrodynamic
modes through the non-equilibrium fluxes or gradients. The phenomena are
discussed with some illustrative examples in fluids and fluid mixtures.

1. Introduction

The theory of fluctuations in fluids that are in thermodynamic equilibrium is
well established. For instance, the intensity of density fluctuations will be pro-
portional to the isothermal compressibility. Such density fluctuations can be
probed experimentally by light scattering: the integrated intensity SðqÞ of the
scattered light at a scattering wave vector q is proportional to the Fourier
transform of the spatial equal-time correlation function of the refractive-
index fluctuations, which in turn is directly related to that of the (mass) den-
sity r. For fluids in thermodynamic equilibrium, the correlation functions
associated with the thermal fluctuations are spatially short ranged, except
for states near a critical point.

In this paper, we discuss the nature of thermal fluctuations in fluid and fluid
mixtures that are in stationary non-equilibrium states. Non-equilibrium fluids
can exhibit a large variety of complex fluctuation phenomena such as those
associated with convection patterns or turbulence. Here we restrict our-
selves what at first sight may seem to be a much simpler problem, namely



fluctuations in non-equilibrium fluids in the absence of convection or tur-
bulence. As an example, one may consider a fluid with positive thermal-
expansion coe‰cient, confined between two horizontal parallel plates that
are maintained at two di¤erent temperatures, to which we refer as the
Rayleigh–Bénard problem. The relevant dimensionless parameter is the Ray-
leigh number,

Ra ¼ � agL4‘T0

na
; ð1Þ

where a is the thermal-expansion coe‰cient of the fluid, g the acceleration of
gravity, L the distance between the two bounding plates, ‘T0 the temperature
gradient maintained across the fluid layer, n the kinematic viscosity, and a the
thermal di¤usivity. Convection will be absent when the fluid layer is heated
from above, corresponding to negative values of Ra, and when the fluid is
heated from below at values of Ra smaller than a critical Rayleigh number
Rac associated with the onset of convection.

A fundamental concept underlying non-equilibrium thermodynamics is that
of local equilibrium. That is, at each position r and time t the local state is
specified by local values of the thermodynamic variables like a local density
rðr; tÞ, a local temperature Tðr; tÞ, and a local pressure pðr; tÞ. These local
thermodynamic variables and all other associated local thermodynamic prop-
erties remain interrelated by the same relations as for a thermodynamic equi-
librium state with rCrðr; tÞ and TCTðr; tÞ.

Traditionally, it had been expected that in the absence of any hydrodynamic
instabilities, like convection or turbulence, the thermal fluctuations would
also satisfy the hypothesis of local equilibrium. That is, one would expect
that the intensity of the density fluctuations in a stationary quiescent non-
equilibrium state would be proportional to the local value of the com-
pressibility. During the past two decades, it has become evident that the as-
sumption of local equilibrium is only valid for the thermodynamic properties
themselves, but not for the correlations among these properties. In equilib-
rium fluids the spatial extent of di¤usive fluctuations, like temperature, vis-
cous, or concentration fluctuations, are generically short ranged on a hydro-
dynamic scale. However, in non-equilibrium fluids correlations among the
fluctuations at two spatial points exist even when large macroscopic distances
separate these two points. Therefore, correlations extend over a much larger
spatial range than one would expect in the basis of a local equilibrium as-
sumption for these properties.

In this paper we discuss some examples of thermal fluctuations in fluids in
stationary non-equilibrium states using the Rayleigh–Bénard problem as an
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illustrative example. For a comprehensive treatment of the subject, the reader
is referred to a recent book on hydrodynamic fluctuations in fluids and fluid
mixtures [1].

2. Mode-coupling phenomena

About fifty years ago an approach to develop a systematic statistical mechan-
ics theory for dealing with non-equilibrium fluids was proposed by Bogoliu-
bov [2]. It was based on a postulate that a fluid away from equilibrium would
proceed to a thermodynamic equilibrium state in two distinct stages: first, a
microscopic kinetic stage with a time scale of the order of the time between
molecular collisions, which for dense fluids or liquids is of the same order as
the duration of the molecular collisions, after which local equilibrium is es-
tablished; second, a macroscopic hydrodynamic stage during which the fluid
evolves in accordance with the equations of hydrodynamics. Since in practice
temperature di¤erences in fluids over microscopic molecular distances remain
negligibly small, this postulate would justify the assumption of local equilib-
rium not only for the thermodynamic properties, but also for the fluctuations,
except for thermally excited sound waves that do propagate over hydrody-
namic distances and, hence, would be a¤ected by the presence of a tempera-
ture gradient [3].

