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Abstract. In a recent publication [Physica A 291, 113 (2001)] the static structure factor of a liquid in a
thermal nonequilibrium state was calculated exactly from the random Boussinesq equations, in the absence
of convection, for “stress-free” boundary conditions. In the present paper we present a similar calculation,
but with the more realistic “no-slip” boundary conditions. In this case an explicit calculation cannot be
performed and we use a zeroth-order Galerkin approximation. The main conclusion is that the approximate
structure factor thus calculated has qualitative the same behavior as the exact result for “stress-free”
boundary conditions. The typical divergence on q−4 of the nonequilibrium part of the structure factor
crosses over to a q2 dependence for extremely small wavevectors q. Separating both behaviors a maximum
appears indicating that fluctuations with a particular wavevector, qmax, are maximally enhanced.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 47.54.+r
Pattern selection; pattern formation – 78.35.+c Brillouin and Rayleigh scattering; other light
scattering

1 Introduction and motivation

During the past years considerable effort has been devoted
to the study of hydrodynamic fluctuations in liquids in sta-
tionary thermal nonequilibrium states, particularly when
a liquid layer is subjected to a constant temperature gra-
dient, ∇T0. It turns out that density or temperature fluc-
tuations in such nonequilibrium states become spatially
long-ranged, even in the absence of any convective insta-
bilities [1].

The long-range nature of the fluctuations manifests
itself as a wavevector-dependent enhancement in the
Rayleigh component of the structure factor. The structure
factor, S(q), can be measured experimentally, because it
is proportional to the intensity of light scattered by the
liquid. As originally predicted by mode-coupling theory [2]
and later confirmed by fluctuating hydrodynamics [3–6],
S(q) depends on the fluctuations wavevector q, for small
scattering angles, as:

S(q) = ρ2κT kBT
γ − 1
γ

[
1 +

(cP /T )(∇T0)2

D2
T (P + 1)

1
q4

]
, (1)

where ρ is the density, κT the isothermal compressibility,
cP the isobaric specific heat capacity, γ the heat-capacity
ratio, DT the thermal diffusivity and P the Prandtl num-
ber of the liquid. The symbol kB represents Boltzmann’s
constant and T the average temperature in the fluid layer.
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We note that S(q), as given by (1), contains an equilibrium
contribution and a nonequilibrium enhancement.

The equilibrium contribution SE is obtained by tak-
ing ∇T0 = 0 in (1), so that SE = ρ2κTkBT [(γ − 1)/γ].
The resulting SE is independent of the wavevector q and
equals the traditional formula for the isotropic Rayleigh-
scattering intensity [7].

The nonequilibrium enhancement is proportional to
the square of the temperature gradient and diverges as
q−4 for q → 0. The dependence on q−4 means that to
observe any nonequilibrium enhancement, the scattering
intensity has to be measured at small angles. This q−4

dependence of the intensity of scattered light has been
confirmed by several small-angle Rayleigh-scattering ex-
periments [8–10].

The divergence of the structure factor as q−4 cannot
go on indefinitely up to wave numbers corresponding to
macroscopic wavelengths. Specifically two sources can be
identified that will cause deviations from the q−4 behavior
at very small wavevectors. Firstly, gravity causes the q−4

divergence to be quenched, the structure factor reaching
a constant limit in q → 0, as elucidated by Segrè et al.
[11,12]. This gravitationally induced saturation of the
q−4 divergence has been confirmed by Vailati and Giglio
[13,14] in ultra-low-angle light-scattering experiments.
Secondly, as a constant temperature gradient has to be
applied to a liquid layer with a finite height, finite-size
effects are expected to cause also a deviation from the
q−4 behavior at small angles. These finite-size effects have
been considered explicitly only very recently [15].
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In [15] the finite-size effects were accounted for by
solving the fluctuating hydrodynamics equations in the
Boussinesq approximation, subjected to boundary con-
ditions. The Boussinesq approximation is equivalent to
assuming that density fluctuations are caused by tem-
perature fluctuations, while neglecting pressure fluctu-
ations. Consequently, Boussinesq approximation can be
used for evaluating the Rayleigh component of the scat-
tering spectrum, since pressure fluctuations only affect the
Brillouin components. It is for the Rayleigh component of
the scattering spectrum for which accurate experimental
information on nonequilibrium fluctuations has been ob-
tained [8–10,13,14]. The main conclusion reached in [15] is
that in the nonequilibrium contribution to the Rayleigh-
scattering intensity finite-size effects cause a crossover
from the q−4 divergence to a q2 dependence valid for ex-
tremely small scattering wavevectors. The crossover from
q−4 to q2 means that a maximum in the scattering inten-
sity appears. The position of the maximum is of the order
of the inverse of the finite height of the system. The ex-
istence of this maximum indicates that fluctuations with
a particular wavevector are maximally enhanced. Hence,
the nonequilibrium effects couple with the finite size of the
system to select a particular length scale, for which the
nonequilibrium fluctuations are maximally enhanced.

