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Abstract. We have employed a simple Galerkin-approximation scheme to calculate nonequilibrium tem-
perature and concentration fluctuations in a binary fluid subjected to a temperature gradient with realistic
boundary conditions. When a fluid mixture is driven outside thermal equilibrium, there are two instabil-
ity mechanisms, namely a Rayleigh (stationary) and a Hopf (oscillatory) instability, causing long-ranged
fluctuations. The competition of these two mechanisms causes the structure factor associated with the
temperature fluctuations to exhibit two maxima as a function of the wave number q of the fluctuations,
in particular, close to the convective instability. In the presence of thermally conducting but imperme-
able walls the intensity of the temperature fluctuations vanishes as q goes to zero, while the intensity
of the concentration fluctuations remains finite in the limit of vanishing q. Finally, we propose a sim-
pler small-Lewis-number approximation scheme, which is useful to represent nonequilibrium concentration
fluctuations for mixtures with positive separation ratio, even close to (but below) the convective instability.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 47.20.Bp
Buoyancy-driven instability – 47.54.+r Pattern selection; pattern formation – 78.35.+c Brillouin and
Rayleigh scattering; other light scattering

1 Introduction

This paper is concerned with the enhancement of fluctua-
tions in a binary liquid mixture that is outside equilibrium
because of the presence of a (moderate) temperature gra-
dient, but that is still in a quiescent conductive state below
the convective instability. In principle, the wave number
dependence of the nonequilibrium structure factor can be
determined experimentally with light scattering or shad-
owgraph techniques [1]. The shadowgraph technique has
the advantage, compared to light scattering, of being able
to access the very small wave numbers needed to study
fluctuations close to convective instabilities. However, to
visualize the thermal fluctuations with the shadowgraph
method, one needs to perform the experiments with a
fluid in which the thermal noise is already large in equi-
librium. For one-component fluids, this goal has been ac-
complished by performing shadowgraph experiments in a
supercritical fluid not far from its critical point [2]. How-
ever, for a fluid in the critical region, a detailed interpreta-
tion of the experiments is complicated by the presence of
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non-Boussinesq effects. This problem can be avoided for
binary fluids, where the thermal nonequilibrium fluctua-
tions are dominated by strong Soret-driven concentration
fluctuations [3,4], so that shadowgraph experiments can
be performed in fluid mixtures far away from any criti-
cal point [5], where a simple Boussinesq approximation is
adequate.

For the interpretation of such experiments, a theoreti-
cal investigation of nonequilibrium fluctuations in a binary
mixture is required. Hence, we have extended our previous
work for one-component fluids [6], and developed a quan-
titative theory for the nonequilibrium structure factor of
binary fluid mixtures below the onset of Rayleigh-Bénard
convection using linearized fluctuating hydrodynamics in
the Boussinesq approximation. As some previous investi-
gators [7], we take into account buoyancy, but the main
innovation of the present paper is that we also consider
boundary conditions, which are expected to become im-
portant when the wavelength of the fluctuations becomes
of the order of the size of the system. In a previous pub-
lication [8], we considered the unrealistic case of two free
and permeable walls. In the present paper, we consider
more realistic boundary conditions. To incorporate such
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realistic boundary conditions in the derivation of the
nonequilibrium structure factor, we shall use a Galerkin
approximation, as was done previously for the case of a
one-component fluid [6]. Specifically, we adopt the same
set of Galerkin test functions previously used by Lhost et
al. [9] to describe the convection threshold in binary mix-
tures, for both positive and negative separation ratios.

First, we shall recover the well-known [10] q−4 propor-
tionality of the nonequilibrium structure factor for large
values of the magnitude q of the wave vector q of the fluc-
tuations. Furthermore, we shall show that, close to the
instability, there exists at least one maximum in the ampli-
tude of nonequilibrium fluctuations, indicating that they
are maximally enhanced at a particular value of the wave
number q. As the critical value of the Rayleigh number
is approached (Ra → Rac), this maximum enhancement
continues to increase, diverging eventually. This is pre-
cisely the cause for convective patterns to spontaneously
appear above Ra = Rac, the convection threshold. Very
close to the instability nonlinear effects are expected to
saturate the amplitude of the nonequilibrium fluctuations
and break the rotational symmetry in the wave vector q;
however, a nonlinear theory of fluctuations is outside the
scope of our present treatment.

Unfortunately, in the nonequilibrium thermodynamics
of mixtures there does not exist a universally agreed upon
nomenclature and sign convention for some of the thermo-
physical properties appearing in the theory. In this paper
we closely follow the recommendations made in the book
edited by Köhler and Wiegand [11].

We have organized our material as follows. First, in
Section 2 we present the linearized stochastic Boussinesq
equations for a binary mixture as the starting point of our
analysis. Next, in Section 3, we introduce the Galerkin ap-
proximation adopted for solving the stochastic Boussinesq
equations with realistic boundary conditions for both tem-
perature and concentration fluctuations. In Section 4 we
then elucidate the procedure for deriving the structure fac-
tors that can be probed experimentally by shadowgraphy
or small-angle light scattering. Before presenting our ac-
tual results, we consider first in Section 5 the particular
case of the Boussinesq equations in thermal equilibrium.
Since the exact expressions for the structure factor of a
binary fluid in thermal equilibrium are well known, the
thermal-equilibrium case will provide a test of the quality
of the Galerkin-approximation procedure adopted. Next,
in Section 6, we present the main results of our investiga-
tion: nonequilibrium temperature and concentration fluc-
tuations are discussed and explicit analytical expressions
presented. In Section 7 we develop a simple and useful
expression for the nonequilibrium concentration fluctua-
tions, taking advantage of the fact that, for common mix-
tures, the Lewis number is small. Our findings are sum-
marized in Section 8.

