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In this paper a simple reaction-diffusion system, namely a binary fluid mixture with an
association-dissociation reaction between the two components, is considered. Fluctuations at
hydrodynamic spatiotemporal scales when a temperature gradient is present in this chemically
reacting system are studied. First, fluctuating hydrodynamics when the system is in global
equilibrium �isothermal� is reviewed. Comparing the two cases, an enhancement of the intensity of
concentration fluctuations in the presence of a temperature gradient is predicted. The nonequilibrium
concentration fluctuations are spatially long ranged, with an intensity depending on the wave
number q. The intensity exhibits a crossover from a �q−4 to a �q−2 behavior depending on whether
the corresponding wavelength is smaller or larger than the penetration depth of the reacting mixture.
This opens a possibility to distinguish between diffusion- or activation-controlled regimes of the
reaction by measuring these fluctuations. In addition, the possible observation of these fluctuations
in nonequilibrium molecular dynamics simulations is considered. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2746326�

I. INTRODUCTION

Nonisothermal reaction-diffusion systems are important
in industry, as most chemical process plants contain units
where such processes take place.1,2 These units, character-
ized by being out of global equilibrium, will experience hy-
drodynamic fluctuations. Such fluctuations arise in a noniso-
thermal system because the fluctuations of the velocity
parallel to the temperature or concentration gradient couple,
via the advection term in the balance laws, with the tempera-
ture and concentration fluctuations, similarly to the mode-
coupling phenomena encountered in fluid mixtures in the
absence of a chemical reaction.3 Specifically, we shall con-
sider chemically reacting fluid mixtures in thermal nonequi-
librium steady states but sufficiently close to equilibrium so
that macroscopic convection or turbulence is absent. It is to
be expected that fluctuations in such nonequilibrium systems
are spatially long range4.

Long-range hydrodynamic fluctuations have not been
discussed so far for these technically important systems, de-
spite reports that stationary state operation of nonisothermal
chemical reactors can be accidentally perturbed to show un-
stable behavior.5 While some explanations have been
proposed,5 it may also be worthwhile to pursue a study of the
hydrodynamic fluctuations in reactors of this kind, so as to
learn about the relation between hydrodynamic fluctuations
and Hopf bifurcations. This work is a first attempt in this
direction, by deriving expressions for the concentration fluc-
tuations in a chemical reaction in a temperature gradient.
Thereby we hope to lay a basis for further analysis of chemi-
cal reactors along these lines, and to contribute to the under-
standing of their steady-state behavior. Reactor stability is

crucial for good plant operation, especially in a development
that goes in a direction of process intensification.6 Despite
important efforts, this is still not always understood,
however.5

Nonequilibrium molecular simulations are useful for
studies of transport properties, and this gives a second per-
spective to our analysis. Transport coefficients can be found
from boundary-driven nonequilibrium molecular simulations
or from equilibrium fluctuations via Green-Kubo relations.
Hydrodynamic fluctuations in nonequilibrium molecular dy-
namics simulations have not been discussed so far with the
purpose of finding transport properties of reaction-diffusion
mixtures in a temperature gradient. In order to be able to take
advantage of this theory, it is first necessary to find the simu-
lation conditions when hydrodynamic fluctuations occur. For
instance, what are the system dimensions that allow their
observation? Can we expect to observe such fluctuations for
all densities? Another purpose of the paper is also to discuss
the theoretical results in view of recent nonequilibrium mo-
lecular dynamics simulations7,8 on a system of this type.

Progress in this field may have been hampered by the
absence of a suitable theory. In this paper we develop a
theory to specify concentration fluctuations at hydrodynamic
spatiotemporal scales, and discuss how they can be deter-
mined by light scattering and by molecular dynamics simu-
lations. Light-scattering techniques are standardly used to
find information on transport properties.

Insight into hydrodynamic fluctuations in nonisothermal
reaction-diffusion systems may thus be valuable in an overall
assessment of their importance on the macroscopic reactor
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scale. But, we shall see that it may also be valuable for a
search to establish new methods for transport-property deter-
minations.

The paper is written in terms of a terminology that is
common to chemists. We present the balance equations and
the transport equations for a reversible chemical reaction
with diffusion in a temperature gradient in Sec. II. The fluc-
tuations in the mixture at equilibrium are described in Sec.
III. An extension of the theory of fluctuations to nonequilib-
rium systems is presented in Sec. IV. In Sec. V we summa-
rize the results and mention some perspectives, while dis-
cussing possible verifications of the predictions by
experiments or simulations.

II. NONEQUILIBRIUM THERMODYNAMICS OF A
CHEMICALLY REACTING FLUID MIXTURE

As a representative example we consider a reversible
association-dissociation reaction, like in a mixture of atoms
and molecules,

2A � A2. �1�

For the particular case of fluorine atoms and molecules,
transport properties are known from nonequilibrium molecu-
lar dynamics simulations.7,8 However, for our purpose the
detailed intermolecular interactions are not relevant and we
treat Eq. �1� as a model chemical reaction to develop a theory
of nonequilibrium concentrations fluctuations that can be
readily applied to any binary reaction-diffusion system.

A detailed treatment of nonequilibrium thermodynamics
of chemically reacting fluid mixtures can be found in the
monograph �Sec. XI.8� of de Groot and Mazur.9 We basically
adopt the same approach with some slight changes in nota-
tion. Nonequilibrium thermodynamics is based on the as-
sumption of local thermodynamic equilibrium. The nonequi-
librium molecular dynamics simulations of Xu et al.7,8 have
confirmed the validity of this assumption even in the pres-
ence of a substantial temperature gradient. However, as will
become evident, one of the major findings of the present
paper is that, although local equilibrium is valid for the local
thermodynamic quantities, it is no longer valid for the fluc-
tuations of these quantities around their local-equilibrium
values. For instance, while fluctuations in equilibrium are
generally short range except near critical points, fluctuations
in nonequilibrium are always long range. Moreover, their
intensity is much larger than what one would expect for equi-
librium fluctuations corresponding to the local temperature
and concentration. Hence, nonequilibrium fluctuations differ
qualitatively from those in equilibrium states.

As usual in nonequilibrium thermodynamics, we shall
start by reviewing the relevant balance laws, and then discuss
the phenomenological relationships required to complete the
nonequilibrium thermodynamics formulation of the problem.

A. Balance laws

The balance laws relevant to our problem are4,9 balance
of mass

��A

�t
= − � · ��Av + JA� − � ,

��A2

�t
= − � · ��A2

v + JA2
� + � , �2�

balance of momentum

�

�t
��v� = − �p − � · ���v�v − �� , �3�

and balance of energy

�
Du

Dt
= − � · Q − p � · v

= �T
Ds

Dt
+

p

�

D�

Dt
+ ��A

DcA

Dt
+ ��A2

DcA2

Dt
. �4�

In the balance laws Eqs. �2�–�4�, p is the pressure, and the
mass density � of the mixture is obtained by adding the
partial densities in mass per unit volume: �=�A+�A2

. The
center of mass velocity is given by �v =�AvA+�A2

vA2
. The

symbols �A and �A2
represent the chemical potentials per

unit mass of each component, u is the specific internal en-
ergy, and s is the specific entropy, while cA=�A /� and cA2
=�A2

/� represent the mass fractions of the two components
of the mixture. Furthermore, the diffusion fluxes, JA and JA2

,
in the balance of mass Eq. �2�, are related to the difference
between the velocity of the component and the center of
mass velocity; thus JA=�A�vA−v�, and similarly for the dif-
fusion of molecules.

We readily identify on the right-hand side �RHS� of the
balance laws Eqs. �2� and �3� five fluxes. Three of them are
vectors: the diffusion flux of atoms JA, the diffusion flux of
molecules JA2

, and the energy flux Q �or total heat flux�.
Moreover, we have on the RHS of the mass balance Eq. �2�
a scalar flux which is the chemical reaction rate �, in mass
per unit volume and unit time. The last flux is the �deviatory�
stress tensor �, which appears on the RHS of the momentum
balance Eq. �3� and is a second-order tensor. Finally, we note
that in the balance of momentum Eq. �3�, external forces
�buoyancy� have been neglected, while in the balance of en-
ergy Eq. �4� we have neglected viscous heating. Moreover, in
Eq. �4� we employ material time derivatives to simplify the
notation.