The actual results obtained from the analysis of finite-
size effects will depend on the boundary conditions con-
sidered. Ortiz de Zárate et al. [15] considered “stress-free”
boundary conditions for the fluctuating velocity because
of their mathematical simplicity. But these conditions cor-
respond to a fluid bounded by two free surfaces, which is a
rather unrealistic case [16]. For the realistic case of a fluid
bounded by two rigid solid plates the adequate bound-
ary conditions are “no-slip” boundary conditions [16]. The
main goal of the present paper is to analyze finite-size ef-
fects in the scattered intensity, as in [15], with the more re-
alistic “no-slip” boundary conditions. Other investigators
have also studied finite-size effects on nonequilibrium fluc-
tuations, using both “stress-free” and “no-slip” boundary
conditions, but they always have focusing on the situa-
tion close to the convective instability [17–21]. Actually,
they considered the influence of thermal noise at the con-
vective instability and studied the divergence in S(q) as
the critical Rayleigh number is approached. We are con-
sidering here the same problem but in a different limit,
namely when gravity is negligible and the system is in a
quiescent stable state. Malek Mansour et al. [22,23] have
considered the effects of boundary conditions on some
correlation functions in a fluid subjected to a stationary
temperature gradient. But they adopted hydrodynamic
simplifications appropriate to Brillouin scattering, while
we are here concerned with Rayleigh scattering. Bena
et al. have recently reported results of finite-size effects
on nonequilibrium fluctuations in Kolmogorov flow [24].
Again as a consequence of the hydrodynamic simplifica-
tions adopted, they did not consider the Rayleigh compo-
nent of the scattering spectrum.

The following material is organized in five sections. In
Section 2, we present the linearized Boussinesq equations

supplemented with random noise terms, which are the
starting point of the analysis. In Section 3, for the sake
of completeness and for subsequent comparison, we re-
view the results of [15] for two free boundaries, and we
briefly sketch how they were obtained. Section 4 con-
tains the main results of the present paper, where we
consider two rigid boundaries and adopt an approximate
Galerkin method to solve the linearized random Boussi-
nesq equations. In Section 5 we present a detailed anal-
ysis of the finite-size effects as they appear in low-angle
light-scattering experiments, comparing the results with
“stress-free” and with “no-slip” boundary conditions. Our
conclusions are summarized in Section 6.

2 The linearized random Boussinesq
equations

We consider a liquid layer bounded between two horizon-
tal planes separated by a distance L. The liquid layer is
subjected to a stationary temperature gradient, ∇T0, in
the direction of the Z-axis. This temperature gradient is
established by maintaining the two horizontal planes at
different temperatures. The size of the system in the XY
plane is assumed to be much larger than the size L of the
system in the Z-direction.

To calculate the structure factor of the fluid in this sit-
uation, we use the Boussinesq equations which we supple-
ment with a random current tensor δT(r, t) and a random
heat flow δQ(r, t). This procedure was first employed by
Swift and Hohenberg to study the influence of noise close
to the first convective instability [17]. This has been fur-
ther developed by many authors, but always focusing on
the situation close to the convective instability [18–21].
As mentioned in Section 1, to focus on the finite-size ef-
fects, we consider here the limit of negligible gravity, thus
g → 0. For this particular case, the quiescent state is al-
ways stable. To describe fluctuations around this stable
state we use the linearized Boussinesq equations without
the buoyancy term [16,25]:

∂

∂t
(∇2w) = ν∇2(∇2w) +

1
ρ
{∇× [∇× (∇ · δT)]}z (2a)

∂θ

∂t
= DT ∇2θ −∇T0 w −

DT

λ
∇ · δQ, (2b)

where, in the notation of Chandrasekhar [16], θ(r, t) are
the local fluctuations in the temperature (θ = δT ), and
w(r, t) are the local fluctuations in the Z-component of
the velocity (w = δvz). The symbol ν represents the kine-
matic viscosity and λ the thermal conductivity of the liq-
uid. Note that in the Boussinesq approximation the liquid
is incompressible [16,25], so thatDT can be identified with
the thermal diffusivity λ/(ρ cP ). In writing equation (2)
we have assumed that the thermophysical properties of the
fluid depend weakly on temperature, so that the variation
of these properties along the Z-direction can be neglected.
In practice, this is a very good approximation [26]. Equa-
tion (2a) is obtained by taking a double curl in the veloc-
ity fluctuations equation, so as to eliminate the pressure
gradient [16].
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As in the usual fluctuating hydrodynamics approach,
we have supplemented the linearized Boussinesq equa-
tions with a random current tensor δT(r, t) and a
random heat flow δQ(r, t), to account for the con-
tributions from non-hydrodynamic degrees of freedom
which manifest themselves as rapidly varying short-range
fluctuations [3–6,21,27,28]. The equilibrium correlation
functions between the different components of δT and
δQ are known and were first calculated by Landau and
Lifshitz [27]. Note that in equation (2a) the subscript z
means that the noise term has to be identified with the
Z-component of the vector between curly brackets.

To solve the system of stochastic differential equa-
tions (2) taking into account boundary conditions in z = 0
and z = L we apply Fourier transformations in time and
in the XY plane, and obtain [15]:iω

[
d2

dz2
−q2
‖

]
−ν

[
d2

dz2
−q2
‖

]2

0

∇T0 iω−DT

[
d2

dz2
−q2
‖

]


×
(
w(ω,q‖, z)
θ(ω,q‖, z)

)
=

(
F1(ω,q‖, z)
F2(ω,q‖, z)

)
, (3)

where the vector q‖ is the Fourier wavevector in the XY
plane and q2

‖ = q2
x+q2

y. In equation (3) we have introduced
F1(ω,q‖, z) and F2(ω,q‖, z) as random noise terms which
are related to the Fourier transforms in time and in the
XY plane of the random current tensor δT̂(ω,q‖, z) and
of the random heat flux δQ̂(ω,q‖, z) in such a way that:

see equation (4 ) above.