2 Stochastic Boussinesq equations for a

binary mixture

The problem of a fluid placed between two horizontal (per-
pendicular to gravity) plates and subjected to a stationary
temperature gradient, ∇T0, is usually referred to as the
Rayleigh-Bénard (RB) problem. In the case of a binary
mixture, for moderate values of the temperature gradient,
a stationary concentration gradient ∇c0 develops in the
fluid, due to the Soret effect. The relationship between
the stationary concentration and temperature gradients is

∇c0 = −c̄0(1− c̄0)ST ∇T0, (1)

where c̄0 is the average stationary concentration through
the layer (expressed as mass fraction of component 1 of
the mixture), and ST is the Soret coefficient of compo-
nent 1 in component 2. For isotropic mixtures ST is a
scalar quantity and the concentration gradient is paral-
lel (or antiparallel for ST < 0) to the imposed tempera-
ture gradient. Both the temperature and the concentra-
tion gradients contribute to the density gradient through
the thermal and solutal expansion coefficients, α and β,
respectively:

α = −1

ρ

(

∂ρ

∂T

)

c,p

, β =
1

ρ

(

∂ρ

∂c

)

T,p

, (2)

where ρ is the density and p the pressure, so that ρ =
ρ(p, T, c) is the equation of state of the mixture. Notice
that β is positive when component 1 (the one chosen to
define concentration) is the heavier component, while β
is negative when component 1 is the lighter component
of the mixture. With the definition (2), α is usually posi-
tive. The ratio between the contribution β∇c0 of the con-
centration gradient and the contribution −α∇T0 of the
temperature gradient to the density gradient is called the
separation ration ψ. From equation (1) it follows that ψ
may be expressed as

ψ = c̄0(1− c̄0)ST
β

α
. (3)

It is worth noting that the sign of ψ is independent of
whether component 1 is chosen to be the heavier or the
lighter component of the mixture [12].

Equation (1) implies that both concentration and tem-
perature gradients are stationary in space and in time;
thus it refers to the so-called “conductive” solution of the
RB problem. As is well known, the conductive solution is
only stable for certain (moderate) values of the imposed
temperature gradient, depending on its sign and the sign
of the separation ratio. This is not the place to enter into a
detailed discussion of the stability of the conductive solu-
tion in the RB problem for a binary mixture. We refer the
interested reader to pertinent reviews [13–15]. However,
some comments on the linear instability shall be needed
at the end of Section 4. In this paper we shall be concerned
with thermal fluctuations around the conductive solution.
Hence, from here on, we shall assume that we are inside
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the stability region of the solution (1) of the binary RB
problem.

To describe fluctuations around the conductive so-
lution we adopt, as usual, the Boussinesq approxima-
tion [16]. Additionally, we need to add to the thermody-
namic dissipative fluxes a stochastic part, that accounts
for the effects of the thermal noise. Consequently, we adopt
as starting point of our analysis the (linearized) Boussi-
nesq equations for a binary mixture, supplemented with
random thermal-noise terms, which read [12]

∂

∂t

(

∇2w
)

= ν ∇2
(

∇2w
)

+ g

(

∂2

∂x2
+
∂2

∂y2

)

[α θ − β Γ ]

+
1

ρ
{∇ × [∇× (∇ · δΠ)]}z , (4a)

∂θ

∂t
= a ∇2θ − w ∇T0 −

a

λ
∇(δQ), (4b)

∂Γ

∂t
= D

[

∇2Γ +
α

β
ψ∇2θ

]

−w∇c0 +
∇(δJ)
ρ

. (4c)

Here, w(r, t) is the fluctuation in the velocity compo-
nent parallel to the gravity at position r and time t:
w(r, t) = δuz(r, t), θ(r, t) = δT (r, t) is the fluctuation of
the local temperature from the average temperature T0(r),
and Γ (r, t) = δc(r, t) is the fluctuation of the local con-
centration around the average concentration c0(r). The
symbol a represents the thermal diffusivity (also called
thermometric coefficient) of the mixture, ν its kinematic
viscosity, λ its thermal conductivity, D its mutual diffu-
sion coefficient, and ρ the (average) fluid density through
the layer. The symbol g represents the gravitational ac-
celeration constant. In general for a binary mixture there
are three dissipative fluxes, so the thermal noise has three
components which are represented in equations (4) by
δQ(r, t) for the random heat flux, by δΠ(r, t) for the ran-
dom (deviatoric) stress tensor and by δJ(r, t) for the ran-
dom diffusion flux. Equations (4) represent the linearized
Boussinesq equations for the fluctuating fields, since we
are considering here only the case where the conductive
solution is stable, so that fluctuations around it are ex-
pected to be small. In equation (4a) the random noise has
to be identified with the Z-component of the vector be-
tween curly brackets. In this same equation (4a), by taking
a double rotational and using the incompressibility con-
dition, we show that pressure fluctuations do not couple
with temperature or concentration fluctuations, or with
∇T0, so that they may be neglected for the purpose of the
present paper.