Because we are considering a binary system, the two
diffusion fluxes are not independent, since from their defini-
tion it follows that9 JA+JA2

=0. Therefore, if we add the two
mass balance laws, we obtain �t�A+�t�A2

=−� · ��v�. Using
these constraints, we express the set of balance laws in terms
of the mass fraction of A2, c=cA2

, and temperature T as

��

�t
+ v · �� + � � · v = 0, �5a�

�� �c

�t
+ v · �c� = − � · J + � , �5b�
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�� �v

�t
+ �v · ��v� + �p = � · � , �5c�

�cp� �T

�t
+ v · �T� − �T� �p

�t
+ v · �p�

+ ��h� �c

�t
+ v · �c� = − � · Q , �5d�

where cp is the specific isobaric heat capacity of the mixture
and � its thermal expansion coefficient. Here,

�h = �A2
− T� ��A2

�T
�

p,c
− �A + T� ��A

�T
�

p,c

= �g − T� ��g

�T
�

p,c
, �6�

is the difference in specific enthalpy of the reaction, i.e., the
difference in specific enthalpy between the two components
of the mixture, with �g=�A2

−�A being the difference in
specific Gibbs energy �or minus the affinity� between the two
components. Equations �5a�–�5d� represent the balance laws
expressed in terms of a single diffusion flux J =JA2

=−JA,
and have to be complemented with two equations of state,
namely �=��T , p ,c� and �g=�g�T , p ,c�.

Alternatively, we can express the set of working equa-
tions in terms of the molar concentration of molecules �A2�
=�A2

/MA2
, which is more customary in the chemical litera-

ture. This second approach implies modifications in Eqs. �5b�
and �5d�, which have to be expressed in terms of �A2�, so that

��A2�
�t

+ v · ��A2� + �A2� � · v = − � · J� + ��, �7a�

�cp
DT

Dt
− �T

Dp

Dt
+ �hMA2	D�A2�

Dt
−

�A2�
�

D�

Dt

 = − � · Q ,

�7b�

where the term �hMA2
is the reaction enthalpy expressed in

J/mol, J�=J /MA2
is the diffusion flux expressed in moles of

molecules per m2 and second, and similarly ��=� /MA2
the

chemical reaction rate expressed in terms of moles produced
per unit volume.

In principle, the hydrodynamic fluctuations can be ana-
lyzed on the basis of the full set of balance laws Eq.
�5a�–�5d� once they are supplemented with the correspond-
ing phenomenological relationships as described in Sec. II B.
For the case of an isothermal global-equilibrium system, this
procedure was adopted by Lekkerkerker and Laidlaw.10

However, for the sake of simplicity, and to concentrate on
the most salient physical features of our problem, we shall
adopt first the incompressibility approximation. This ap-
proximation is commonly made in dealing with fluctuations
and with the onset of convection in fluid mixtures in the
absence of a chemical reaction.4 In our particular case11 the
incompressibility approximation implies that we can neglect
�� /�t and �� in Eq. �5a�, as well as the term containing the
thermal expansion � in Eq. �5d�, while the mass density
everywhere in the equations can be identified with an aver-

age uniform value �0. The incompressibility assumption is
equivalent to the assumption, usually adopted in chemical
kinetics,12 that chemical reactions proceed at constant vol-
ume. Then, the balance laws relevant to our current problem
reduce to

� · v = 0, �8a�

�� �c

�t
+ v · �c� = − � · J + � , �8b�

�� �v

�t
+ �v · ��v� + �p = � · � , �8c�

�cp� �T

�t
+ v · �T� + ��h� �c

�t
+ v · �c� = − � · Q . �8d�

In the alternative formulation in terms of molar concen-
tration, the incompressibility approximation implies

� · v = 0, �9a�

��A2�
�t

+ v · ��A2� = − � · J� + ��, �9b�

�� �v

�t
+ �v · ��v� + �p = � · � , �9c�

�cp� �T

�t
+ v · �T� + MA2

�h	 ��A2�
�t

+ v · ��A2�

= − � · Q . �9d�

The product MA2
�h in the RHS of Eq. �9d�, with the help of

Eq. �6�, can be expressed as

MA2
�h = �A2

� − T� ��A2
�

�T
�

p,c
− 2�A� + 2T� ��A�

�T
�

p,c
, �10�

where �A2
� =MA2

�A2
and �A� =MA�A are the chemical poten-

tials of A2 and A, respectively, in J/mol. Hence, the product
MA2

�h is the enthalpy of the chemical reaction Eq. �1�, also
in J/mol.

We conclude that, within the incompressibility assump-
tion, the set of balance equations, whether formulated in
terms of mass fractions or in terms of molar concentrations,
has a completely parallel structure. The following develop-
ments can be translated from one language to the other just
by replacing c with �A2�, J with J�, � with ��, and by mul-
tiplying �h everywhere by a factor MA2

/�. We have chosen
to use here version Eq. �8a�–�8d�, but we emphasize that the
other possibility is completely equivalent within our current
approximations.

As usual, the RHS of the balance laws Eqs. �8a�–�8d�
and �9a�–�9d� contains dissipative fluxes that need be related
to the physical gradients in the system. This is considered
next.
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B. Phenomenological relationships

The complete nonequilibrium thermodynamic formula-
tion of the system under study requires the consideration, in
addition to the balance laws Eq. �5a�–�5d�, of the entropy

production rate Ṡ of the system. This has been also evaluated
by de Groot and Mazur9 with the result

Ṡ = − Q ·
�T

T2 + �:
��v��s�

T
− JA · ���A

T
� − JA2

· ���A2

T
�

− �
��A2

− �A�

T
, �11�

where the superscript �s� indicates that only the symmetric

part of the tensor of velocity derivatives contributes to Ṡ.
The entropy-production rate in Eq. �11� has the typical struc-
ture linear in the dissipative fluxes. As is well known, the
quantities multiplying each of the five fluxes in Eq. �11� are
the corresponding conjugate thermodynamic forces. To set
up the linear phenomenological laws and to facilitate the
application to simulations, it is necessary to rewrite Eq. �11�
in terms of independent fluxes,

Ṡ = − Q ·
�T

T2 + �:
��v��s�

T
− J · ���g

T
� − �

�g

T
, �12�

where we have introduced the notation �g=�A2
−�A, for the

reaction Gibbs energy of the chemical reaction Eq. �1�.
Next, to obtain the equations of irreversible thermody-

namics from the balance laws Eq. �8a�–�8d�, one needs to
introduce the linear phenomenological laws relating the
fluxes to the gradients in terms of the appropriate Onsager
coefficients or corresponding transport coefficients. Various
formulations are possible and they are related to each other
by a redefinition of the fluxes. The final hydrodynamic equa-
tions obtained �see Eqs. �19a� and �19b� below� do not de-
pend on the choice of dissipative fluxes used to establish the
phenomenological laws. We shall use as fluxes the tensor �,
the vectors Q, J, and the scalar �. Then, taking into account
that the two vectorial heat and diffusive mass fluxes are
coupled by virtue of the Curie principle, and assuming that
the system is isotropic, one obtains for the linear phenom-
enological laws

�ij = �� �vi

�xj
+

�v j

�xi
� , �13a�

Q = − LQQ
�T

T2 − LQJ � ��g

T
� , �13b�

J = − LJQ
�T

T2 − LJJ � ��g

T
� , �13c�

� = − Lr
�g

T
. �13d�

Notice that in the phenomenological law Eq. �13a� for the
stress tensor we have already introduced the assumption of a
divergence-free �incompressible� fluid and expressed it in the
common way, in terms of the shear viscosity �. As usual, we

are assuming that due to their different tensorial character
there is no coupling between the chemical-reaction rate and
the heat and mass fluxes.9 The phenomenological laws Eqs.
�13b�–�13d� are written in terms of Onsager coefficients LQQ,
LJJ, LQJ, LJQ, and Lr, which satisfy the Onsager relations
LQJ=LJQ. For practical use, it is convenient to relate the On-
sager coefficients to the well-known transport coefficients. In
the case of the coupled phenomenological laws for J and Q,
this is achieved first by expressing the gradient in the reac-
tion Gibbs energy in Eq. �13b� in terms of the diffusion flux
J, and then using the equation of state �g=�g�p ,T ,c� in Eq.
�13c� to write it explicitly in terms of pressure, temperature,
and concentration gradients. This procedure yields

Q = − �LQQ −
LJQ

2

LJJ
��T

T2 +
LQJ

LJJ
J , �14a�

J = − �LQJ − LJJ�h�
�T

T2 −
LJJ

T
� ��g

�p
�

T,c
� p

−
LJJ

T
� ��g

�c
�

p,T
� c , �14b�

which, on comparing with the phenomenological equations
for binary systems,13

Q = − 	 � T + 	�h + kT� ��g

�c
�

p,T

J , �15a�

J = − �D	�c +
kT

T
� T +

kp

p
� p
 , �15b�

allows us to express the Onsager coefficients in terms of the
usual transport coefficients: a thermal conductivity 	, a mu-
tual diffusion coefficient D, a dimensionless thermal diffu-
sion ratio kT, and a dimensionless barodiffusion ratio kp. The
resulting expressions are

D =
LJJ

�T
� ��g

�c
�

p,T
,

	 =
1

T2�LQQ −
LQJ

2

LJJ
� ,

�DTkT = LQJ − LJJ�h , �16�

kp = p� ��g

�p
�

T,c
� ��g

�c
�

p,T

−1

.