The Boussinesq approximation assumes that the fluctua-
tions in density are solely caused by temperature fluctu-
ations. Therefore, the relationship between the tempera-
ture autocorrelation function and the dynamic structure
factor, S(ω,q‖, z, z′), is given by [11,15]:

〈θ∗(ω,q‖, z) θ(ω′,q′‖, z
′)〉 =

1
α2ρ2

S(ω,q‖, z, z′) (2π)3 δ(ω − ω′) δ(q‖ − q′‖), (5)

where α is the cubic expansion coefficient of the liquid.
For the calculation of the temperature autocorrelation
function we need the correlation functions between the
different components of δT̂ and δQ̂. In nonequilibrium
fluctuating hydrodynamics it is assumed that, due to the
existence of local equilibrium, these correlation functions

will retain the same form as in equilibrium [3–5]. This as-
sumption has been experimentally verified up to temper-
ature gradients of 200 K cm−1 [26]. Fourier transforming
the expressions for the real-space correlation functions of
the random current tensor δT and the random heat flux
δQ as, for instance, given by equations (3.12) in [4], we
obtain:

〈δQ̂∗i (ω,q‖, z) δQ̂j(ω′,q′‖, z
′)〉 =

2kBT
2λ δij (2π)3 δ(ω − ω′) δ(q‖ − q′‖) δ(z − z′)

〈δQ̂∗i (ω,q‖, z) δT̂kl(ω′,q′‖, z
′)〉 = 0

〈δT̂ ∗ij(ω,q‖, z) δT̂kl(ω′,q′‖, z
′)〉 =

2kBTη (δikδjl+δilδjk) (2π)3 δ(ω−ω′) δ(q‖−q′‖) δ(z−z′)
(6)

where η is the viscosity of the liquid. Note that the equilib-
rium correlation functions are short ranged both in space
and in time, being represented by delta functions. Con-
sequently, the Fourier transforms, given by (6), are also
proportional to delta functions in the frequency ω and in
the parallel wavevector q‖.

3 Solution for two free boundaries

For the sake of completeness, we sketch here the calcula-
tion of the static structure factor for two free boundaries,
as performed in [15]. This review will enable us to intro-
duce some redefinitions which will facilitate a comparison
with the calculation for two rigid boundaries to be per-
formed in Section 4. The boundary conditions considered
in [15] were:

θ(ω,q‖, z) = 0 at z = 0, L
w(ω,q‖, z) = 0 at z = 0, L

d2

dz2
w(ω,q‖, z) = 0 at z = 0, L,

(7)

which corresponds to perfectly conducting walls and
“stress-free” in the velocity. Note that these boundary
conditions imply the absence of any fluctuations in the
temperature and velocity of the fluid adjacent to the walls.
To search for a solution of equation (3) the fluctuations
w(ω,q‖, z) and θ(ω,q‖, z) are represented as a series ex-
pansion in a complete set of eigenfunctions of the dif-
ferential operator in the LHS of equation (3) satisfying
the boundary conditions (7). Due to the simplicity of the
boundary conditions, the appropriate set of eigenfunctions
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is the Fourier sine basis in the [0, L] interval [16]. We thus
consider:(

w(ω, q‖, z)
θ(ω, q‖, z)

)
=
∞∑
N=1

(
AN (ω,q‖)
BN (ω,q‖)

)
sin
(
Nπz

L

)
. (8)

To deduce the coefficients AN (ω, q‖) and BN (ω, q‖)
from equation (3), we need to represent the random noise
terms defined by equation (4) as a Fourier sine series, so
that:(

F1(ω,q‖, z)
F2(ω,q‖, z)

)
=
∞∑
N=1

(
F1,N (ω, q‖)
F2,N (ω, q‖)

)
sin
(
Nπz

L

)
, (9)

where we have introduced the set of random functions
F1,N (ω,q‖) and F2,N (ω,q‖), which are the projections
onto the eigenfunction basis of the random noise terms
F1(ω,q‖, z) and F2(ω,q‖, z). They are given by:(

F1,N (ω, q‖)
F2,N (ω, q‖)

)
=

2
L

∫ L

0

(
F1(ω,q‖, z)
F2(ω,q‖, z)

)
sin
(
Nπz

L

)
dz.

(10)

Representing the random noise terms by equation (9), one
readily deduces from equation (3) expressions for the coef-
ficients of the Fourier series AN (ω, q‖) and BN (ω, q‖). The
detailed expressions for these coefficients may be found
in [15].

Now, to obtain the structure factor S(ω, q‖, z, z′) we
need to evaluate the correlation functions between the
projections of the random noise terms. These are read-
ily obtained from equations (4, 10) and (6). Again the
details of this calculation can be found in [15], we repro-
duce here the results since we shall use them below when
considering “no-slip” boundary conditions:

〈F ∗1,N (ω,q‖)F1,M (ω′,q′‖)〉 =

2kBT
ν

ρ

2
L
q2
‖

(
q2
‖+

N2π2

L2

)2

δNM (2π)3 δ(ω−ω′) δ(q‖−q′‖)

〈F ∗1,N (ω,q‖)F2,M (ω′,q′‖)〉 =

〈F ∗2,N (ω,q‖)F1,M (ω′,q′‖)〉 = 0

〈F ∗2,N (ω,q‖)F2,M (ω′,q′‖)〉 =

2kBT
2λ

ρ2c2P

2
L

(
q2
‖ +

N2π2

L2

)
δNM (2π)3 δ(ω−ω′) δ(q‖−q′‖).

(11)

Note that in this calculation equation (6) is employed,
which means that we have assumed that the correlation
functions of the random current tensor and the random
heat flux retain their local equilibrium values. This as-
sumption remains valid as long as L is a macroscopic dis-
tance, much larger than the molecular distances in the
liquid.