The average over fluctuations of the random dissipa-
tive fluxes is zero: 〈δQ(r, t)〉 = 〈δΠ(r, t)〉 = 〈δJ(r, t)〉 = 0;
consequently the “conductive” state with w = θ = Γ = 0
is a solution of the Boussinesq equations (4), when aver-
aged over fluctuations. However, the correlation functions
associated with temperature and/or concentration fluctu-
ations, whose calculation is our goal here, are generically
not zero. To calculate such quantities, we need expres-
sions for the correlation functions among the components
of the random dissipative fluxes. In applying fluctuating
hydrodynamics to nonequilibrium steady states it is usu-

ally assumed that, due to the existence of local equilib-
rium, the correlation functions among the various com-
ponents of the random dissipative fluxes are given by the
same fluctuation-dissipation theorem (FDT) that yields
these correlation functions in equilibrium, but where the
various thermophysical properties have to be evaluated lo-
cally [17,18]. For the random stress tensor, the FDT states

〈δΠij(r, t) · δΠkl(r
′, t′)〉 =

2kBTη (δikδjl + δilδjk) δ(r− r′) δ(t− t′), (5)

where kB is Boltzmann’s constant and η the shear vis-
cosity of the liquid. In equation (5), the incompressibil-
ity assumption (implicit in the Boussinesq approximation)
was used to slightly simplify the more general expression
found, for instance, in [19]. As commented before, the
product Tη, appearing as a prefactor in equation (5), has
to be evaluated locally, so that in our case it will depend on
the vertical position z. Thus, the random stress tensor in a
nonequilibrium steady state will be, in principle, inhomo-
geneously correlated, although continuing to be spatially
short ranged. As studied by several authors [20,21], inho-
mogeneously correlated short-ranged noise causes the fluc-
tuations of the thermodynamic fields (temperature, con-
centration, . . . ) to become spatially long ranged. However,
as we have discussed in a previous publication [22], when
couplings between the fluctuating fields are present (as
is the case here), the long-ranged effects resulting from
the inhomogeneously correlated thermal noise are com-
pletely negligible compared with the long-ranged effects
caused by the hydrodynamic couplings. Hence, we may
identify all thermophysical properties in the noise correla-
tion functions with their average value at the center of the
fluid layer. Therefore, from here on, we shall identify the
temperature T in the thermal-noise correlation functions
with the average local temperature T̄0 at the center of
the layer, and similarly the concentration c with c̄0. These
assumptions are also consistent with the Boussinesq ap-
proximation.

In a binary mixture, the random heat and diffusion
fluxes are coupled such that [10,23,24]:

〈δQi(r, t) · δQj(r
′, t′)〉 =

2kBT
2

{

λ+
ρDk2

T

T

(

∂µ

∂c

)}

δij δ(r− r′) δ(t− t′),

〈δQi(r, t) · δJj(r′, t′)〉=2kBTρDkT δij δ(r− r′) δ(t− t′),
〈δJi(r, t) · δJj(r′, t′)〉 =

2kBTρD

(

∂µ

∂c

)−1

δij δ(r− r′) δ(t− t′),
(6)

where, as noted before, all thermophysical properties ap-
pearing as prefactors will be evaluated at the center of
the layer: i.e., T = T̄0. In equation (6), µ represents the
difference between the chemical potential of component 1
and the chemical potential of component 2 (both chemical
potentials are taken per unit mass, so that the SI unit for
µ is J kg−1). Of course, the concentration derivative of µ
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H(ω, q) =









iω(q2 − ∂2
z ) + ν(q2 − ∂2

z )
2 −αgq2(1 + ψ) gq2

∇T0 iω + a(q2 − ∂2
z ) 0

−αψ ∇T0 −αψ iω iω +D(q2 − ∂2
z )









(11)

is also to be evaluated at the center of the layer. Addition-
ally, when applying equations (5) and (6), we shall neglect
the Dufour effect (kT = 0), so that the cross-correlation
between random dissipative heat and diffusion flows will
be neglected here [24]. This is a good approximation for
liquids, while for gases the Dufour effect should not be
neglected [24].

To complete the working equations for this paper, we
consider next the boundary conditions. The physically re-
alistic boundary conditions for our problem are rigid and
impermeable walls [9,14,24]:

w = ∂zw = θ = ∂z(βΓ + ψαθ) = 0, at z = ± 1
2L. (7)

The last condition ensures that the solute flux vanishes at
the walls, including the solute transport due to the Soret
effect. When comparing with the work of some previous
investigators [9,24], one should recall that we use here the
definition (3) of the separation ratio ψ recommended in
the book edited by Köhler and Wiegand [11].

In view of the last of the boundary conditions (7), it is
convenient to use, instead of Γ , the dimensionless variable
ζ = βΓ + ψαθ, so that the stochastic binary Boussinesq
equations now read

∂

∂t

(

∇2w
)

= ν∇2
(

∇2w
)

+g
(

∂2
x + ∂2

y

)

[(1 + ψ)αθ − ζ] + F1, (8a)

∂θ

∂t
= a∇2θ − w ∇T0 + F2, (8b)

∂ζ

∂t
= D∇2ζ + αψ

∂θ

∂t
+ w αψ∇T0 + F3, (8c)

where, to shorten the notation, we have introduced spa-
tiotemporal Langevin random-noise terms as

F1(r, t) = −
1

ρ
{∇ × [∇× (∇ · δΠ(r, t))]}z ,

F2(r, t) = −
a

λ
∇δQ(r, t), F3(r, t) =

β

ρ
∇δJ(r, T ).