An important consequence of Bogoliubov’s postulate is that fluids consisting
of molecules with short-ranged interactions cannot exhibit long-ranged dy-
namic correlations because of the randomizing nature of the molecular
collisions. This postulate was consistent with the classical theory of critical
phenomena, where the spatial extent of the static correlations become long
ranged due to the divergence of the compressibility in accordance with the
theory of Ornstein and Zernike, but where the dynamic correlations remain
short ranged in accordance with the classical theory of the slowing down of
the critical fluctuations formulated by Van Hove. However, this picture failed
when it was discovered that transport properties like the thermal conductivity
diverge at the critical point. A sharp distinction between a short-ranged ki-
netic stage and a long-ranged hydrodynamic stage could not longer be main-
tained and there is an additional mesoscopic stage in which the slow hydro-
dynamic modes become coupled due to nonlinear hydrodynamic interactions
between the long-wavelength fluctuations [4]. For instance, a coupling be-
tween temperature fluctuations (heat mode) and transverse momentum fluc-
tuations (viscous mode) causes a divergence of the thermal conductivity at
the vapour–liquid critical point. Some time later it turned out that the same
mode-coupling theory could also account for the phenomena of long-time
tails in the Green–Kubo correlation functions for the transport coe‰cients
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that were originally noticed in computer simulations of molecular dynamics
[5, 6]. Around 1980 it became evident that mode-coupling phenomena would
also strongly a¤ect the nature of thermal fluctuations in fluids that are kept in
stationary non-equilibrium states [7–9].

For fluids in thermodynamic equilibrium, fluctuations at hydrodynamic spa-
tiotemporal scales can be determined by the method of fluctuating hydrody-
namics in conjunction with the fluctuation–dissipation theorem [10, 11]. The
mode-coupling phenomena described above are a consequence of nonlinear
terms in the equations of fluctuating hydrodynamics. It is possible to extend
the method of fluctuating hydrodynamics to fluids in non-equilibrium states
by adopting a local version of the fluctuation–dissipation theorem. For non-
equilibrium fluids, the hydrodynamic modes become coupled through the
externally imposed dissipative fluxes and associated gradients. As a conse-
quence, these types of mode-coupling phenomena can be treated within the
framework of linear fluctuating hydrodynamics, as explained elsewhere [1].

3. Non-equilibrium fluctuations in fluids

When a one-component fluid is subjected to a stationary temperature gradi-
ent, ‘T0, there appears a coupling between the temperature fluctuations
and the fluctuations of the velocity component parallel to the gradient.
Such a coupling causes an enhancement in the intensity of non-equilibrium
refractive-index fluctuations, SðqÞ. Working out the theory in detail from the
random Boussinesq equations, one finds [7, 12–14]:

SðqÞ ¼ SE 1 þ cpð‘T0Þ2

a2TðPrþ 1Þ
q2
k
q6

" #
; ð2Þ

where SE is the intensity of refractive-index fluctuations in equilibrium, which
is isotropic and does not depend on the scattering vector q, cp is the isobaric
specific heat capacity, and Pr ¼ n=a the Prandtl number. The non-equilibrium
enhancement is represented by the second term inside the brackets in Eq. (2);
it is proportional to the square of the temperature gradient and is anisotropic,
since q2

k ¼ q2
x þ q2

y is the component of the scattering vector perpendicular to
the direction of the gradient. For small scattering angles q2

k=q
6 U1=q4, and

such a dependence of SðqÞ on the wave number q clearly indicates the long-
ranged nature of the corresponding equal-time correlation functions.

In the case of a binary mixture, an externally imposed temperature gradient
induces a concentration gradient through the Soret e¤ect. Such an induced sta-
tionary concentration gradient causes a new coupling between concentration
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fluctuations and fluctuations of the fluid velocity component parallel to the
gradient. Further complications in mixtures arise from the presence of both
temperature and concentration fluctuations, which may not be independent
depending on the experimental conditions. However, in many important
practical cases the dominant contribution to the structure factor is that of
concentration fluctuations. On the basis of the theory of fluctuating hydro-
dynamics in mixtures, one finds for the structure factor associated with the
concentration fluctuations [15]

SðqÞ ¼ SE 1 þ ð‘c0Þ2

wnD

q2
k

q6

" #
; ð3Þ

where w is the osmotic compressibility, D the binary di¤usion coe‰cient,
and ‘c0 the magnitude of the concentration gradient. Just as the intensity
of the non-equilibrium temperature fluctuations, the intensity of the non-
equilibrium concentration fluctuations will vary as 1=q4.