We have now all the information required to obtain
an explicit expression for the dynamic structure factor

of the fluid S(ω, q‖, z, z′), defined by equation (5), as
a double Fourier series [15]. Integration over the fre-
quency ω yields the static structure factor S(q‖, z, z′) =
(2π)−1

∫ +∞
−∞ dωS(ω, q‖, z, z′). The result can be written as:

S(q‖, z, z′) = ρ2κTkBT
γ − 1
γ

×
[
δ(z − z′) +

(cP /T )(∇T0)2

D2
T

S̃NE(q̃‖, z, z′)
]
, (12)

where q̃‖ = q‖L. In equation (12) we have introduced the
quantity S̃NE(q̃‖, z, z′), which is a normalized nonequilib-
rium enhancement given by:

S̃NE(q̃‖, z, z′) =

2L3

P + 1

∞∑
N=1

q̃2
‖

(q̃2
‖ +N2π2)3

sin
(
Nπz

L

)
sin
(
Nπz′

L

)
.

(13)

In deducing (12) we have made use of the thermodynamic
relation: α2DT = [(γ − 1)/γ]λκT /T .

In equilibrium (∇T0 = 0), the structure factor given by
equation (12) does not depend on the size of the system, L.
As in the case of a bulk fluid in equilibrium the structure
factor is short ranged (represented by a delta function).
The fact that the equilibrium structure factor is not af-
fected by the presence of boundaries is well known and
has been already discussed in the literature, see e.g. [18].

The nonequilibrium contribution to the structure fac-
tor is proportional to the square of the temperature gra-
dient (∇T0)2 and includes finite-size effects through the
nonequilibrium contribution S̃NE. The dependence of S̃NE

on the height L was studied in [15], where the sum of
the series in (13) was performed. Note that in our current
definition of S̃NE we have included the factor 1/(P + 1),
which makes it slightly different from the definition em-
ployed in [15]. This redefinition is more convenient for a
comparison with the calculation on the basis of “no-slip”
boundary conditions to be performed in Section 4. As we
shall see, in the approximate calculation with “no-slip”
boundary conditions the dependence on the Prandtl num-
ber cannot be collected as a prefactor in the definition of
the corresponding S̃NE.

Several plots of S̃NE for “stress-free” boundary condi-
tions, as a function of z′ for various values of z and q‖ can
be found in [15], where it is discussed how S̃NE actually
satisfies the boundary conditions (7). In reference [15] it
is also discussed how, although the assumption of short-
range correlations in the random current tensor and the
random heat flux, the nonequilibrium fluctuations in real
space are long-ranged, not involving any intrinsic length
scale and encompassing the entire system.

4 Solution for two rigid boundaries

As in Section 3, we calculate the static structure factor of
the fluid starting from the Fourier-transformed Boussinesq
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equations, equation (3), supplemented with random noise
terms. We continue to assume perfectly conducting walls
but, contrary to Section 3, we adopt here “no-slip” bound-
ary conditions. Thus the set of boundary conditions we
shall consider in this section are:

θ(ω,q‖, z) = 0 at z = 0, L
w(ω,q‖, z) = 0 at z = 0, L

d
dz

w(ω,q‖, z) = 0 at z = 0, L.
(14)

It is worth noting that the boundary conditions (14)
are the more interesting from a experimental point of view,
because they apply when a fluid layer is actually con-
fined between two rigid solid plates [16]. The “stress-free”
boundary conditions, considered in Section 3 represent a
fluid confined between two free surfaces.

For “no-slip” boundary conditions, the method em-
ployed in Section 3 to calculate the static structure factor
exactly is not adequate. The eigenvalues and eigenfunc-
tions of the differential operator in the LHS of (3) satisfy-
ing the new boundary conditions (14) cannot be calculated
explicitly. As discussed in [16], to calculate the eigenvalues
in this case an algebraic equation is obtained which cannot
be solved explicitly. The spectrum of the differential op-
erator continues to be discrete, but the set of eigenvalues
and eigenfunctions can only be calculated numerically. For
this reason in the case of “no-slip” boundary conditions
an explicit calculation of the structure factor can only be
done approximately.

We have found that a very good approximation scheme
is obtained by using a mixed Galerkin method. Thus we
represent the solution for the Z-component of the velocity
fluctuations as an zeroth-order Galerkin polynomial:

w(ω, q‖, z) = w0(ω, q‖)
(
z

L
− z2

L2

)2

, (15)

while we continue to represent the solution of the tem-
perature fluctuations by a Fourier sine series. Note that
the Galerkin polynomial we have chosen in equation (15)
satisfies the required boundary conditions, given by (14).
In the studies of the convective instability, the choice of
the Galerkin polynomial (15) is considered to be optimal,
owing to the variational structure of the underlying prob-
lem [29]. Actually, this Galerkin polynomial has been em-
ployed with excellent results to approximately calculate
the critical Rayleigh number and the critical wavevector
for “no-slip” boundary conditions [29].

As a standard procedure, we evaluate the amplitude
w0(ω, q‖) by imposing the condition that the ansatz (15)
is an exact solution for the velocity equation in the sub-
space generated by the Galerkin polynomial [29]. Substi-
tuting (15) in the velocity equation (3) and projecting
onto the Galerkin polynomial we obtain:

w0(ω, q‖)
∫ L

0

(
z

L
− z

2

L2

)2
[

iω
[

d2

dz2
−q2
‖

]
−ν
[

d2

dz2
−q2
‖

]2
]

×
(
z

L
− z2

L2

)2

dz = G(ω,q‖). (16)

Performing the integration in (16), we get:

w0(ω,q‖) =

−630 L3 G(ω,q‖)
(iω + νq2

‖) q
2
‖L

4 + 12 (iω + 2νq2
‖) L

2 + 504 ν
· (17)

In equation (16) we have introduced

G(ω,q‖) =
∫ L

0

(
z

L
− z2

L2

)2

F1(ω,q‖, z) dz. (18)

which is the projection onto the Galerkin polynomial of
the first Langevin random noise term. We use this approx-
imate solution for w(ω,q‖, z) to calculate the nonequilib-
rium temperature fluctuations. As mentioned above, we
continue to represent the temperature fluctuations by a
Fourier sine series, so that:

θ(ω,q‖, z) =
∞∑
N=1

BN (ω,q‖) sin
(
Nπz

L

)
. (19)

It is worth noting that if we would have used a Galerkin
approximation for the temperature fluctuations, the final
result, equation (25) below, would not have been propor-
tional to a delta function when ∇T0 → 0 and the known
equilibrium structure factor would not have been recov-
ered exactly at this limit.