(9)

The correlation functions between these three random-
noise terms may be deduced from theFDT, equations (5-6),
and will be discussed later.

3 Galerkin approximation for the calculation

of the fluctuating fields

To solve the set of equations (8) for the fluctuating fields
while accommodating the boundary conditions in the Z-
direction, as usual [6,17,25], we apply a Fourier transform

in time and in the horizontal XY -plane, reducing equa-
tions (8) to

H(ω, q) ·





w(z, ω,q)
θ(z, ω,q)
ζ(z, ω,q)



 =





F1(z, ω,q)
F2(z, ω,q)
F3(z, ω,q)



 , (10)

where H(ω, q) is a (linear) hydrodynamic operator

see equation (11) above.

In equations (10) and (11), ω and q are the Fourier
variables, representing the frequency and the (horizontal)
wave vector of the fluctuations, respectively. In some pre-
vious publications [6,25,26] we used the notation q‖, to
emphasize that q is a two-dimensional vector in the hor-
izontal plane. In this paper we do not use this notation,
since all vectors appearing in the present paper will be in
the horizontal plane.

In equations (10) and (11), we have reduced our prob-
lem to solving a system of ordinary linear differential equa-
tions, subjected to the boundary conditions (7) at z =
± 1

2L. This can only be performed analytically by some
approximation method. For fitting or analyzing experi-
mental data, analytical expressions, though approximate,
are very useful. Here we adopt a Galerkin-approximation
method, since it has yielded good results in the case of the
Boussinesq equations for a pure fluid with realistic bound-
ary conditions [6,27]. For the binary mixture under con-
sideration here, we adopt the same Galerkin test functions
previously employed by Lhost et al. [9] with excellent re-
sults, for performing a linear stability analysis. Hence, we
look for approximate solutions to equations (9-10) whose
z-dependence may be expressed in the form:

w(z, ω,q) = w0(ω,q) C1(z),
θ(z, ω,q) = θ0(ω,q)

√
2 cos

πz

L
, (12)

ζ(z, ω,q) = ζ0(ω,q) 1,

where C1(z) is the function

C1(z) =
cosh(Λz/L)

cosh(Λ/2)
− cos(Λz/L)

cos(Λ/2)
, (13)

with, Λ ≈ 4.73, corresponding to the first Chandrasekhar
function. This value of Λ assures that the derivative of
C1(z) vanishes at z = ± 1

2L [16]. Consequently, the set of
test functions (12) satisfies the required boundary condi-
tions (7).

Substituting equations (12) into equations (10-11), and
projecting the first of the expressions obtained by such
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substitution onto the first Galerkin function C1(z), further
projecting the second of the expressions onto the second
Galerkin function

√
2 cosπz/L, and similarly for the third,

we arrive at the following set of algebraic equations for the
amplitudes:

A(ω, q) ·





w0(ω,q)
θ0(ω,q)
ζ0(ω,q)



 =





F1(ω,q)
F2(ω,q)
F3(ω,q)



 , (14)

with the matrix A(ω, q) given by

A(ω, q) =





iωA(q)
L2 + ν B(q)

L4 −αgq2(1 + ψ)P1 P0gq
2

P1∇T0 iω + aq2C1(q) 0

−P0αψ∇T0 −αψ 2
√

2
π iω iω +D q2



 .

(15)
In equation (15) for A(ω, q), the various dimensionless pro-
jections of the Galerkin test functions are

P0 =
1

L

∫ L/2

−L/2
dz C1(z) =

4

Λ
tanh

(

Λ
2

)

, (16)

P1 =
1

L

∫ L/2

−L/2
dz
√
2 cos

(πz

L

)

C1(z) =
4
√
2πΛ2

Λ4 − π4
, (17)

A(q) = L

∫ L/2

−L/2
dz C1(z)

{

[q2 − ∂2
z ] · C1(z)

}

=

q2L2 +
P0Λ

2

16

(

P0Λ
2 − 8

)

= q̃2 + P2Λ
2, (18)

and, finally,

B(q) =L3

∫ L/2

−L/2
dz C1(z)

{

[q2 − ∂2
z ]

2 · C1(z)
}

=

q̃4 +
P0Λ

2

8

(

P0Λ
2 − 8

)

q̃2 + Λ4 =

A2(q̃) + Λ4(1− P 2
2 ), (19)

with

P2 =
P0

16
(P0Λ

2 − 8). (20)

In equations (16) to (19), q̃ = qL is the dimensionless wave
number of the fluctuations. The additional dimensionless
function C1(q) introduced in equation (15), will be defined
in equation (33) below. It is worth noting for future use,
that both A(q) and B(q) depend only on the magnitude q̃
of the dimensionless vector q̃, being always real and posi-
tive valued functions. Finally, the random forces F1(ω,q),
etc., appearing in equation (14) are the projections onto
the Galerkin test functions of the corresponding Langevin
random-noise terms (9), so that

F1(ω,q) =
1

L

∫ L/2

−L/2
dz F1(z, ω,q) C1(z), etc. (21)

Inverting the matrix in equation (15), we immediately
solve for the amplitudes of the fluctuations: w0(ω, q), etc.
To calculate the correlation functions among the vari-
ous fluctuating fields, we do need the correlations among

the projections of the Langevin noise terms introduced
in equation (21). They can be computed from their defi-
nition, equation (21), the relationship between Langevin
noise and random dissipative fluxes, equations (9), and
the FDT for a binary mixture, equations (5) and (6). The
resulting correlation functions are conveniently expressed
in terms of a correlation matrix, C(q), defined by

