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Abstract
In this article we describe and build a model of a historical weighing device
proposed by the Spanish engineer Darı́o Bacas in the second half of the 19th
century. The balance was named ‘goniobarimeter’ by its inventor, and the
weighing principle is based on a curious, and not very well known, property
of the cycloid. The simplicity of the design makes it especially suitable for a
hands-on educational project with pre-university physics students.

Historical introduction

Nowadays, the ready availability of modern elec-
tronic weighing apparatus has in most cases re-
placed the old balances in stores and laboratories.
However, weighing devices based on mechanical
equilibrium undoubtedly still have a historical,
educational and scientific interest. In this short
article we describe the operation and building of
a model of one of these historical balances. Our
present work could be interesting for educational
purposes, as a hands-on project for pre-university
physics students, as well as for science museums.

The original design of this device was due
to the Spanish engineer Darı́o Bacas Montero
(1845–1913) who named it the ‘Goniobarı́metro’
(goniobarimeter) [1]. With this name he meant
(gonio-bari-metro: angle-weight-meter) a balance
that indicated on a graduated disk a lean angle
proportional to the weight under measurement.
This feature is common to several weighing
devices; the peculiarity of the Bacas design is

that it is based on the pure geometrical properties
of the cycloid. In this article we summarize the
working principle, and describe succinctly how to
build the apparatus. Historical details on the life
of the engineer Bacas can be found in [2], while a
more exhaustive account of the physics behind the
goniobarimeter, as well as a more detailed step-by-
step building guide, can be found in [3, 4] (all in
Spanish).

The physics of the goniobarimeter

Figure 1, which is an adaptation of the original
Bacas illustration [1], shows a schematic repre-
sentation of the goniobarimeter. The main part
is a seesaw AB that is free to rotate around a
fixed point O. From the point B hangs the weight
P under measurement. At the other end of the
seesaw beam a counterweight guiding part ATH is
rigidly fixed. This part guides the counterweight
Q by means of a string that gradually unfolds
as the seesaw leans due to the weight P . E
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Figure 1. Schematic representation of the Bacas 
goniobarimeter. P is the weight under measurement, 
Q is the counterweight and E, E′ are equilibration 
weights.
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and E ′ represent two equilibration weights that
are intended to locate the centre of gravity of the
moving part at exactly the rotation centre O.

The shape of the director curve ATH is such
that the system equilibrates at a lean angle β that is
proportional to the weight P . Assuming that there
exists a curve y = y(x) satisfying this property,
the equilibrium condition is vanishing torque with
respect to O, or

Q d(β) = P L cos β, (1)

where L is the distance from O to B and d(β) is the
(minimum) distance from point O to the straight
line tangent to the director curve y = y(x) at the
point T = {x, y} from where the counterweight
hangs. If the goniobarimeter works properly, the
weight P is proportional to the lean angle β , then
equation (1) can be rewritten as:

d(β) = kβ cos β, (2)

where k represents all the constant parameters.
The problem of the goniobarimeter is thus
formulated as finding the curve y = y(x) such
that the distance d to the origin O of the line
tangent to the curve in an arbitrary point satisfies
equation (2), with β = π/2 − α, tan α being
the slope of the tangent line. The distance to the
origin of a straight line that goes through the point

T = {x, y} and intercepts the x-axis with angle α

is given by:

d(α) = x sin α − y cos α, (3)

where we are implicitly assuming x > 0, y <

0, α > 0. Combining equations (2) and (3),
and taking into account that the slope of the
tangent line to a curve is given by the derivative,
one obtains the following nonlinear differential
equation for the curve y = y(x)

y = dy

dx

[
x − k

π

2
+ k arctan

(
dy

dx

)]
. (4)

Taking the derivative of equation (4), one finds

0 = d2 y

dx2

[
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π
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+ k arctan

(
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)

+ k

1 + (
dy
dx )2
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]
. (5)

Then, the square bracket at the right-hand-side
of equation (5) has to vanish. Combining this
condition with equation (4), we finally obtain

dx

dy
=

√
y + k

−y
. (6)

One identifies in equation (6) the differential
equation of the cycloid. Indeed, using the
parametric representation:

x = k

2
(t − sin t)

y = −k

2
(1 + cos t)

(7)

one can readily verify by simple substitution
that the cycloid, equation (7), is the solution of
equation (6). Thus, as originally shown by Bacas,
the goniobarimeter problem has a solution given
by the cycloid generated by a circle of radius R =
k/2 rolling over the line y = −k.