Equations �14a�, �14b�, �15a�, and �15b� are compatible,
in the sense that the expression, obtained for kT by identify-
ing Eq. �14a� with Eq. �15a� is the same as obtained by
identifying Eq. �14b� with Eq. �15b�. It is interesting to note
that the barodiffusion ratio is independent of the Onsager
coefficients; it is an equilibrium property and not related to a
dissipative process. Barodiffusion seems to be important
only in geological problems, and is negligibly small for or-
dinary fluid mixtures. Hence, we neglect here barodiffusion,
which means that we neglect the dependence of the specific
Gibbs-energy difference on pressure in Eq. �14b�, so that
�g=�g�T ,c� only.

034501-4 Ortiz de Zarate et al. J. Chem. Phys. 127, 034501 �2007�

Downloaded 20 Jul 2007 to 147.96.27.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



In the same way as the phenomenological coefficients
for the energy and diffusion fluxes are related to the practical
transport coefficients D, 	, and kT, the coefficient Lr associ-
ated with the chemical reaction can be related to the rate
constants used in chemical kinetics.7,9,14 But, this relation-
ship is not as straightforward as for the other transport coef-
ficients, since several complications in chemical kinetics12

need to be accounted for �concentrations units, distinction
between reactions proceeding at constant volume or not, pos-
sibility of intermediate reaction steps, etc.�. Hence, we prefer
to use the Onsager coefficient Lr. In addition, we should note
that the linear phenomenological law Eq. �13d� is only valid
for small deviations from chemical equilibrium,9 actually so
small that many authors15,16 doubt the practical usefulness of
Eq. �13d� itself. In this respect we mention that, although this
criticism may be valid, recent developments17,18 have shown
that by introducing an internal mesoscopic variable to de-
scribe the advancement of a chemical reaction, a linear phe-
nomenological law similar to Eq. �13d� can be formulated in
terms of that mesoscopic variable, thereby extending the va-
lidity of linear nonequilibrium thermodynamics �and its as-
sociated theory of fluctuating hydrodynamics, to be devel-
oped later in Sec. III� beyond those narrow classical limits.
Therefore, in this paper we continue to assume the validity of
Eq. �13d�, keeping in mind that a mesoscopic extension17

may be necessary. Such an extension is beyond our present
scope here.

C. Hydrodynamic equations

Next, we substitute the phenomenological Eqs.
�13a�–�13d� into the set of balance laws, Eqs. �8a�–�8d�, so
as to obtain the set of differential equations from which the
spatiotemporal evolution of the velocity, the temperature,
and the concentration of the mixture can be evaluated. If we
neglect the dependence of the Onsager coefficients on pres-
sure, concentration, or temperature, the hydrodynamic equa-
tions can be written as

� · v = 0,

�� �v

�t
+ �v · ��v� = − �p + ��2v ,

�� �c

�t
+ v · �c� = − LQJ�

2� 1

T
� + LJJ�

2��g

T
� −

Lr

T
�g ,

�cp� �T

�t
+ v · �T� + �h� �c

�t
+ v · �c�

= − LQQ�2� 1

T
� + LJQ�2��g

T
� , �17�

which, combined with the equation of state �g=�g�p ,T ,c�,
constitute the hydrodynamic equations of the chemically re-
acting mixture under consideration.

Notice that the set of hydrodynamic equations, Eqs. �17�,
because of both the incompressibility assumption and the
neglect of viscous heating, appears to separate into two pairs.
The first pair of Eqs. �17� represents an ordinary hydrody-

namic problem from which the velocity v and the pressure p
can be calculated. These solutions then have to be substituted
into the second pair of Eqs. �17�, in particular the velocity,
and a closed system is obtained from which concentration
and temperature, in principle, may be evaluated.

It is usually advantageous to express the second pair of
the hydrodynamic equations Eqs. �17� in terms of the ordi-
nary transport coefficients: 	, D, kT, instead of the Onsager
coefficients LJJ, etc. This can be achieved by inverting Eqs.
�16� and substituting the result into Eqs. �17�. Furthermore, it
can be assumed that

�2� 1

T
� 
 −

1

T2�2T ,

�18�

�2��g

T
� 
 −

�g

T2 �2T +
1

T
�2��g�


 −
1

T2��g − T� ��g

�T
�

c
��2T +

1

T
� ��g

�c
�

T

�2c ,

where terms proportional to the square of gradients, like
��T�2, ����2, etc. have been neglected since they are second
order in the dissipative fluxes as can be immediately seen by
inverting the phenomenological relations Eq. �13a�–�13d�. In
addition, we recall that we are neglecting barodiffusion and,
consequently, the dependence of the reaction Gibbs energy
on the pressure; see Eq. �16�. Then, substitution of Eq. �18�
into the second pair of Eqs. �17�, and use of the well-known
transport coefficients give the hydrodynamic equations in
their more classical form, namely

�c

�t
+ v · �c = D	�2c +

kT

T
�2T
 −

Lr

�T
�g , �19a�

�T

�t
+ v · �T = �a + D
D��2T +

DT

kT

D�2c +

Lr

�
�h̃�g ,

�19b�

where in the energy Eq. �19b� we have introduced the ther-
mal diffusivity a=	 /�cp, the dimensionless Dufour effect
ratio


D =
kT

2

cpT
� ��g

�c
�

p,T
, �20�

which measures the importance of the Dufour effect, and the
dimensionless specific enthalpy of reaction, similar to Eq.
�6�,

�h̃ =
�h

cpT
. �21�

The dimensionless specific enthalpy of reaction �h̃ shows up
multiplying the last term in the energy balance Eq. �19b�; it
thus causes a heating due to the chemical reaction. This term
is important and cannot be neglected.
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III. CONCENTRATION FLUCTUATIONS IN AN
ISOTHERMAL CHEMICALLY REACTING MIXTURE

When the fluid mixture is in thermal equilibrium in the
absence of a temperature gradient, the solution of the hydro-
dynamic Eqs. �17� is obviously given by zero velocity v =0,
uniform pressure, uniform temperature T=T0, and uniform
concentration c0. This concentration c0 is the solution of the
chemical equilibrium equation �g�c ,T0�=0. In this section
we study small thermodynamic fluctuations around this
simple equilibrium solution.

We have divided the material in this section in two parts.
First, for the benefit of the reader, we review the theory of
thermodynamic fluctuations, particularly the generic formu-
lation in terms of the fluctuation-dissipation theorem. Then,
we shall apply the general theory specifically to the case of
an isothermal chemically reacting mixture.

A. Fluctuating hydrodynamics

Following the general guidelines of fluctuating
hydrodynamics,4 we formulate the stochastic version of the
hydrodynamic Eqs. �19a� and �19b� by the following three-
step procedure:

�1� The dissipative fluxes are affected by the random na-
ture of molecular motion, so they must be considered as
stochastic variables with a probability distribution to be
specified below �for a global equilibrium state�. As a
consequence, both the temperature and the concentra-
tion also become stochastic variables whose spatiotem-
poral evolutions depend on the stochastic fluxes
through Eqs. �5a�–�5d�, as the balance laws Eqs.
�5a�–�5d� continue to hold even in the presence of fluc-
tuations.

�2� Because of stochastic phenomena, the phenomenologi-
cal relationships Eqs. �13a�–�13d� are only valid on
“average.” This means, for instance, that when fluctua-
tions are present, Eq. �13b� must be replaced by

Q = − LQQ
�T

T2 − LQJ � ��g

T
� + �Q , �22�

where �Q�r , t� is a random part of the energy flux, with
mean value ��Q�r , t��=0 when averaged over its func-
tional probability distribution.