〈Fi(ω,q)F ∗
j (ω

′,q′)〉 =
(2π)3 Cij(q) δ(q− q′) δ(ω − ω′). (22)

Following the guidelines above, we have evaluated the cor-
relation matrix as

C(q) =
2kBT

ρL5





νq2B(q) 0 0
0 aq2C1(q) ξ2 0
0 0 Dq2ξ3



 , (23)

where B(q) is the same function defined by equation (19).
The parameters ξ2 and ξ3 give the relative strength of the
various components of the noise:

ξ2 =
L4T

cp
, ξ3 = L4β2

(

∂µ̃

∂c

)−1

p,T

. (24)

Recall that, in deducing equation (23), we have neglected
the Dufour effect in the FDT (6), and we have evaluated
all thermophysical properties at their average values in
the layer. The current calculation is similar, though more
involved, to calculations performed in previous work [6,
27], where the interested reader may find more details.

4 Evaluation of nonequilibrium structure

factors

The information in the previous section provides us
with all the ingredients required to calculate the two-
point equal-time correlation functions among the various
nonequilibrium fluctuating fields, which is our final goal. It
turns out that all such correlation functions have a similar
mathematical structure, which is best illustrated for the
temperature-fluctuations autocorrelation function, which
can be expressed as

〈θ(q, z, t) · θ∗(q′, z′, t)〉 = (2π)2 δ(q− q′)

×
∫ ∞

−∞
dω Sθθ(ω, q)2 cos (πz/L) cos (πz′/L), (25)

where Sθθ(ω, q) is a dynamic structure factor associated
with temperature fluctuations. From the theory developed
in the previous section, such a dynamic structure factor
for the temperature fluctuations may be expressed as

Sθθ(ω, q) =
[

A
−1(ω, q)

]

2i

[

A
−1∗(ω, q)

]

2j
Cij(q), (26)

with the matrix A(ω, q) as defined in equation (15). Equa-
tion (26) includes a summation over the (coordinate) in-
dices i and j. The index 2 appears in the components of
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A(ω, q) because temperature is the second component in
the vector of fluctuating fields, as defined by equation (10).
The integration over ω appears in equation (25) because
we are applying a double inverse Fourier transform in ω
and ω′, and the two-frequencies correlation function turns
out to be proportional to δ(ω−ω′), as can be easily shown
from equation (22).

The other equal-time correlation functions among the
fluctuating fields have a structure similar to equation (25):
they are proportional to delta-functions δ(q − q′), while
the product of two Galerkin test functions represents the
dependence on z and z′. The dependence on ω and q
can always be encapsulated in a corresponding “dynamic
structure factor”, like the one defined in equation (26).
For instance, similarly to equation (26) for temperature
fluctuations, it is possible to define a dynamic structure
factor for the fluctuations in the ζ-variable as

Sζζ(ω, q) =
[

A
−1(ω, q)

]

3i

[

A
−1∗(ω, q)

]

3j
Cij(q). (27)

The main goal of the present paper is the calculation of
the structure factor that it is probed by shadowgraph or
light scattering experiments. As discussed elsewhere [2,6,
28], the various contributions to the experimental struc-
ture factor, are obtained by integration over the vertical
variables, z and z′, of the equal-time correlation functions
between fluctuating fields. For instance, the autocorrela-
tion function of the temperature fluctuations contributes
to the experimental structure factor a term proportional
to Sθθ(q), defined by

(2π)2 Sθθ(q) δ(q− q′) =

1

L

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′ 〈θ(q, z, t) · θ∗(q′, z′, t)〉. (28)

Note that the dimension of Sθθ(q) in equation (28) is tem-
perature square times volume. In addition to equation (28)
for Sθθ(q), there are similar contributions to the experi-
mental structure factor arising from the ζ fluctuations,
Sζζ(q), as well as from the cross-correlation between tem-
perature and ζ fluctuations, Sζθ(q). For these other con-
tributions, the double spatial integral in equation (28) will
be over the corresponding Galerkin test functions, instead
of the temperature-fluctuations ones displayed in equa-
tion (25). Further comments about the validity of equa-
tion (28), when a Hopf bifurcation is present in the system,
will be made at the beginning of Section 6.

The calculation of Sθθ(q) and the other contributions
to the experimental structure factor are quite straight-
forward, but they require a lot of algebra. The most
complicated item is the expression for the inverse matrix
A−1(ω, q), which involves the inverse of the determinant of
A(ω, q). If, following previous authors [9], we use a dimen-
sionless frequency defined by ω̃ = (L2/a) ω, then such
determinant may be expressed as a cubic polynomial in

the dimensionless variable ω̃:

|A(ω, q)| = a3

L8
{−i A(q) ω̃3 −B(q)D1(q) ω̃

2

+iPr q̃2B(q)C5(q,Ra) ω̃

+PrLe q̃4B(q)C1(q)D2(q,Ra)}, (29)

where we have introduced several dimensionless functions:

D1(q) = Pr +
Le+ C1(q)

C2(q)
, (30a)

C5(q,Ra) = P 2
1C4(q)−

Le2

PrC2(q)
− P 2

1 (1 + P3ψ)Ra

B(q)
,

(30b)

D2(q,Ra) = 1− P 2
1 [1 + C3(q)ψ]Ra

C1(q)B(q)
. (30c)