To calculate the coefficients BN (ω,q‖) for the tem-
perature fluctuations we need to represent the Galerkin
polynomial by a Fourier sine series:(

z

L
− z2

L2

)2

=
∞∑
N=1

WN sin
(
Nπz

L

)
, (20)

where the amplitudes WN are given by:

WN =
4 (N2π2 − 12)

N5π5
(cos(Nπ)− 1). (21)

Note that WN is different from zero only for odd N .
Substituting (15, 19) and (20) into the temperature
fluctuations equation (3), we obtain for the coefficients
BN(ω,q‖):

BN (ω,q‖) =
−WN w0(ω,q‖) ∇T0 + F2,N (ω,q‖)

iω −DT

(
N2π2

L2
+ q2
‖

) · (22)

The random functions F2,N (ω,q‖) are the projection of
F2(ω,q‖, z) onto the sine basis of the [0, L] interval. They
are the same as in the case of “free-slip” boundary condi-
tions and were defined in equation (10).

To obtain the static structure factor of the fluid,
as defined by equation (5), we need the autocorrela-
tion function between the different projections of the
Langevin random noise terms. The autocorrelations
〈F ∗2,N (ω,q‖)F2,M (ω′,q′‖)〉 were previously calculated in
Section 3 and were presented in equation (11). The cross-
correlations 〈G∗(ω,q‖)F2,N (ω′,q′‖)〉 are zero, because the
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random current tensor and the random heat flux are un-
correlated (6). We now proceed to calculate the autocorre-
lation function of the projection onto the Galerkin polyno-
mial of the first random noise term, 〈G∗(ω,q‖)G(ω′,q′‖)〉.

Using the definition of G(ω,q‖), given by equa-
tion (18), the definition of F1(ω,q‖, z) as a function of
the Fourier transformed random current tensor, given by
equation (4), and the equilibrium correlations between
the different components of δT̂(ω,q‖, z), given by equa-
tion (6), we obtain:

〈G∗(ω,q‖) ·G(ω′,q′‖)〉 = 2kBT
ν

ρ
q2
‖ (2π)3

× δ(ω−ω′) δ(q‖−q′‖)
∫ L

0

∫ L

0

(
z

L
− z2

L2

)2(
z′

L
− z′2

L2

)2

×
[
q4
‖ + q2

‖

(
d2

dz2
+

d2

dz′2
+ 4

d
dz

d
dz′

)
+

d2

dz2

d2

dz′2

]
× δ(z − z′) dz dz′. (23)

Now we integrate by parts the different terms of equa-
tion (23), to move the differential operator inside the dou-
ble integral from the delta function to the Galerkin poly-
nomials preceding it. Note that since in all cases an even
number of integrations are required, there will not be any
change of sign in the process. With this procedure, the
integration yields:

〈G∗(ω,q‖) ·G(ω′,q′‖)〉 = 2kBT
ν

ρ
q2
‖
q4
‖L

4 + 24 q2
‖L

2 + 504

630L3

× (2π)3 δ(ω − ω′) δ(q‖ − q′‖), (24)

which is the autocorrelation function we were trying to cal-
culate. Now we have all the required information to obtain
the dynamic structure factor of the fluid, S(ω,q‖, z, z′).
As before, integration over the frequency ω gives the static
structure factor. We find just as for “stress-free” boundary
conditions, that the static structure factor can be written
as:

S(q‖, z, z′) = ρ2κTkBT
γ − 1
γ

×
[
δ(z − z′) +

(cP /T )(∇T0)2

D2
T

S̃NE(q̃‖, z, z′)
]
, (25)

where again q̃‖ = q‖L. Note that equation (25) for “no-
slip” boundary conditions is exactly the same as equa-
tion (12) for “stress-free” boundary conditions. But in the
“no-slip” case the expression for the normalized nonequi-
librium enhancement, S̃NE(q̃‖, z, z′), is more complicated,
being:

S̃NE(q̃‖, z, z′) = L3
630 q̃2

‖
q̃2
‖ + 12

×
∞∑
N=1

∞∑
M=1

{
1

N2π2 + Ã(P, q̃‖)
+

1
M2π2 + Ã(P, q̃‖)

}

× WMWN

(N2 +M2)π2 + 2q̃2
‖

sin
(
Nπz

L

)
sin
(
Mπz′

L

)
, (26)

where we have introduced a dimensionless function
Ã(P, q̃‖), defined by:

Ã(P, q̃‖) = q̃2
‖ + P

(q̃2
‖ + 12)2 + 360

(q̃2
‖ + 12)

· (27)

This new parameter Ã arises from the integration in the
frequencies ω included in the calculation. It is worth
mentioning that, in the zeroth-order Galerkin approxima-
tion we have used, S̃NE depends on the Prandtl number
through Ã(P, q‖L). Thus, contrary to the case of “stress-
free” boundary conditions, the dependence on P can no
longer be collected as a prefactor in the definition of S̃NE.
On the other hand, we note that due to the cylindrical
symmetry of the problem the result depends only on the
magnitude q‖ of the vector q‖.