�3� To completely specify the probability distribution of the
random fluxes ��Q�r , t� and the like�, we need not only
the first moment, but all the other moments of their
probability distributions. When the system is in a global
equilibrium state at a uniform temperature T0, the prob-
ability distributions of the random fluxes are generated
by a set of Gaussian stochastic processes. Hence, only
the first and second moments are required to com-
pletely specify them. If we denote a generic random
flux by �Jk�r , t� �it could be any component of a tenso-
rial flux, or a scalar flux�, then its statistical properties
�first and second moments� are

��Jk�r,t�� = 0 �23a�

��Jk
*�r,t� · �Jl�r�,t��� = 2kBLkl��t − t����r − r�� , �23b�

where kB is the Boltzmann constant and Lkl are the
same phenomenological coefficients that appear in the
linear phenomenological relationship between the
fluxes Jk and Jl.

Equation �23a� is just the definition of the fluctuating
part of the random flux. Equation �23b� is the fluctuation-
dissipation theorem, which gives the stochastic properties of
the fluxes when the system is in a global equilibrium state.13

B. Equilibrium concentration and temperature
fluctuations

Now, we elucidate how the general theory explained
above applies to an isothermal chemically reacting binary
mixture. First, we identify four independent random fluxes:
the random stress tensor ���r , t�, the random energy flux
�Q�r , t�, the random diffusion flux �J�r , t�, and, finally, the
random chemical reaction rate ���r , t�, the last one being a
scalar.

The specification of the generic fluctuation-dissipation
theorem Eq. �23b� for our system �when expressed in terms
of the transport coefficients� becomes more compact if we
redefine the energy flux by introducing an auxiliary random
heat flux related to �Q�r , t� by

�Q��r,t� = �Q�r,t� − �h�J�r,t� . �24�

With this auxiliary random heat flux, the fluctuation-
dissipation theorem can be expressed in terms of the trans-
port coefficients Eq. �16� as4

���ij
� �r,t� · ��kl�r�,t���

= 2kBT���ik� jl + �il� jk���t − t����r − r�� , �25a�

��Qk�
��r,t� · �Ql��r�,t���

= 2kBT2	�1 +
D

a

D��kl��t − t����r − r�� , �25b�

��Jk
��r,t� · �Jl�r�,t���

= 2kBT�D� ��g

�c
�

p,T

−1

�kl��t − t����r − r�� , �25c�

��Jk
��r,t� · �Ql��r�,t��� = 2kBT�DkT�kl��t − t����r − r�� ,

�25d�

�����r,t� · ���r�,t��� = 2kBLr��t − t����r − r�� . �25e�

We recall that the Onsager coefficient for the stress tensor is
proportional to T�, and note that the fluctuation-dissipation
theorem for the random stress, written as in Eq. �25a�, clearly
shows the symmetry under permutation of indices: i by j, or
k by l. Since the development in this section refers to a
global equilibrium state of the mixture, all thermophysical
properties in Eqs. �25a�–�25e� are to be evaluated at the equi-
librium pressure p0, equilibrium temperature T0, and equilib-
rium concentration c0.
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Having formulated the fluctuation-dissipation theorem,
we introduce two changes in the hydrodynamic equations,
Eqs. �17�. First we add the random part of the fluxes on the
RHS of Eqs. �17�. In addition, we split the thermodynamic
fields in �uniform� equilibrium parts �p0, T0, and c0�, and
random fluctuating parts: �p�r , t�, �T�r , t�, and �c�r , t�,
which are driven by the random fluxes. Then, similarly to
Eqs. �17�, we obtain evolution equations for the thermody-
namic fluctuations that include random forcing from the sto-
chastic part of the fluxes. If we linearize the resulting equa-
tions, assuming that fluctuations around equilibrium are
small, we can decouple �also because we are neglecting bar-
odiffusion� the velocity and pressure fluctuations from the
concentration and temperature fluctuations. As a conse-
quence, we do not evaluate here the effect of the chemical
reaction in the propagating sound modes, as discussed by
other authors.10,19 Thus, we only consider the coupled evo-
lution equations for temperature and concentration fluctua-
tions, for which we obtain the following set of stochastic
partial differential equations:

�

�t
�c = D	�2�c +

kT

T0
�2�T
 −

Lr

�T0
���g�

−
1

�
� · �J +

1

�
�� , �26a�

�

�t
�T + T0�h̃

�

�t
�c = �a + D�
D + kT�h̃���2�T

+
DT0

kT
�
D + kT�h̃��2�c −

1

�cp
� · �Q . �26b�

Alternatively, eliminating the concentration time derivative
in the second equation using the first one, we obtain

�

�t
�c = D	�2�c +

kT

T0
�2�T
 −

Lr

�T0
���g� −

1

�
� · �J

+
1

�
�� , �27a�

�

�t
�T = �a + D
D��2�T +

DT0

kT

D�2�c +

Lr

�
�h̃���g�

−
1

�cp
� · �Q� −

T

�
�h̃�� . �27b�

At this point we should comment that, according to the
general approach described in Sec. III A, we are describing
the stochastic nature of the chemical reaction through
Langevin-type equations, Eqs. �26a�, �26b�, �27a�, and �27b�

above. There has been some debate in the literature on
whether the use of a Langevin equation is correct for chemi-
cal reactions, or whether fluctuations in chemical reactions
must always be described by a chemical master
equation.20–22 From a strictly microscopic point of view, we
acknowledge that the proper theoretical framework to de-
scribe fluctuations in chemical reactions has to be based on
the chemical master equation.23 However, starting from the
chemical master equation, through a Kramers-Moyal ap-
proximation combined with the system-size expansion pro-
posed by Van Kampen,24,25 it is possible to obtain a Fokker-
Planck �or Langevin� equation which is approximately
equivalent to the original chemical master equation.23,26 It is
known that this approximation scheme fails when there is a
bistability in a system of chemical reactions,26 so that the
Langevin equation is only valid when there is a single stable
solution to the deterministic kinetic equations, and when
there are many particles per unit volume in the system. The
second assumption �many particles in small volume ele-
ments� is equivalent to the approximations justifying hydro-
dynamics itself. In dealing with fluctuations at hydrodynamic
spatiotemporal scales, we shall implicitly assume that the
approximations leading to the chemical Langevin equation,
Eqs. �26a�, �26b�, �27a�, and �27b� above, are sufficiently
well justified.

To solve the evolution equations, Eqs. �27a� and �27b�,
for the fluctuating fields, we need first to relate the fluctua-
tions in the specific Gibbs-energy difference ���g� in Eq.
�26a� to temperature and concentration fluctuations. Since
we are neglecting barodiffusion, the relevant relationship is
simply

���g� = � ��g

�c
�

T

�c + � ��g

�T
�

c

�T . �28�

Next, substituting Eq. �28� into Eq. �26a�, we obtain a closed
system of differential equations for �T�r , t� and �c�r , t� that
can be solved by the following procedure. First, since fluc-
tuations in equilibrium systems are spatially short ranged, we
do not need to account for boundary conditions. Therefore,
the system of differential equations, Eqs. �26a� and �26b�,
can be solved by taking spatiotemporal Fourier transforms.
This procedure yields:

G−1��,q� · ��c��,q�
�T��,q�

� = F��,q� , �29�

where � and q are the frequency and the wave vector of the
fluctuations, respectively. Furthermore, we have introduced
in Eq. �29� a matrix

G−1��,q� =� i� + Dq2 +
Lr

�T0
� ��g

�c
�

T

D
kT

T0
q2 +

Lr

�T0
� ��g

�T
�

c

T0�h̃i� +
DT0

kT
�
D + kT�h̃�q2 i� + �a + D�
D + kT�h̃��q2� , �30�

which is the inverse of the linear response operator for our system, and a vector of random forces
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F��,q� =
− 1

�
�iqi�Ji��,q� − ����,q�

icp
−1qi�Qi��,q�

� , �31�

where summation over repeated indices is understood. Now, the Fourier-transformed fluctuating fields can be simply evaluated
by inversion of Eq. �30�, so as to calculate the linear response function itself.