In equations (29-30), Ra is the dimensionless Rayleigh
number, defined as

Ra = −αgL
4∇T0

aν
, (31)

while Pr = ν/a and Le = D/a are the dimensionless
Prandtl and Lewis numbers, respectively. The function
B(q) was previously defined in equation (19). The dimen-
sionless parameter P3 appearing in equation (30b) is given
by

P3 = 1 +
P 2

0

P 2
1

− 2P0

√
2

πP1
≈ 0.951. (32)

Furthermore, following [9], we have introduced in equa-
tions (30) some functions that will be useful in the re-
mainder of this paper. They are

C1(q) =
q̃2 + π2

q̃2
, C2(q) =

B(q)

q̃2A(q)
, (33a)

and

C3(q) = 1 +
P 2

0C1(q)

P 2
1Le

, (33b)

C4(q) =
[Pr C2(q) + Le][C1(q) + Le]

Pr P 2
1C2(q)

, (33c)

where q̃ = qL is again the dimensionless wave number. It
is worth noting that, in the limit q →∞, both C1(q) and
C2(q) reach the limiting value unity, while they diverge
proportionally to q−2 in the limit q → 0. By substituting
equations (33) into equations (30), it may be observed that
all four C functions have similar asymptotic behaviors:
they reach a finite limit as q̃ → ∞, while they diverge
proportionally to q̃−2 as q̃ → 0. The four C functions are
monotonically decreasing functions of q, always positive,
reaching the minimum at the limit q → ∞. However, the
D functions reach finite limits at both q̃ →∞ and q̃ → 0.
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The next step in the calculation of A−1(ω, q), as usual,
consists in expressing the determinant (29) of the matrix
A(ω, q) in terms of its three complex ω̃-roots:

|A(ω̃, q)| = A(q) [i ω̃ −Ω1(q)][i ω̃ −Ω2(q)][i ω̃ −Ω3(q)].
(34)

The roots Ω1(q), Ω2(q) and Ω3(q) correspond to the three
different decay rates of the thermodynamic fluctuations
in a binary mixture [29]. Explicit expressions may be ob-
tained from the formulas for the roots of a cubic equa-
tion, but the resulting expressions are complicated and
will not be discussed here. Moreover, they are not actually
required, since we focus here on the intensity (equal-time
correlation functions, obtained by integration over ω), and
not on the dynamics of the fluctuations; see equations (25)
and (28). Traditionally, shadowgraph experiments have
been employed to study the intensity of the fluctuations [1,
28]. However, more recently [2], the shadowgraph tech-
nique has been extended to yield also some information
regarding the dynamics of the fluctuations. For the latter
purpose, explicit knowledge of the decay rates Ωi(q) will
be required.

The ω-integration in equations (25) and (28) for the
calculation of the (static) structure factor is convergent
only if the real part of the three decay rates Ωi(q) is
nonzero for all values of q. Hence, as already found in pre-
vious publications for the case of a one-component fluid [6,
25], the conditions under which it is possible to calculate
a static structure factor (Sθθ(q) for temperature fluctua-
tions, or any other) can be determined from a classical lin-
ear stability analysis [16]. For the problem considered here,
a detailed linear instability analysis was already performed
by Lhost et al. [9], who used the same set of Galerkin test
functions. We simply mention that, looking back at equa-
tion (29), we can easily see that one possibility for having
a decay rate with zero real part is D2(q) = 0, which hap-
pens when Ra = Rs(q̃), with the function Rs(q̃) defined
by

Rs(q̃) =
(q̃2 + π2)

P 2
1 q̃

2

(q̃2 + P2Λ
2)2 + Λ4(1− P 2

2 )

1 +

[

1 +
P 2

0 (q̃
2 + π2)

P 2
1 q̃

2Le

]

ψ

. (35)

The condition Ra = Rs(q̃), with Rs(q̃) given by equa-
tion (35), reproduces exactly equation (7) in reference [9]
for the Is stationary instability of the binary Boussinesq
problem. In fact, when condition (35) holds, Ω0(q) = 0
is a root of the determinant (29), both real and imagi-
nary parts being zero. Thus, the corresponding instabil-
ity is stationary indeed. Looking for the minimum as a
function of q̃ of equation (35), the critical wave number
for the stationary instability, q̃c,s, may be calculated. The
corresponding critical Rayleigh number is then obtained
by evaluating equation (35) at the minimum: Rac,s =
Rs(q̃c,s). Depending on the values of ψ and Le, the crit-
ical wave number may be both zero or nonzero, though
for usual binary mixtures q̃c,s 6= 0. However, for ψ > 0,
Rac,s is always positive [9]. Explicit analytical expressions
of such critical values result quite involved, so that they
are usually discussed numerically, as extensively done by

Lhost et al. [9]. We should also mention that, by setting
ψ = 0 in equation (35) we recover previous results ob-
tained by Niederländer et al. [30] for the first convective
instability in a one-component fluid.