In equilibrium (∇T0 = 0) we obtain from equa-
tion (25) the same result obtained previously in Section 3
for “stress-free” boundary conditions which is the well
known short-range correlation function for a fluid in equi-
librium [4], SE = ρ2κTkBT [(γ − 1)/γ]. Again the equilib-
rium structure factor is not affected by the presence of
boundaries. However, contrary to the case of “stress-free”
boundary conditions, the double Fourier series represent-
ing S̃NE for “no-slip” boundary conditions, equation (26),
contains cross terms and the sum cannot be performed
explicitly.

To compare our results for two rigid boundaries with
those obtained for two free boundaries, we have plotted
in Figure 1, as a dashed line, the exact L−3S̃NE(q‖, z, z′)
for two free boundaries, given by equation (13). We have
also plotted in Figure 1, as a solid line, the zeroth-
order Galerkin approximation to L−3S̃NE(q‖, z, z′) for two
rigid boundaries, given by equation (26). In both cases
L−3S̃NE(q‖, z, z′) is plotted as a function of z′/L, for
z = L/2, q‖ = 22/L, and for the case that P = 8, which is
close to the value corresponding to pure toluene at 25 ◦C.

Figure 1 shows that, in both cases, L−3S̃NE(q‖, z, z′)
is a function peaked at z = z′ and, as a consequence of
the perfectly conducting walls assumption, it goes to zero
at both ends of the [0, L] interval. Comparing the two
plots in Figure 1 we observe that, for the same value of
q‖, the peak at z = z′ is broader and lower in the case
of two rigid boundaries. It is difficult to conclude whether
this behavior is a consequence of the Galerkin approxima-
tion used for “no-slip” boundary conditions. Anyway this
difference is congruent with the well known fact that “no-
slip” boundary conditions are more stabilizing: the critical
Rayleigh number and the critical wavevector are larger for
“no-slip” than for “stress-free” boundary conditions.

5 Consequences for light-scattering
experiments

The quantity that is actually measured in a light-
scattering experiment is the intensity of the scat-
tered light as a function of the scattering angle. We
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Fig. 1. Normalized nonequilibrium enhancement L−3S̃NE(q‖, z, z
′) of the static structure factor as a function of z′/L for

z/L = L/2 and q‖ = 22/L. The solid line is for two rigid boundaries while the dashed line is for two free boundaries. In both
cases the Prandtl number is P = 8.

are considering here low-angle light-scattering experi-
ments like the ones performed by Sengers and cowork-
ers at Maryland [8–10,26] or by Vailati and Giglio at
Milan [13,14]. An schematic representation of such exper-
iments is shown in Figure 2. The scattering medium is a
thin horizontal fluid layer bounded by two parallel plates
whose temperatures can be controlled independently so as
to establish a temperature gradient across the fluid layer.
The boundary plates are furnished with windows allowing
laser light to propagate through the fluid in the direction
(anti)parallel to the temperature gradient. Light scattered
over an angle φ arises from fluctuations with wave number
such that:

q = 2 q0 sin(φ/2), (28)

where q0 is the wave number of the incident light inside
the scattering medium. To observe the nonequilibrium en-
hancement in the scattered intensity one needs to measure
the intensity of the scattered light at small wave numbers
and, hence, at very small scattering angles.

From electromagnetic theory it follows that the scat-
tering intensity S(q) is obtained from an integration of the
structure factor over the scattering volume, so that [4,15]:

S(q‖, q⊥) =
1
L

∫ L

0

∫ L

0

e−iq⊥(z−z′)S(q‖, z, z′) dzdz′. (29)

In (29) we have assumed that the scattering volume ex-
tends over the full height of the fluid layer, as is the case
in small-angle light-scattering from very thin fluid layers.
In this situation scattered light received in the collecting
pinhole of the detector indeed originates from all points
illuminated by the laser beam inside the fluid layer. Note
that the experimental arrangement we are considering has
cylindrical symmetry so the scattered-light intensity will
only depend on the magnitudes q‖ and q⊥ of the scatter-
ing wavevector q. In addition, in an actual light-scattering

f

f /2

q = qi - qs

q||

q
^

Incident

light

Detector

Temperature

gradient

qi

qs

q

Fig. 2. Schematic representation of a typical experimental
arrangement employed in low-angle light-scattering experi-
ments.

experiment, q‖ and q⊥ are not independent variables, be-
cause they are related by the geometry of the experiment,
represented in Figure 2, and by the Bragg condition (28),
see also [15].

The goal of the present section is to compare the scat-
tering light intensity S(q‖, q⊥) obtained for free bound-
aries and for rigid boundaries. In the case of two free
boundaries S(q‖, q⊥) can be calculated by substituting
equations (12) and (13) in equation (29) and by perform-
ing the summation in equation (13) and the integration in
equation (29). This calculation can be done exactly, the re-
sult being a complicated function of q‖ and q⊥ [15]. In the
case of two rigid boundaries, S(q‖, q⊥) can be calculated
by substituting equations (25) and (26) in equation (29)
and by performing the integration in equation (29). In this
case the summation in (26) cannot be performed explicitly.
Nevertheless, due to the similar structure of equation (12)
for free boundaries and equation (25) for rigid boundaries,
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in both cases the scattered light intensity can be separated
into an equilibrium contribution SE and a nonequilibrium
enhancement, S̃NE(q‖, q⊥), such that:

S(q‖, q⊥) = SE

[
1 +

(cP /T )(∇T0)2

D2
T

S̃NE(q‖, q⊥)
]
. (30)

The equilibrium contribution is the result obtained when
∇ T0 = 0, which in both cases is isotropic (independent
of the wavevector q) and is expressed as:

SE = ρ2κTkBT
γ − 1
γ
· (31)

Equation (31) is the traditional formula for the equilib-
rium isotropic Rayleigh-scattering intensity [7]. Hence the
boundary conditions (“stress-free” or “no-slip”) do not af-
fect the Rayleigh scattering from a liquid in thermal equi-
librium. This result remains valid as long as the height
of the liquid layer L is large enough so that the corre-
lation functions for the random noise terms retain their
equilibrium values given by equation (6).