Here, we are interested in the calculation of the autocorrelation function of the �Fourier-transformed� fluctuating fields, i.e.,
��c��� ,q��c��� ,q��� for the concentration fluctuations, and ��T��� ,q��T��� ,q��� for the temperature fluctuations. To calcu-
late these quantities, we need the correlations between the components of the random noise vector introduced in Eq. �31�.
These functions are conveniently expressed in terms of a correlation matrix C�q�, defined by

�Fi
���,q�Fj���,q��� =

2kBT0

�
� ��g

�c
�

T

−1

Cij�q��2
�4��� − �����q − q�� . �32�

By combining the definition Eq. �31� of the vector F�� ,q� with the fluctuation-dissipation theorem, Eq. �25a�–�25e�, we
readily obtain for the correlation matrix

C�q� =�Dq2 +
Lr

�T0
� ��g

�c
�

T

DT0

kT
�
D + kT�h̃�q2

DT0

kT
�
D + kT�h̃�q2 �aT0

cp
� ��g

�c
�

T

+
DT0

2

kT
2 �
D + kT�h̃�2�q2� . �33�

Now we are in a position where we can evaluate the various correlation functions between the fluctuating fields. For instance,
inverting Eq. �30�, and using Eq. �32�, we observe that the concentration fluctuations autocorrelation can be expressed in terms
of a “structure factor” Scc�� ,q� as

��c���,q��c���,q��� = Scc��,q��2
�4��� − �����q − q�� , �34�

with

Scc��,q� =
2kBT0

�
� ��g

�c
�

T

−1

�
i,j=0

1

G1i
� ��,q�Cij�q�G1j��,q� . �35�

Inverting Eq. �30� for the inverse linear response function, we can obtain for the contribution Scc�� ,q� of the concentration
fluctuations to the dynamic structure factor

Scc��,q� =
2kBT0

�
� ��g

�c
�

T

−1�Dq2 +
cp
DLr

�kT
2 ��2 + �+�q��−�q���a + D
D�q2 +

cp�h̃2Lr

�
�

��2 + �+
2�q����2 + �−

2�q��
. �36�

If, similarly to Eq. �34�, we introduce a contribution STT�� ,q� of the temperature fluctuations to the dynamic structure factor,
we obtain

STT��,q� =
2kBT0

2

�cp

��a + D
D�q2 +
cp�h̃2Lr

�
��2 + �+�q��−�q��Dq2 +

cp
DLr

�kT
2 �

��2 + �+
2�q����2 + �−

2�q��
. �37�

In Eqs. �36� and �37� the decay rates �±�q� of the fluctuations are given by

�±�q� =
1

2	�a + D�
D + 1��q2 +
cpLr

�kT
2 �
D + kT

2�h̃2�
�1 ±�1 −

4q2�aDq2 +
cpLr

�kT
2 �a
D + D�
D + kT�h̃�2��

��a + D�
D + 1��q2 +
cpLr

�kT
2 �
D + kT

2�h̃2��2� . �38�

To simplify Eqs. �36�–�38� we have used the fact that in
chemical equilibrium �g=0, so that the temperature deriva-
tive of �g �minus the reaction entropy� is simply propor-
tional to the reaction enthalpy �h �see Eq. �6�� with �g=0.

Equation �38� for the effects of the chemical reaction on

the decay rates is rather long and complicated. An analysis of
these decay rates for various ranges of the wave number q
has been done by Lekkerkerker and Laidlaw.10 Here, we con-
sider some simplifications. A first possible approximation is
to neglect the Dufour effect, which is a good assumption for
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most ordinary liquid mixtures. However, neglecting the
Dufour effect does not mean in our case to simply take the

D→0 limit of Eq. �38�; although 
D can indeed be very
small, the dimensionless product cpLr
D /�Dq2 can be large
depending on the rate of the chemical reaction and the wave
number q. For this reason neglecting the Dufour effect leads
only to a rather slight simplification of Eq. �38�. However,
we have found that a major simplification is obtained by
adopting a large-Lewis-number approach �with Le=a /D�,
which is also a good approximation for most ordinary liquid
mixtures.4 Indeed, taking the Le→� limit of Eq. �38�, we
obtain

�+�q� = D�Le + 
D�q2 +
cpLr

�
�h̃2 + O�Le−1� , �39a�

�−�q� = Dq2 +
Lr

�T
� ��g

�c
�

T

+ O�Le−1� . �39b�

If the chemical reaction is absent �Lr
0� and if the Dufour
effect is negligible, we obtain from Eqs. �39a� and �39b�:
�+
aq2, �−
Dq2, which are the well-known decay rates of
the thermal and concentration fluctuations in a liquid mix-
ture, respectively.27,28 We have found that Eq. �39� gives a
good representation of the decay rates �±�q� for reasonable
liquid mixtures, except for �−�q� at very small wave numbers
q, where it does not have the correct asymptotic limit. How-
ever, at such small wave numbers finite-size effects must be
incorporated in the theory,4 so that even Eq. �38� will need to
be modified for small q. If we apply the same large-Lewis-
number approximation to the dynamic structure factors Eqs.
�36� and �37�, it turns out that STT�� ,q� is O�Le−1�, while
Scc�� ,q� is of O�1�. Therefore, the intensity of the tempera-
ture fluctuations is negligible when compared to the intensity
of concentration fluctuations, unless some particularity of the
liquid mixture makes it otherwise �see below�.

Notice in Eq. �38� as well as in Eqs. �39a� and �39b� that
the decay rates of the fluctuations depend explicitly on the
rate constant Lr. Hence, measuring these fluctuations by light
scattering4,27 or shadowgraphy4,29,30 in a reacting mixture
provides information about the rate constant of the reaction.
For instance, Letamendia et al.31,32 measured light scattering
in various liquids with chemical equilibrium between two
isomers. For these particular systems concentration fluctua-
tions were not observable because the refractive indices of
the two isomers are the same so that, in spite of large Le,
only temperature fluctuations were observed. The experi-
mental values obtained for the decay rate of the Rayleigh
line at several scattering wave numbers q did agree well with
Eq. �39a�, with thermal diffusivity and rate constant obtained
from independent sources.

Of particular interest here is the contribution of the con-
centration fluctuations to the static structure factor

Scc�q� =
1

2

�

−�

�

Scc��,q�d� , �40�

which is related to the equal-time autocorrelation function of
the concentration fluctuations as

��c��t,q��c�t,q��� = Scc�q��2
�3��q − q�� . �41�

Integrating Eq. �36� and using Eq. �38�, we observe that
the static structure factor Scc�q�, in contrast to the dynamic
structure factor Scc�� ,q�, does not depend on the wave num-
ber q of the fluctuations, and that it is simply given by the
same result �inversely proportional to the osmotic compress-
ibility� that would be obtained if chemical reactions were
absent, namely4,27,33

Scc�q� =
kBT0

�
� ��g

�c
�

T

−1

. �42�

Similarly for the temperature fluctuations, one finds

STT�q� =
kBT0

2

�cp
. �43�

The contribution from any cross correlation to the static
structure factor is, as expected, zero. The results, Eqs. �42�
and �43�, depend crucially on the fact that �g=0, i.e., that
the chemical reaction is in thermodynamic equilibrium ev-
erywhere in the system. We emphasize that the results �Eqs.
�42� and �43�� for the static structure factor are obtained from
the full expressions for the dynamic structure factor and the
decay rates, without resorting to simplifications like neglect-
ing the Dufour effect or assuming a large Lewis number.

From our present results, we reach the following conclu-
sions:

�1� The static structure factors Eqs. �42� and �43� do not
depend on the rate constant Lr and are the same as for
a mixture without a chemical reaction. This is mainly a
consequence of �g=0 everywhere; but can also be un-
derstood as a consequence of the Curie principle, i.e.,
because of their different tensorial character there is no
thermodynamic coupling between the chemical reac-
tion rate and the diffusive mass flux. In summary, while
the dynamic structure factor contains information on
the rate constant, such information is lost in the equal-
time fluctuations. This feature has been noted previ-
ously in other chemically reacting systems,4,27 where
two active species are diluted in an inert “solvent” in
the absence of temperature fluctuations.

�2� Since the static structure factor Scc does not depend on
the wave number q, the fluctuations in equilibrium are
spatially short ranged, even when a chemical reaction is
present. Indeed, by substituting Eq. �42� into Eq. �41�
and applying Fourier inverse transformations, we arrive
at

��c��r,t��c�r�,t�� =
kBT

�
� ��g

�c
�

T

−1

��r − r�� , �44�

confirming that equal-time fluctuations are spatially
short ranged �proportional to delta functions on hydro-
dynamic length scales�.
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IV. CONCENTRATION FLUCTUATIONS IN A
NONISOTHERMAL CHEMICALLY REACTING MIXTURE

In the presence of a temperature gradient that is assumed
to be stationary, the chemically reacting mixture will evolve
to a nonequilibrium steady state. Our next goal is to evaluate
the intensity of the fluctuations around such a nonequilib-
rium state. For this purpose we must first discuss the station-
ary solution. We follow here de Groot and Mazur9 by con-
sidering the stationary state of a quiescent �v =0� chemically
reacting fluid mixture in a temperature gradient enclosed in a
reservoir. Consequently, we are assuming the absence of any
thermal convection. Since in our current development we are
neglecting buoyancy, the quiescent solution will be always
stable and convection shall not develop in our system.