The goniobarimeter can hence be built. The
director part ATH guiding the counterweight has
to be an arc of a cycloid tangent to the vertical axis
at the point {x = 0, y = −k}, and tangent to the
horizontal axis at the point {x = kπ/2, y = 0}, see
figure 1 (note that the positive x-axis goes from
O to A). If we choose for the distance L from
O to B the value L = kπ/2, then we have from
equations (1) and (2):

P

Q
= β

π/2
, (8)
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meaning that the lean angle β will vary
between 0 and π/2 as the weight P under
measurement changes from 0 to the value Q of the
counterweight.

Building a goniobarimeter

Initially, a goniobarimeter can be built in metal,
wood or plastic. For the present prototype we
selected wood because of its easy handling and
convenience as a working material for a hands-
on project with pre-university students. We used
a solid wood panel of 10 mm thickness for the
platform and the supporting beams, while plywood
of 3 mm thickness was chosen for the moving
parts. In addition, we employed nylon fishing
line and lead fishing weights, a steel nail for the
rotation axis, the bottom of a plastic bottle for
the weighing pan, a piece of tinplate, bolts, nuts,
washers and, finally, a plastic protractor for the
measurement of the lean angles. Woodworking
tools, like a good bowsaw and sandpaper, and a
little patience and workmanship are also required.

Building the counterweight guiding part

First we plot in a piece of paper a cycloid arc
with a radius R = k/2 = 5 cm, to use as
a template. For this project we have used the
printout generated by computer plotting software,
however, other less sophisticated methods are also
possible [5]. Next, we transfer the paper template
to the plywood panel. For reasons that will be
clarified below, it is convenient to extend (around
1 cm is enough) the cycloid arc a little at the two
ends with straight lines: as schematically indicated
in figure 2, from A to A′ with a horizontal
line and from B to B′ with a vertical line. To
complete the counterweight guiding part, we draw
on the plywood panel a line more or less parallel
to the extended cycloid arc, at a distance of
about 3 cm, to give the plywood piece enough
rigidity. Then, we carefully saw the part and
finish it with sandpaper to the maximum accuracy
possible.

The fishing line from where the counterweight
is suspended has to rest over the guiding part. It is
thus convenient to carve a groove on the surface in
which the nylon string could fit comfortably. It is
the bottom of this groove that is required to have a
shape as close to a cycloid arc as possible. For

this reason it is wise to saw the plywood panel
not exactly over the cycloid, but approximately
1 mm above it. Finally, we need to fix the nylon
string somewhere in the horizontal extension of
the cycloid arc, close to the point A′. This can be
easily achieved using a staple.

Building the moving part

The counterweight guiding part is enclosed
between two identical rectangular strips (see
figure 2) cut from the plywood panel. The length
of the strips has to be exactly twice the horizontal
distance between the points A′ and B′ in the
guiding part. For the height, something between
3 and 4 cm is advisable, to give the seesaw beam
the required strength and to have enough room for
the equilibration device described below.

The point A where the cycloid arc starts has
to be placed at the middle of the height of the
plywood strips. Then, the counterweight guiding
part and the two plywood strips are solidly glued
together with a strong wood adhesive. Next,
holes are drilled at the point O (figure 2) to place
the rotation axis. It is extremely important that
the point O is placed at the intersection of the
horizontal AA′ and the vertical of BB′ lines. For
this reason it was convenient to extend the cycloid
arc a little at both ends when building the guiding
part. For the present project, for the rotation axis
we use a steel nail that crosses the two plywood
strips and projects about 2 cm (on each side)
outside of the external surfaces. It is important for
the rotation axis to be solidly glued to the seesaw

September 2010 P H Y S I C S E D U C A T I O N 477



J del Rey Pantı́n and J M Ortiz de Zárate

Figure 3. A schematic representation showing the 
supporting structure with the seesaw beam already in 
place.

beam, and to be as perpendicular as possible to the
two parallel planes of the plywood strip exterior
surfaces.