As discussed in more detail by Lhost et al. [9], there
is another possibility for one of the ω-roots of |A(ω, q)|
having zero real part, namely: D1(q)C5(q,Ra)−Le C1(q)
D2(q,Ra)/C2(q) = 0. In this case, it may be easily verified
that Ω0(q) = i D1(q)B(q)/A(q) is a root of |A(ω, q)|, with
a zero real part, but a nonzero imaginary part. Thus, the
corresponding instability is oscillatory, or Hopf-like. The
condition for the oscillatory Io instability, similarly to the
Is instability, can be expressed as Ra = Ro(q̃), where

Ro(q̃) =
B(q)C4(q)

[1 +D3(q)ψ]
, (36)

with

D3(q) = P3 −
P 2

0

P 2
1

+
Pr P 2

0C2(q) + P 2
1Le(P3 − 1)

P 2
1 [Pr C2(q) + C1(q)]

. (37)

The function D3(q) has finite limits at both q → ∞ and
q → 0, as had the two D functions introduced previ-
ously. The condition Ra = Ro(q̃), with Ro(q̃) given by
equation (36) with the appropriate change of notation,
reproduces the result reported by Lhost et al. [9], who
used the same set of Galerkin test functions. Looking for
the minimum value of Ro(q̃) (as a function of q̃) in equa-
tion (36), the critical Rayleigh number for the Hopf bi-
furcation, Rac,o, may be evaluated. It turns out that, for
ψ > 0, Rac,o > Rac,s, while for ψ < 0, Rac,o > Rac,s [9].
Thus, the Rayleigh instability is critical for mixtures with
positive separation ratios, while for negative separation
ratios the Rayleigh instability is subcritical, and the Hopf
instability critical. The presence of these two competing
instability mechanisms is important for the physical inter-
pretation of the nonequilibrium fluctuations, as will be dis-
cussed in more detail in Section 6. For future use it should
be noticed that the two functions Rs(q) and Ro(q) be-
come proportional to q4 in the limit of large q. For q → 0,
Ro(q) ∝ q−2, while Rs(q) reaches a finite limit.

We conclude this section by pointing out that, from
equations (35) and (36), one finds a fairly good approx-
imations for the critical Rayleigh and wave numbers [9].
For instance, the fact that the stationary instability hap-
pens first for positive ψ while the oscillatory instability
happens first for negative ψ, is known to be exactly cor-
rect [14]. These facts give us confidence in the adequacy of
the Galerkin-approximation procedure (12). Further evi-
dence for the quality of the Galerkin test functions (12) is
presented in the next section.

5 Structure factor in thermal equilibrium

The structure factor of a binary liquid mixture in ther-
mal equilibrium is well known, so that we can use this
limit to test the quality of our Galerkin approximation,
equation (12). It is the goal of the present section to per-
form such a test. In equilibrium the correlation functions
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become spatially short ranged, so that they may be cal-
culated without taking into account any boundary con-
ditions. Hence, they can be simply evaluated [29,31] by
performing a full spatiotemporal Fourier transform (in-
cluding the direction of the gravity, perpendicular to the
bounding plates) of the original binary Boussinesq equa-
tions (8) with ∇T0 = 0. In this way we readily obtain, for
instance, the autocorrelation function of the temperature
fluctuations as [29,31]

〈θ(ω,q) · θ∗(ω′,q′)〉 = kBT
2

ρcp

2aq2

ω2 + a2q4

× (2π)4 δ(q− q′) δ(ω − ω′), (38)

where in this case q represents a 3-dimensional wave vec-
tor of the fluctuations, with magnitude q1. To evaluate the
equilibrium structure factor measured in experiments, in
accordance with equation (28), we need to first integrate
over ω, then apply inverse Fourier transforms in z and
z′, and finally integrate over these two variables. We then
obtain

SE
θθ =

kBT
2

ρcp
, (39)

where the upper index “E” denotes equilibrium. For the
concentration fluctuations (Γ = β−1[ζ − ψαθ]) we obtain
similarly

SE
ΓΓ =

kBT

ρ

(

∂µ

∂c

)−1

p,T

{

1 +
Le RD

(Le+ 1)

}

, (40)

whereRD is the dimensionless ratio between the strengths
of the random heat flux and of the random diffusion flux:

RD =
α2ψ2ξ2
ξ3

=
T

cp
[c(1− c)ST ]2

(

∂µ

∂c

)

p,T

. (41)

Recall that µ is the difference in chemical potentials per
unit mass, and cp is also defined per unit mass, so that
RD is a dimensionless ratio indeed. Then, SE

θθ has in-
deed dimension of temperature square times volume, as
already noted after equation (28), while SE

ΓΓ has, cor-
respondingly, dimension of volume. Notice also in equa-
tions (39) and (40) that both SE

θθ and SE
ΓΓ do not depend

on q, confirming the fact that fluctuations in equilibrium
are spatially short ranged. When ξ3 = 0 and ψ = 0 (limit
of a one-component fluid), as expected, the concentration
fluctuations vanish. In the case Le → 0, the stochastic
heat flow (whose strength is proportional to ξ2) does not
contribute to the concentration fluctuations.

As mentioned earlier, to test the quality of the test
functions introduced in equation (12), we can compare
the exact results, given by equations (39) and (40), with
what we obtain from the Galerkin approximation for the
particular case of thermal equilibrium. For this purpose,
we substitute ∇T0 = 0 into equation (15) for A(ω, q), we

1 This is the only place in the present paper, where q repre-
sents the magnitude of a three-dimensional vector.

invert the resulting matrix and we calculate both SE
θθ(q)

and SE
ΓΓ (q), obtaining:

SE
θθ =

2kBT

ρL5

4ξ2L

π2
=

8

π2

kBT
2

ρcp
, (42a)

SE
ΓΓ (q) =

kBTξ3
ρβ2L4

[

1 +RD

Le+ C1(q̃)
(

1− 8
π2

)

Le+ C1(q̃)

]

, (42b)

to be compared with the expected equilibrium results (39)
and (40), respectively. We first observe that equation (42a)
for SE

θθ does not depend on q, as was the case for the ex-
act structureless result (39). The temperature fluctuations
within the Galerkin approximation are again short ranged
(do not depend on q) and, thus, have the same qualitative
behavior as the exact result. However, we find the mag-
nitude of the temperature fluctuations obtained with the
Galerkin approximation (12) is 19% smaller than the rig-
orous result (39). This is a shortcoming of the single-mode
Galerkin approximation. Nevertheless, since the difference
is not very large, the result supports the adequacy of the
Galerkin test functions (12) for the calculation of the tem-
perature fluctuations.