A. The stationary solution

We assume the presence of a nonuniform temperature
profile T0�x� in the x direction, such that at x=0 the tempera-
ture T�0�=T1 and at x=L the temperature T�L�=T2. Just as
de Groot and Mazur,9 we consider the stationary solution
with v =0 and uniform pressure and with J =0 at the bound-
aries of the reservoir at x=0 and x=L. The stationary tem-
perature profile T0�x� and the stationary reaction Gibbs-
energy profile �g0�x� are then readily obtained by equating
the left-hand side �LHS� of Eqs. �17� to zero,

0 = − LQJ�
2� 1

T0
� + LJJ�

2��g0

T0
� − Lr

�g0

T0
, �45a�

0 = − LQQ�2� 1

T0
� + LJQ�2��g0

T0
� . �45b�

For simplicity and following previous authors,8,9 we assume
that all Onsager coefficients are constants, independent of
temperature and, hence, independent of position. In the
chemical literature, nonisothermal reaction-diffusion systems
like the one described by Eqs. �45a� and �45b� have often
been considered in the context of reacting gases inside pores
of a solid catalyst pellet.34–37 In those studies, the tempera-
ture dependence of the rate constant Lr is not neglected, and
an Arrhenius dependence,36 or other more complicated non-
linear kinetic expressions34,35,37 are assumed for Lr�T�. These
approaches lead to a system of nonlinear coupled differential
equations for the temperature and activity profiles that can be
solved only numerically. Our present aim is to evaluate non-
equilibrium fluctuations around the stationary solution of
Eqs. �45a� and �45b�, and those fluctuations �as discussed in
detail later� depend only very slightly on whether the linear
or nonlinear approach is used to solve Eqs. �45a� and �45b�.
For simplicity, we choose here to discuss the linear version
of Eqs. �45a� and �45b�, which yields analytic expressions
for the temperature and activity profiles. This linear approxi-
mation can be relevant in parts of plug-flow reactors which
operate close to chemical equilibrium. Indeed, plug-flow re-
actors have domains of this type when they are in the state of
minimum entropy production.37

As already mentioned, the linear version of the problem
Eqs. �45a� and �45b� was extensively reviewed by de Groot

and Mazur,9 on the basis of previous work by Meixner and
Prigogine. We simply give the results in terms of our nota-
tion. They are

�g0�x�
T0�x�

=
− �T

T1

�D

Lr

kT Le�
D + kT�h̃�

d2Z̃
D

sinh�1

d
�x −

L

2
�� ,

T1T2

T0�x�
= T +

�T

Z̃
	Le

d
cosh� L

2d
��x −

L

2
�

+
�
D + kT�h̃�2


D
sinh�1

d
�x −

L

2
��
 , �46�

where T represents the mean temperature T= �T1+T2� /2 and
�T=T2−T1 the temperature difference between the two
walls bounding the system. Furthermore,

1

d2 =
LrLQQ

LJJLQQ − LJQ
2 =

Lr

�DT
� ��g

�c
�

T
�1 +

�
D + kT�h̃�2

Le 
D
�

=
�2

L2�1 +
�
D + kT�h̃�2

Le 
D
� ,

Z̃ =
2�
D + kT�h̃�2


D
sinh� L

2d
� + Le

L

d
cosh� L

2d
� . �47�

The parameter d has units of length and is commonly re-
ferred to as the “penetration length” of the chemical
reaction.9 The dimensionless parameter � in Eq. �47� has
been used by Demirel36 when solving the nonlinear �Arrhen-
ius� version of Eq. �45a� and �45b�. Except for corrections
due to the Soret and Dufour effects, it can be interpreted as
the ratio of the size of the system L to the penetration length
d. Indeed, for the isothermal case �when Soret and Dufour
effects are absent� if a concentration gradient is externally
imposed the corresponding penetration length is simply
given by d=L /�. Hence, Eq. �47� displays corrections to the
penetration length due to the Soret and Dufour effects, simi-
larly to recent work of Demirel36 for the nonlinear regime.
For a so-called “diffusion-controlled” process, � is very
large, so that the ratio d /L becomes very small. On the other
hand, when d /L is large, we have an “activation-controlled”
or, simply, an activated process. We have verified that in the
large � limit, the inverse temperature of Eq. �46� reduces to
a linear profile like the one expected when there is no chemi-
cal reaction in the system.

For the calculation of nonequilibrium fluctuations in the
next section, we shall actually need the stationary concentra-
tion gradient at the center of the layer. For this purpose we
note that

dc

dx
= T� ��g

�c
�

T

−1	d��g/T�
dx

− ��g − T� ��g

�T
�

c
�d�1/T�

dx

 .

�48�

Upon substitution of Eq. �46� into Eq. �48�, we readily obtain
for the concentration gradient at x=L /2
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��c0�L/2 = − kT
�TT

T1T2

�
D + kT�h̃��Le + 
D + kT�h̃� − kT�h̃ Le cosh� L

2d
�

2d�
D + kT�h̃�2sinh� L

2d
� + 
D Le L cosh� L

2d
� , �49�

where the temperature T is identified with the average tem-
perature of the layer, as used in the definition of the Dufour
effect ratio and the dimensionless enthalpy of reaction. We
shall again consider a large-Lewis-number approximation,
for which we shall be specifically interested in the gradient at
the middle of the cell in this limit. Taking the Le→� limit of
Eq. �49�, we obtain

��c0�L/2 = − kT
�T

L

T

T1T2

1


D
��
D + kT�h̃�sech� L

2d
� − kT�h̃� ,

�50�

which has to be compared with a uniform value
dc0 /dx= �−kT /T���T /L� that would be obtained if no chemi-
cal reaction were present in the system.

B. Nonequilibrium structure factor

We start the calculation of the nonequilibrium structure
factor of the fluid by setting up the evolution equations for
the thermodynamic fluctuations around the stationary solu-
tion described in the previous section. For this purpose we
follow exactly the same generic procedure described in Sec.
III for the isothermal case. Thus, we start from the balance
laws in the form Eq. �8a�–�8d�, and substitute in the RHS the
thermodynamic fields by their stationary values �as described
in Sec. IV A� plus some “fluctuation,” for instance, T�r , t�
=T0�x�+�T�r , t�, v�r , t�=�v�r , t�, etc. Next, we perform a
similar substitution in the phenomenological laws Eq.
�13a�–�13d�, and we add random fluxes ��, �Q, �J, and ��,
as was explained in more detail for the energy flux in Eq.
�22�. Finally, by substitution of these “random” linear phe-
nomenological laws in the LHS of the balance laws, we ob-
tain the fluctuating-hydrodynamics equations, from which
the spatiotemporal evolution of the fluctuating thermody-
namic variables may be initially computed.

The generic procedure described above produces some
complicated nonlinear equations and some approximations
are de rigueur. First, some simplifications come from the
observation that T0�x� and �g0�x� are solutions of the station-
ary problem Eq. �45a� and �45b�. Next, the most important
simplification is obtained by linearizing the resulting expres-
sions in the fluctuating fields. This approximation is justified
if the fluctuations are “small.” Previous work in nonreacting
mixtures4 shows that this is so when the stationary quiescent
solution is stable, meaning that we are far from any instabil-
ity like convection. Although we have not yet performed a
complete and detailed analysis, we believe that our stationary
solution Eq. �46� is always stable in the absence of buoyancy,
and that we can safely linearize our evolution equations for
the nonequilibrium fluctuations. After having linearized the

equations, a further simplification can be obtained by taking
a double curl of the fluctuating Navier-Stokes equation and
using the divergence-free condition, � ·�v =0. This proce-
dure decouples the equations for the fluctuations in the y-
and z components of the velocity from the temperature or
concentration fluctuations. With all these simplifications, the
fluctuating hydrodynamic equations �expressed in terms of
the ordinary transport coefficients� read

�

�t
�2�vx = ��2��2�vx� +

1

�
�� � � � �� · ����x, �51a�

�

�t
�c + �vx

dc0

dx
= D	�2�c +

kT

T
�2�T
 −

Lr

�T
���g�

−
1

�
� · �J +

1

�
�� , �51b�

�

�t
�T + �vx

dT0

dx
+ T�h̃� �

�t
�c + �vx

dc0

dx
�

= �a + D�
D + kT�h̃���2�T

+
DT

kT
�
D + kT�h̃��2�c −

1

�cp
� · �Q . �51c�

It is interesting to compare Eqs. �51a�–�51c� with Eqs. �26a�
and �26b� for the fluctuations around the equilibrium state.
We notice that the main difference is that, because of the
presence of nonvanishing stationary temperature and concen-
tration gradients, in Eqs. �51b� and �51c� there appears a
coupling �via the advection term in the balance laws� be-
tween the velocity fluctuations parallel to the gradient and
the temperature or concentration fluctuations. Physically this
is due to the fact that velocity fluctuations parallel to the
stationary gradients do probe regions with different tempera-
ture or concentration values. As in the case of a nonisother-
mal nonreacting binary mixture,4 this coupling is precisely
the origin of an enhancement of the hydrodynamic fluctua-
tions when the system is in a quiescent nonequilibrium
steady state. In this paper we discuss fluctuations in nonequi-
librium states that are quiescent. For situations very far from
equilibrium, i.e., developed convection, nonlinear phenom-
ena not covered by Eqs. �51a�–�51c� may appear. Our present
analysis is for a system that is in local equilibrium, but far
from global equilibrium.