It is worth emphasizing that the most salient features of the theory of non-
equilibrium fluctuations have been verified by experiments. As an example,
we show in Figure 1 a double-log plot of the intensity enhancement of non-
equilibrium concentration fluctuations ð ~SSNEðqÞ ¼ ðSðqÞ � SEÞ=SEÞ in a solu-
tion of polystyrene in toluene at di¤erent concentrations and normalized by

Figure 1 Normalized non-equilibrium enhancement of concentration fluctuations in a solu-
tion of polystyrene in toluene heated from above. The insert shows the range where the actual
experimental data have been obtained. The solid curve is a plot of Eq. (4) using the known
thermophysical properties of the mixture. From ref. [15].
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a corresponding prefactor ð ~SS0
NE ¼ ð‘c0Þ2=wDnL4Þ. The straight line in the

insert that shows the actual experimental data represents the 1=q4 propor-
tionality predicted by the theory, with a slope calculated from the known
thermophysical properties of the solution without any fitting parameters.
Theory and experiments are in excellent agreement.

4. Buoyancy e¤ect on fluctuations

Equations (2) and (3) do not account for any e¤ects of gravity or e¤ects of
the presence of boundaries on the fluctuations. The variation of the intensity
of the non-equilibrium fluctuations as 1=q4, which corresponds to a spatial
dependence proportional to the distance r between the two points where fluc-
tuations are correlated, cannot go on indefinitely as q ! 0. Indeed, buoyancy
modifies that dependence, and when gravity is stabilizing (like for a binary
mixture with positive separation ratio, when heated from above) it causes
the intensity of non-equilibrium fluctuations to become saturated and reach
a constant limit at q ! 0. Again, on the basis of fluctuating hydrodynamics,
one can show that the (dominant) contribution of concentration fluctuations
to the non-equilibrium structure factor, when buoyancy e¤ects are included
and the adiabatic temperature gradient is identified with the actual tempera-
ture gradient, can be expressed as

SðqÞ ¼ SE 1 þ ð‘c0Þ2

wnD

q2
k

q6 þ q4
ROq

2
k

" #
; ð4Þ

where buoyancy e¤ects are included in the ‘‘roll-o¤ ’’ wave number qRO, de-
fined by

q4
RO ¼ �c

aRa

DL4
; ð5Þ

with c the separation ratio. Notice that, for positive c, and heating from
above ðRa < 0Þ the RHS of Eq. (5) is positive, and the ‘‘roll-o¤ ’’ wave
number is a well-defined quantity. However, if buoyancy is destabilizing
ðRa > 0Þ, there exists an unphysical divergence in Eq. (4) for some wave vec-
tors, and confinement e¤ects need to be included in the theory to obtain valid
theoretical results. This is considered in the next section.

We note that, for large q, Eq. (4) reproduces Eq. (3), which was deduced
without considering buoyancy. However, for small q, the intensity of the
non-equilibrium concentration fluctuations no longer increases without limit
(as predicted by Eq. (3)), but a constant limit is reached instead. This small
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wave-number quenching of non-equilibrium fluctuations is also shown in
Figure 1, where we note that the straight line corresponding to the 1=q4 pro-
portionality crosses over to a constant limit for values of the wave number
around qRO. The experimental points displayed in Figure 1 were obtained
for q values larger than qRO, so that the quenching due to gravity could not
be observed. However, the quenching of the intensity of non-equilibrium fluc-
tuations due to buoyancy has been confirmed by Vailati and Giglio [16].

5. Confinement e¤ects on non-equilibrium fluctuations

When buoyancy has a destabilizing e¤ect, the presence of boundaries has to
be taken into account explicitly to describe the intensity of non-equilibrium
fluctuations. Since the non-equilibrium fluctuations in the presence of a tem-
perature or a concentration gradient extend spatially over the entire system,
they will be a¤ected at small wave numbers (i.e., at long wavelengths) by the
finite size of the fluid layer. A systematic incorporation of confinement e¤ects
in the theory of non-equilibrium fluctuations has been obtained [17, 18] by
requiring that the fluctuating fields satisfy appropriate boundary conditions,
which depend on the problem under consideration. The most important con-
clusion of these investigations is that the long-wavelength behavior of the
non-equilibrium fluctuations is indeed strongly a¤ected by the boundary con-
ditions. The detailed expression that fluctuating hydrodynamics gives for the
intensity of non-equilibrium fluctuations is generally involved and depends on
the boundary conditions considered. The case of a one-component fluid with
free-slip boundary conditions is particularly instructive because the calcula-
tion can be performed analytically to yield [17]

SðqÞ ¼ SE 1 þ cpð‘T0Þ2

a2TðPrþ 1Þ
1

L4
~SSNEðqÞ

( )
; ð6Þ

with the dimensionless enhancement ~SSNEðqÞ of non-equilibrium fluctuations
given by

~SSNEðqÞ ¼
~qq2
k

~qq6 � Ra~qq2
k
þ

2~qqk
3Ra

X2

j¼0

xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � ~qq

4=3
k

q
½~qq2 � xj~qq

2=3
k �2

cosð~qqzÞ � cosð~qq1=3
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � ~qq