The calculation of the nonequilibrium enhancement for
“stress-free” boundary conditions performed in [15] can be
substantially simplified if we assume that the scattering
angles are so small that q‖ ' q and q⊥ ' 0. In such a case
the nonequilibrium enhancement is readily expressed as a
function of only the magnitude of the wavevector q. It is
interesting to note that nonequilibrium fluctuations have
been also observed by the shadowgraph technique [30,31].
The quantity actually measured in these experiments is
S(q‖ = q, q⊥ = 0), where q is the magnitude of a two
dimensional Fourier vector in the imaging plane of the
shadowgraph [32]. Consequently the case q‖ = q and q⊥ =
0 is the most interesting from an experimental point of
view. For “stress-free” boundary conditions, substituting
equation (13) into equation (29) we have earlier obtained
for this particular case [15]:

S̃NE(q̃) =
L4

(P + 1) q̃4

×
{

1 +
q̃2[cosh(q̃)− 1] + sinh(q̃)[7q̃ − 15 sinh(q̃)]

4q̃ sinh(q̃)[cosh(q̃) + 1]

}
,

(32)

where q̃ = qL. For nonequilibrium light-scattering, equa-
tion (32) is valid up to order sin2(φ/2) in terms of the
scattering angle φ. In actual experiments the angles are
so small that equation (32) is an excellent approximation
indeed [15].

In the case of “no-slip” boundary conditions, substi-
tuting equation (26) into equation (29) and performing
the integration, we obtain:

S̃NE(q̃) =
5040 L2q̃2

π2 (q̃2 + 12)

×
∞∑
N=1

∞∑
M=1

1
N2π2 + Ã(P, q̃)

× 1
(N2 +M2)π2 + 2q̃2

WNWM

N M
, (33)

where the function Ã(P, q̃‖) was defined by equation (26).
As before, we have not been able to sum the series in
equation (33), and we cannot obtain a more compact ex-
pression.

It is interesting to study the nonequilibrium enhance-
ment in the limits q̃ → 0 and q̃ →∞. The case of “stress-
free” boundary conditions was already considered in ref-
erence [15]. From equation (32) it can be readily shown
that:

S̃NE(q̃)
q̃→0−−−→ 17

20160
L4

P + 1
q̃2, (34)

and

S̃NE(q̃)
q̃→∞−−−→ L4

P + 1
1
q̃4
· (35)

The case of “no-slip” boundary conditions is consid-
ered for the first time in the present paper. From equa-
tion (33) we obtain the asymptotic behaviors:

S̃NE(q̃)
q̃→0−−−→ 420 L4

π4
F̃ (P ) q̃2, (36)

and

S̃NE(q̃)
q̃→∞−−−→ 7

10
L4

P + 1
1
q̃4
, (37)

where in equation (36) we have introduced the dimension-
less function F̃ (P ) of the Prandtl number P , given by:

F̃ (P ) =
∞∑
N=1

∞∑
M=1

WNWM

(N2 +M2)(N2π2 + 42P )NM
·

From equations (34–37) we conclude that for the case
of “stress-free” and for the case of “no-slip” boundary
conditions we have the same qualitative behavior. The
typical q−4 divergence in the nonequilibrium enhance-
ment of the structure factor crosses over to a q2 depen-
dence for extremely small q values as a consequence of
the finite-size of the system. In the case of “stress-free”
boundary conditions, in the limit q → ∞ we recover
the “bulk” result, obtained when no boundary conditions
are taken into account, as is evident from a compari-
son of equations (30) and (35) with equation (1). Note
that large values of q correspond to fluctuations with a
very short length scale, for which finite-size effects are
expected to be of no influence. For the case of “no-slip”
boundary conditions we recover the expected “bulk” result
only qualitatively, but quantitatively we are 30% short.
This shortcoming is a consequence of the fact that for
“no-slip” boundary conditions our calculation is only ap-
proximate. If higher-order terms in the Galerkin approx-
imation are considered we shall gradually approach the
correct result. Indeed, we have performed a first-order
Galerkin calculation and we have found that when first-
order corrections are included, the numerical prefactor
in equation (37) increases from 0.7 to 0.857, thus ap-
proaching the “bulk” solution as expected. We are not
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Fig. 3. Double-log plot of the normalized nonequilibrium enhancement S̃NE(q) of the static structure factor as a function of the
scattering wavevector q. The solid line is the approximate result for two rigid boundaries, the dashed line is the exact result for
two free boundaries, and the dotted line represents the exact “bulk” result, with no boundary conditions taken into account.
For the three cases, P = 8. For the two finite-size cases, L = 0.1 cm.

giving the details of this calculation here, but just men-
tion that the first-order Galerkin approximation we used
was: (z/L− z2/L2)2 [w0(ω, q‖) + w1(ω, q‖) (1/2− z/L)].