Although nonequilibrium fluctuations can be directly
evaluated from Eqs. �51a�–�51c�, again a further simplifica-
tion can be achieved by exploiting the fact that for dense
fluids �liquids� the Lewis number Le=a /D is usually quite
large. This is the same approximation used in Eqs. �39a� and
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�39b� to simplify the expression for the equilibrium decay
rates. For the nonequilibrium problem Eq. �51a�–�51c� the
large-Lewis-number approximation was first proposed by
Velarde and Schechter38 so as to simplify the instability
analysis when buoyancy effects are incorporated in the
theory. The same approximation scheme also has been suc-
cessfully used by some of us to study nonequilibrium con-
centration fluctuations induced by the Soret effect in a non-
reacting binary mixture.39,40 The most important
consequence of this large-Lewis-number approximation is
that temperature fluctuations can be ignored, and that only
the coupling via the balance laws between concentration and
velocity fluctuations needs to be considered. Indeed, in ordi-
nary liquid mixtures concentration fluctuations usually domi-
nate, and temperature fluctuations are more difficult to ob-
serve by the ordinary techniques like light scattering.41–43

The same has been found from nonequilibrium molecular
dynamics simulations.44 Further details concerning this ap-
proximation scheme can be found in the relevant
literature.38,40 In the Le→� limit the set of working Eqs.
�51a�–�51c� reduces to

0 = ��2��2�vx� +
1

�
�� � � � �� · ����z, �52a�

�

�t
�c + �vx��c0�L/2 = D�2�c −

Lr

�T
� ��g

�c
�

p,T
�c

−
1

�
� · �J +

1

�
�� . �52b�

One further simplification has been performed in Eqs. �52a�
and �52b�, namely, we have identified the stationary concen-
tration gradient that, initially, is an inhomogeneous position-
dependent magnitude with its value at the center of the cell.
This approximation simplifies enormously the calculation of
the structure factor. Furthermore, it is consistent with having
neglected throughout this paper the position dependence of
all thermophysical properties of the mixture, such as the On-
sager coefficients and, hence, the transport coefficients and
the Lewis number. The influence of such nonlinearities in
nonequilibrium fluctuations has been considered
elsewhere,3,45 and is negligible when nonequilibrium cou-
pling between the fluctuating fields exists via the balance
laws, as is the case here. We note that, with this approxima-
tion, the nonequilibrium structure factor will depend on the
value of the concentration gradient at the center of the cell,
and not on the detailed concentration profile c0�x�. As a con-
sequence, our final result will be only slightly sensitive to
whether a linear or a nonlinear �numerical� approach is used
to obtain the stationary solution of Eq. �46�. For the same
reason, our present results may also be applicable to some
kinds of open systems36 for which the stationary solution can
still be represented by Eqs. �45a� and �45b� with v =0, but
with a nonvanishing diffusion flux J at the boundaries.

We shall not consider boundary conditions for the fluc-
tuating fields in this paper. In general, fluctuations in fluids
subjected to a temperature gradient at large wavelengths
comparable to the size of the system are affected by the
conditions at the boundaries.46 However, boundary condi-

tions are not needed to reproduce the proper asymptotic be-
havior of the nonequilibrium hydrodynamic fluctuations at
small wavelengths �but still large enough to be in the hydro-
dynamic regime�.4,46 Deviations from our solution are ex-
pected for larger wavelengths due to confinement effects, but
they are not considered in the present paper.

Thus, we take a full spatiotemporal Fourier transform of
Eqs. �52a� and �52b�, as we did in Eq. �29� for the equilib-
rium fluctuations. This procedure yields a linear set of alge-
braic equations that may be written in the usual form as

G−1��,q� · ��vx��,q�
�c��,q�

�
= F��,q� =

1

�
�i
0niqn
ijkqj�ql��lk��,q��

− iqi�Ji��,q� + ����,q�
� , �53�

where � and q are the frequency and the wave vector of the
fluctuations, respectively. In the expression of the vector of
random forces F�� ,q�, summation over repeated indices is
again understood, and in the first of the Levi-Civitta tensors,
an index “0” appears because the actual random force corre-
sponds to the x component of the vector between curly
brackets in the RHS of Eq. �52a�. The explicit expression of
the inverse linear response function for the nonequilibrium
fluctuations on the LHS of Eq. �53� is

G−1��,q� = � �q4 0

��c0�L/2 i� + Dq2 +
Lr

�T
� ��g

�c
�

T
� . �54�

The Fourier-transformed fluctuating fields can then be sim-
ply evaluated by inversion of Eq. �54�. As in Sec. III B for
the fluctuations in equilibrium, we are interested in the auto-
correlation function of the �Fourier-transformed� concentra-
tion fluctuations, i.e., ��c��� ,q��c��� ,q���. For a calculation
of this quantity, we need the correlations between the com-
ponents of the random noise vector introduced in the RHS of
Eq. �53�. Again, these functions are conveniently expressed
in terms of a correlation matrix C�q�, defined by

�Fi
���,q�Fj���,q���

=
2kBT

�
� ��g

�c
�

T

−1

Cij�q��2
�4��� − �����q − q�� .

�55�

By combining the definition Eq. �53� of the vector
F�� ,q� with the fluctuation-dissipation theorem, Eq.
�25a�–�25e�, we readily obtain

C�q� =��� ��g

�c
�

T

q�
2q4 0

0 Dq2 +
Lr

�T
� ��g

�c
�

T

� , �56�

where q�
2=qy

2+qz
2, with q� being the component of the wave

vector in the direction normal to that of the stationary con-
centration gradient.

In Eqs. �55� and �56� we are implicitly adopting the
strong assumption that the fluctuation-dissipation theorem
Eq. �25a�–�25e�, initially valid only for fluctuations around
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equilibrium states, will also hold locally in nonequilibrium
steady states,47 provided that the various thermophysical
properties appearing in its formulation are identified with
their local-equilibrium values. The physics behind such an
extension of the fluctuation-dissipation theorem is that, even
outside equilibrium the correlation between the components
of the stochastic part of the fluxes continues to be short
ranged and, thus, within a hydrodynamic theory, proportional
to delta functions in space and time. The validity of such an
extension of the fluctuation-dissipation theorem has been
confirmed experimentally for �nonreacting� fluids in a tem-
perature gradient.4,42,48 In this same context, we also remind
the reader that effects due to nonlinearities such as inhomo-
geneously correlated thermal noise49 are completely negli-
gible when there exists a coupling in nonequilibrium be-
tween fluctuating fields via the balance laws,3 such as the one
we found in Eq. �52a� and �52b�.