4=3
k

q
Þ

sinð~qq1=3
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � ~qq

4=3
k

q
Þ

;

ð7Þ

in terms of a dimensionless wave vector ~qq ¼ qL. In Eq. (7), xj represents the
three complex cubic roots of the Rayleigh number, see Eq. (3) in ref. [17]. The
first term in Eq. (7) represents the e¤ects of buoyancy and has a structure
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similar to Eq. (4) for a binary mixture. The second term in Eq. (7), expressed
as a sum over the xj, represents the confinement e¤ects. The most salient fea-
tures included in Eq. (7) are as follows: First, it gives valid (convergent) re-
sults not only for negative Ra (heating from above), but also for positive Ra
up to a critical Rac ¼ 27p4=4 that coincides with the well-known critical Ray-
leigh number obtained from linear instability analysis. Second, the intensity
of non-equilibrium temperature fluctuations vanishes proportionally to q2

when q ! 0, as a consequence of the boundary conditions. To illustrate these
features, we show in Figure 2 a plot of Eq. (7) for three di¤erent values of the
Ra number. The upper curve corresponds to a positive Ra close to the con-
vective instability, the intermediate curve is for RaU0 (i.e., in microgravity),
and the lower curve is for a large and negative Ra, similar to the values em-
ployed in small-angle light-scattering experiments.

We clearly observe in Figure 2 the features mentioned above, and how the
1=q4 dependence obtained in Eq. (2) when no boundaries are considered,
crosses over to a q2 dependence for extremely small q. As a consequence, fluc-
tuations become maximally enhanced for a certain non-zero value of the
wave number qm. It is to be noted that the position of the peak in Figure 2,
a problem sometimes referred to as wave-number selection, cannot be cor-
rectly predicted on the basis of traditional hydrodynamic instability analysis
for the decay rate of the fluctuations. One must account for the intrinsic sto-
chastic nature of hydrodynamics to make these kinds of predictions, i.e., the

Figure 2 Normalized non-equilibrium enhancement of temperature fluctuations for a one-
component fluid with free slip boundary conditions as given by Eq. (7), and for three values
of the Rayleigh number; from ref. [17].
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value of qm [18]. For the non-equilibrium fluctuations with wave numbers
close to qm, we observe in Figure 2 that when Ra approaches the critical
value for the onset of convection, Rac, the intensity of those fluctuations
increases dramatically. Eventually, when Ra ¼ Rac, the intensity of non-
equilibrium fluctuations diverges (within the linear theory employed to de-
duce Figure 2). This observation demonstrates a close connection between a
divergence of non-equilibrium fluctuations and the appearance of hydrody-
namic instabilities.

Long-wavelength fluctuations can be probed by shadowgraphy. Experiments
performed by Wu et al. [19] in sulphur hexafluoride have confirmed the main
features of the theory. However, since the experiments were conducted near
the critical point, non-Boussinesq e¤ects become important, which have not
yet been incorporated into the theory in a systematic way [20].

Confinement e¤ects on non-equilibrium fluctuations in mixtures have been
also recently examined theoretically. The case of mixtures is complicated by
the presence of simultaneous temperature and concentration fluctuations,
which leads to the existence of two hydrodynamic modes and two competing
instability mechanisms. As a consequence, the intensity of non-equilibrium
temperature fluctuations for a typical binary mixture presents a surprising
bimodal distribution. For a more detailed study on this topic, we refer the
reader to a paper by Ortiz de Zárate et al. [21].

6. Discussion

In this paper, we have focused our attention on non-equilibrium fluctuations
in fluids in the presence of a temperature or a concentration gradient. How-
ever, mode-coupling phenomena are generically present in non-equilibrium
systems like in fluids in plane Couette flows or mixtures with non-equilibrium
chemical reactions [1]. In general, we can make the following conclusions re-
garding non-equilibrium fluctuations:

1. The principle of local thermodynamic equilibrium in non-equilibrium ther-
modynamics is valid for the thermodynamic properties, but not for the
fluctuations of those properties, even far away from any hydrodynamic
instability.

2. The non-equilibrium fluctuations are always stronger and spatially longer
ranged than would be the case if the hypothesis of local equilibrium for the
fluctuations was valid.

3. While linear fluctuating hydrodynamics ceases to be valid at and beyond
the appearance of hydrodynamic instabilities, it does give a description at
all stable non-equilibrium states, even rather close to the appearance of an
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instability like convection. On the other hand, traditional hydrodynamic
instability analysis, based on the deterministic hydrodynamic equations,
i.e., without the inclusion of random noise terms, does not yield a correct
description of the amplitude of the non-equilibrium fluctuations as a func-
tion of the wave number.
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