To compare the results with free and with rigid bound-
aries we have plotted in Figure 3, as a dashed line, the ex-
act S̃NE(q) for “stress-free” boundary conditions given by
equation (32). We have also plotted in Figure 3, as a solid
line, the first-order Galerkin approximation to S̃NE(q) for
“no-slip” boundary conditions given by equation (33). For
completeness we have also plotted in Figure 3, as a dotted
line, the “bulk” result, given by (35), which is obtained
without taking into account boundary conditions. In the
three cases the scattering angles are assumed to be small,
thus q‖ ' q and q⊥ ' 0. A double logarithmic scale is
used. For the Prandtl number we have adopted the value
P = 8, which is close to the value for pure toluene at
25 ◦C. For the “stress-free” and for the “no-slip” cases we
took L = 0.1 cm, which is a typical height of fluid layers
in nonequilibrium Rayleigh-scattering experiments.

A simple inspection of Figure 3 confirms that finite-
size effects cause the q−4 divergence to cross over to a
q2 dependence for extremely small wavevectors q, as im-
plied by the equations discussed earlier. There appears a
maximum separating both behaviors, indicating that the
enhancement of the fluctuations is largest for a partic-
ular wavevector qmax. The wavevector corresponding to
the maximum intensity is of the order of the inverse of
the height of the cell qmax ' 1/L. Numerically we find
that, for two free boundaries the maximum appears at
qmax = 2.222/L, while for two rigid boundaries the po-
sition of the maximum depends on the Prandtl number.
For P = 8, which is the value employed in Figure 3, we
found qmax = 3.032/L. It is worth remembering that the

calculation performed in the latter case is only a zeroth-
order approximation. If higher-order terms are accounted
for, qmax will shift. In any case, the length scale corre-
sponding to qmax is macroscopic.

From Figure 3 one can also see that the “stress-free”
curve has the correct asymptotic behavior for large q be-
cause it approaches the “bulk” solution, whereas the “no-
slip” curve remains a bit below. As discussed before, this
is a consequence of the fact that the “no-slip” curve shown
in Figure 3 is only the zeroth-order Galerkin approxima-
tion.

Another feature that can be observed in Figure 3 is
that the maximum for the “no-slip” curve is lower and
displaced to higher wavevectors, when compared with the
maximum for the “stress-free” curve. This result is con-
sistent with the well-known fact that “no-slip” boundary
conditions are more stabilizing: the convective instability
appears at larger Rayleigh numbers and larger wavevec-
tors [16]. Again, and as at the end of Section 4, it is
difficult to conclude whether this effect is real or is an
artifact resulting from the approximation in the calcula-
tion for “no-slip” boundary conditions. As already men-
tioned, we performed a first-order Galerkin approxima-
tion. It turns out that the effect of first-order terms on
the position and the height of the maximum is very small
and the qmax and the height of the maximum for the “no-
slip” curve continue to be larger when compared with the
“stress-free” curve.

Since we neglect the buoyancy term in the Boussinesq
equations, gravity effects have not been taken into ac-
count in the present work. If they would be included, we
expect that for positive Rayleigh number, as the convec-
tive instability is approached, the maximum in S(q) will
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become larger and larger. Fluctuations with q ' 1/L are
expected to be more and more enhanced. At the criti-
cal Rayleigh number the value of S(q) at qmax should di-
verge as (Rc−R)−1, as is discussed in various publications
studying the influence of thermal noise close to the con-
vective instability [17–21]. This divergence has been ob-
served experimentally by the shadowgraph technique [30].
For negative Rayleigh numbers, as mentioned in the Intro-
duction, gravity has a damping effect on nonequilibrium
fluctuations making the q−4 divergence of S̃NE to reach
a constant limit when q → 0 [11,13]. The gravitationally
induced saturation of the q−4 divergence occurs at a “roll-
off” wave number qRO such that [11,13]:

qRO =
(
gα∇T0

νDT

)1/4

(38)

where g is the gravitational acceleration constant. For pure
toluene subjected to a temperature gradient ∇T0 = 100
K cm−1 we find qRO = 70 cm−1 [8,11]. From Figure 3 we
note that at this wave number deviations from the q−4

behavior due to finite-size effects are substantial. Thus we
conclude that, at least in one-component liquids, finite-
size effects may be equally important as deviations from
the q−4 behavior due to gravity.

6 Conclusions

In this paper we have calculated the static structure factor
of a fluid from the linearized random Boussinesq equations
using the realistic “no-slip” boundary conditions and ne-
glecting gravity effects. The calculation was performed by
using a zeroth-order Galerkin approximation for the solu-
tion of the fluctuating velocity equation. The consequences
for low-angle light-scattering experiments have been elu-
cidated.

The result obtained here for two rigid boundaries has
qualitatively the same behavior as that from an exact cal-
culation performed earlier for two free boundaries [15].
The typical q−4 divergence of the nonequilibrium struc-
ture factor crosses over to a q2 dependence for extremely
small scattering angles. Separating both behaviors there
is a maximum in the scattered intensity, indicating that
fluctuations with a particular wavevector, qmax, are maxi-
mally enhanced. The value of qmax depends on the bound-
ary conditions considered, but in any case, it is of the order
of the inverse of the height of the fluid layer qmax ' 1/L.
This fact indicates that, even below the conductive in-
stability, fluctuating structures do appear in the system.
Above the convective threshold these fluctuating struc-
tures will develop convection rolls.

Our present work shows how the nonequilibrium condi-
tions combined with the finite-size of the system cause the
selection of a particular length scale in the system, thus
giving a nonequilibrium finite-size system the ability to
develop spatially extended patterns. While patterns can
be macroscopically visualized only above the convective
threshold, they could be investigated, below the convective
threshold, by ultra-low-angle light-scattering experiments.

We are indebted to M. Rub́ı and A.L. Garcia for sugges-
tions and comments. We particularly acknowledge J.V. Sen-
gers for constant encouragement and careful reviewing of our
manuscript, without his invaluable help, this work would not
have been completed.
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