Inverting Eq. �54� and substituting the result into Eq.
�35� �with the matrices G and C appropriate to the nonequi-
librium case�, we obtain

Scc��,q� =
2kBT

�

D� ��g

�c
�

T

−1

q2 +
Lr

�T

�2 + �Dq2 +
Lr

�T
� ��g

�c
�

T
�2

��1 +

q�
2� ��g

�c
�

T

���c0�L/2�2

�q4�Dq2 +
Lr

�T
� ��g

�c
�

T
�� , �57�

where the concentration gradient at the center of the cell is
given by Eq. �50� in the large-Lewis-number approximation.
We observe in Eq. �57� that the decay rate of nonequilibrium
concentration fluctuations is the same as the decay rate of
equilibrium concentration fluctuations, which in the large-
Lewis-number approximation was given by Eq. �39b�. This
is a generic feature of nonequilibrium fluctuations, namely,
that in first approximation for sufficiently large wave num-
bers the decay rate of the fluctuations is the same, while the
intensity of the fluctuations is strongly affected by the non-
equilibrium constraints.4 However, inclusion of the effects of
buoyancy and of boundary conditions does modify the decay
rate at small wave numbers.4

To obtain the total intensity of the nonequilibrium con-
centration fluctuations we integrate Scc�� ,q� over the fre-
quency � in accordance with Eq. �40�, obtaining the static
structure factor Scc�q�. In terms of a dimensionless wave
number q̃=qL,

Scc�q� = Scc
�E��1 + S̃cc

�NE,0�
q̃�

2

q̃4�q̃2 +
L2

d2��
= Scc

�E�	1 + S̃cc
�NE,0�

q̃�
2

q̃4�q̃2 + �2�

 , �58�

where Scc
�E� is the equilibrium structure factor given by Eq.

�42�, and where S̃cc
�NE,0� is a normalized nonequilibrium en-

hancement of concentration fluctuations,

S̃cc
�NE,0� =

���c0�L/2�2

�DL4 � ��g

�c
�

T

. �59�

Our final results, Eqs. �57� and �58�, exhibit the typical struc-
ture of nonequilibrium fluctuations, containing a nonequilib-
rium enhancement which explicitly depends on the wave
number q, showing that the equal-time nonequilibrium con-
centration fluctuations become spatially long ranged. We re-
call that Scc�q� is again related to the equal-time concentra-
tion fluctuations correlation function by Eq. �41�.

We find that the nonequilibrium enhancement exhibits a
crossover from the well-known q−4 dependence observed in
nonreacting liquid mixtures4 to a q−2 dependence for smaller
wave numbers. The q−2 behavior is the one typically found
when studying long-range nonequilibrium fluctuations in iso-
thermal reacting mixtures, as discussed by several
authors.4,23,50 The crossover from a q−4 �nonisothermal non-
reacting� to a q−2 �nonequilibrium but isothermally reacting�
behavior occurs at wave numbers of the order

q̃CO
2 


L2

D

Lr

�T
� ��g

�c
�

T



L2

d2 = �2, �60�

which is closely related to the inverse of the penetration
length of the stationary solution as given by Eq. �47�. As
mentioned by de Groot and Mazur,9 the penetration depth d
in liquid mixtures typically varies from 0.01 to 1 cm. As an
illustration, we present in Fig. 1 a plot of the dimensionless
nonequilibrium enhancement of the concentration fluctua-
tions as a function of the dimensionless wave number. The
plot is for d=0.1 cm and L=0.2 cm, which is a typical ex-
perimental value for the height of an optical cell;51 thus, the
dimensionless parameter �=2. Figure 1 shows a clear cross-
over from the asymptotic q−4 dependence at larger wave
numbers �unaffected by the chemical reaction� to a q−2 de-
pendence for smaller wave numbers.

FIG. 1. Dimensionless enhancement of nonequilibrium concentration fluc-
tuations as a function of dimensionless wave number, q̃=qL, for parameter
�=2 �diffusion-controlled reaction�. The crossover from the asymptotic q−4

dependence to q−2 dependence at smaller wave numbers is evident.
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V. DISCUSSION AND CONCLUSIONS

We have mentioned in the Introduction that reactor sta-
bility may be affected by nonequilibrium hydrodynamic fluc-
tuations. It is now clear from the above derivations that an
activation controlled reactor, where this is relevant, can ex-
perience large fluctuations in the direction perpendicular to
the transport direction of a tubular reactor. This may at cer-
tain conditions trigger a local bifurcation. A quantitative dis-
cussion of this issue requires an analysis of a more compli-
cated reaction system, however, and is premature at the
moment. In this section we only mention some consequences
of our findings for experiments �light scattering and shad-
owgraphy� and for nonequilibrium molecular dynamics
simulations. They shall be discussed separately below, along
with a summary of the main findings.

A. Light scattering and shadowgraphy

We have seen above that the theory of hydrodynamic
fluctuations can provide information about the transport co-
efficients D and Lr from measurements of the structure factor
S�� ,q�. This can be done by light scattering. The concentra-
tion fluctuations then give D from Eq. �59�, and the coeffi-
cient Lr from Eq. �60�.

We also predict an enhancement of the intensity of con-
centration fluctuations in the presence of a temperature gra-
dient. The intensity of the fluctuations depends on the wave
number q, and exhibits a crossover from q−4 to q−2 behavior.
The crossover occurs when the wavelength is of the order of
the penetration depth d. For wavelengths smaller than d a q−4

behavior will be observed and for wavelengths larger than d
a q−2 behavior is expected �see Fig. 1�. Small values of d
correspond to diffusion-controlled processes and large values
of d correspond to activated processes. Hence, by studying
the wave-number dependence of the nonequilibrium concen-
tration fluctuations it would in principle be possible to dis-
tinguish between a diffusion-controlled process and an acti-
vated process. This is a central issue in reactor engineering.1

The actually feasibility of observing the crossover from q−4

to q−2 behavior will depend on the magnitude of the penetra-
tion depth. When the penetration depth is a mesoscopic
length, the crossover can be observed by light scattering.
When the penetration depth is a macroscopic length �as it
often is9� shadowgraphy would be needed.4,29 However, for a
quantitative interpretation of experimental shadowgraphs, we
shall need to also consider the effects of buoyancy and of the
boundary conditions on the fluctuations.4

Our theory can also provide a way to probe whether
chemical equilibrium has been reached in the temperature
gradient. A mixture where the reactants and products are in
chemical equilibrium has �g=0. This condition may hold
true also in a volume element exposed to a temperature
gradient.8 Such a volume element will then show q−2 behav-
ior, while a volume element with the same mixture, but with-
out chemical equilibrium, will show q−4 proportionality.
Light scattering and/or shadowgraphy may in this manner
serve as a process on-line tool to probe the progress of a
chemical reaction.

B. Nonequilibrium molecular simulations

Molecular simulations are convenient tools for transport-
coefficient determinations. It is therefore interesting to see
whether this technique can also be used to determine hydro-
dynamic fluctuations. Clearly, one has to resort to nonequi-
librium simulations to study the fluctuations considered here.

The nonequilibrium molecular simulations reported
earlier7,8 were not done in a manner that allows verification
of the structure factors predicted here. The transport pro-
cesses in that work7,8 were described as one-dimensional
processes, while sampling of the data for the present purpose
must be done in the direction perpendicular to this direction.
This can be seen from Eqs. �57� and �58�, which explicitly
contain q�. A first step in the direction of probing hydrody-
namic fluctuations by nonequilibrium molecular simulations
must include calculations of correlations in the direction nor-
mal to the direction of the temperature and concentration
gradients.

The nonequilibrium enhancement of the concentration
fluctuations caused by an externally imposed temperature
gradient is proportional to the ratio ��T�2 /q4. The value of
the proportionality constant42,51 is around 1010 K−2 cm−2. In
molecular dynamics simulations the wave number of the ob-
servable fluctuations is limited by the size of the system, so
that qmin
2
 /L. Therefore, we conclude that in order to
have an observable nonequilibrium enhancement �of about
10%�, the size of the system has to be at least Lmin


2000/�T nm, with �T being the temperature difference
imposed between the two thermostats. For a typical tempera-
ture gradient, �T /L=108 K/m, and a box with dimensions
4�4�8 nm, one has to increase one of the lengths in a
direction normal to the transport direction by a factor of 250,
making this length 1000 nm or 1 micron. For condensed
densities of around 7 particles per cubic nanometer, this
means that simulations have to be performed with about
250 000 particles.

Another important factor is the time that the simulations
have to run to observe nonequilibrium fluctuations. This time
has to be several times the decay rate of the fluctuations. The
decay time of nonequilibrium fluctuations is the same as in
equilibrium; thus, for binary mixtures concentration fluctua-
tions decay with �
Dq2, Eq. �39b�. For a system of 200 nm
size and for D
10−5 cm2 s−1, this time will be around sev-
eral �s.

To run simulations with several hundred thousand par-
ticles over tens of �s is not completely unreasonable, given
the current calculation capabilities. The possibility to observe
nonequilibrium fluctuations may be a good motivation to
perform these very large-scale molecular simulations.

The transition we predict from q−4 to q−2 behavior in the
presence of a chemical reaction will be more difficult to ob-
serve by nonequilibrium molecular dynamics than the
asymptotic q−4 variation.
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