The point C (figure 2) has to be placed in the
AO line at exactly the same distance from O as
the point A. Similarly to the rotation axis at O, a
second (smaller diameter) nail is placed crossing
the lateral plywood strips at the point C. From
this nail at point C the weighing pan will later
be suspended, with the help of a hook of metallic
wire and more fishing line. Finally, to give rigidity
to the moving beam, plywood pieces are glued
between the two external plywood strips close to
the point C, so that the strips are solidly joined and
as parallel as possible.

To finalize the moving part we attach the
measurement needle. This needle is solidly joined
to the moving seesaw beam and is as perpendicular
as possible to the line AOC (figure 2). Our needle
was cut from a tinplate piece and glued to one of
the lateral plywood strips. If required, to avoid
parallax errors, one can later bend the needle a
little, bringing it closer to the measurement scale.

Building the supporting beam and the platform

Our supporting structure (figure 3) was designed
with the aim of allowing the free movement of
the seesaw beam. It consists of two parallel wood
arches solidly joined to a flat wood platform. The
platform is furnished with three levelling screws,
used to adjust the verticality of the plane of
rotation. To one of the supporting arches the scale

for the lean angle measurement is fixed. For this
project we used a simple plastic protractor as the
scale.

Of course, it is extremely important that the
rotation axis is as horizontal as possible. For this
purpose one can use axis bearings whose position
can be finely adjusted vertically, see [4] for further
details. In addition, the origin of the protractor has
to match the position of the rotation axis. This can
be achieved with the help of a bolt, nut and washer,
and an elongated hole in the protractor. Again,
see [4] for further details.

Equilibration

For the goniobarimeter to work properly, the
centre of gravity of the moving part has to be
located at exactly the position of the rotation
axis. To achieve it, we added to the moving
seesaw beam a slotted plywood piece EE′ of
approximately 6 cm length. The bolt E can be
displaced in the line OC, and the weight E′ can
be displaced along the piece EE′ perpendicularly
to the line OC, as schematically shown in
figure 4 [4].

Equilibration is performed with the weighing
pan already hanging from the point C. First the
moving seesaw beam is maintained horizontally,
while the equilibration piece EE′ is moved until
the seesaw remains horizontal when freed. Once
this is done, the seesaw moving beam is placed
and maintained vertically while the weight E′ is
moved until the seesaw remains vertical when
freed. Correct equilibration can be verified by
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Figure 5. Left panel: the goniobarimeter with a counterweight of 9 g and loaded with two one-euro-cent coins,
lean angle is about 45.5◦. Right panel: the goniobarimeter with a counterweight of 90 g and loaded with two
one-euro coins, lean angle is about 15.0◦.

inspecting if the unloaded seesaw stands still at any
angle. A good equilibration can be done with more
or less difficulty depending on the axis friction, the
axis horizontality, the perpendicularity of the axis
to the seesaw external surfaces, the rigidity of the
assembly, etc.

The working goniobarimeter

As explained by equation (8), the counterweight Q
selects the range of weights that can be measured
with the goniobarimeter. In our model, with a
counterweight of 9 g the goniobarimeter leans
1◦ g−1 per decigram, while with a counterweight
of 90 g the goniobarimeter leans 1◦ g−1. In figure 5
we show two photographs of our model. In the left
panel the counterweight is 9 g and the weighing
pan is loaded with two one-euro-cent coins. In
the right panel the counterweight is 90 g and the
weighing pan is loaded with two one-euro coins.

We have verified the principle of the
goniobarimeter, i.e., linearity of the lean angle
with the load. We placed in the weighing pan
of our model an increasing number of identical
screws and measured the corresponding lean
angle. We show graphically the results of this test

Figure 6. The lean angle measured using the 
goniobarimeter model of figure 5, when loaded with 
different numbers of identical screws. The 
counterweight is 90 g. The linearity is excellent.
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in figure 6. Some small deviations are evident for
lean angles close to 90◦, where the goniobarimeter
is less reliable, but otherwise the linearity is
excellent. We conclude that our model is working
as designed by Darı́o Bacas in the 19th century.
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