On the other hand, we observe in equation (42b) for
SE
ΓΓ some q-dependence, implying that we obtain some

structure in equilibrium, which is an unphysical result.
This is an evident shortcoming of our Galerkin approxi-
mation (12). However, from a more detailed comparison
between equations (42b) and (40), we note that, on the
one hand, the denominator of equation (42b) contains, in-
stead of 1, a function of q which rapidly approaches unity
for large q. Moreover, the numerator contains the same
function C1(q) multiplied by a geometric factor (1−8/π2)
which is very close to zero. Thus, the difference is not very
important quantitatively.

Another evident shortcoming of equation (42b) is that,
in the limit Le → 0, the stochastic heat flow (ξ2) yields
a nonzero contribution to the concentration fluctuations,
which again is an unphysical result (cf., Eq. (40)). In spite
of this second shortcoming, we shall show in Section 7
that, for the nonequilibrium enhancement of concentra-
tion fluctuations, i.e., when the unphysical equilibrium
contribution (42b) is subtracted, a systematic Le → 0
expansion produces realistic results. We conclude, from
the analysis of this section, that the Galerkin approxima-
tion (12) gives a reasonable qualitative description of the
structure factor, although the results are several percents
off quantitatively.

6 Nonequilibrium fluctuations for ψ > 0

After having considered the quality of our Galerkin ap-
proximation (12), we shall evaluate and discuss the var-
ious nonequilibrium static correlation functions following
the procedure described in Section 4. The present section
contains the main results of our investigation.

In previous publications dealing with a one-component
fluid where a Rayleigh stationary bifurcation is the only
instability mechanism, the consequences for shadowgraph
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or light scattering experiments of the presence of long-
ranged nonequilibrium fluctuations have been discussed
in detail [2,28]. In particular, it was demonstrated that
experimental structure factors are proportional to the re-
sult obtained upon double integration in z and z′ of the
equal-time thermodynamic correlation functions as stated
by equation (28). In the case of a binary mixture, the sit-
uations is complicated by the presence of an oscillatory
Hopf instability. When ψ > 0, the preferred instability
mechanism continues to be stationary [9,14]. Therefore,
we believe that the conclusions of previous investigations
regarding the relationship between experimental structure
factor and equal-time autocorrelation functions continue
to hold for ψ > 0. For ψ < 0, initially, we do not see any
reason why experimental structure factor should not be
still obtained as in equation (28), even when the oscillatory
instability is the dominant mechanism. However, this case
may need further clarification, since light scattering and
shadowgraph experiments always require a detailed dis-
cussion of what is actually measured (geometry of scatter-
ing volumes, mode propagation, etc.). Consequently, the
conclusions in this section are intended mainly for the case
ψ > 0, while for the case ψ < 0 our present results have
to be considered as only provisional.

When one calculates the experimental structure fac-
tor following the steps described in Section 4, it turns out
that all contributions have a similar mathematical struc-
ture, which we shall now discuss for the fluctuations of
ζ. Substituting equation (27) into the equivalent of equa-
tion (28), we find that the amplitude (28) of the equal-time
nonequilibrium ζ fluctuations may be cast in the form

Sζζ(q̃) = SE
ζζ(q̃) +Ra SNE

ζζ (q̃, Ra), (43)

where SE
ζζ(q̃) represents the same equilibrium contribution

appearing in Section 5 as a contribution to SE
ΓΓ (q̃), while

the product Ra SNE
ζζ (q̃, Ra) is to be interpreted as the am-

plitude of nonequilibrium ζ fluctuations. This nonequilib-
rium amplitude, in turn, may be decomposed as

SNE
ζζ (q̃, Ra) =

S
(s)
ζζ (q̃, Ra)

1− Ra

Rs(q̃)

+
S

(o)
ζζ (q̃, Ra)

1− Ra

Ro(q̃)

. (44)

In the denominators of the two terms in the LHS of equa-
tion (44), we identify the corresponding (linear) instabil-
ity conditions as those earlier specified by equations (35)

and (36). Therefore, we physically interpret S
(s)
ζζ (q̃, Ra) as

representing the contribution of nonequilibrium ζ fluctua-
tions that can be associated with the stationary (Rayleigh)

instability, while S
(o)
ζζ (q̃, Ra) represents the contribution of

nonequilibrium ζ fluctuations that can be associated with
the oscillatory (Hopf) instability. We observe how both in-
stability mechanisms cooperate to cause an enhancement
of the fluctuations when a binary mixture is driven out-
side equilibrium. As will be discussed later, for the case
of temperature fluctuations, a set of equations with the
same structure as equations (43) and (44) is obtained,
with the equilibrium contribution in (43) replaced by the

corresponding SE
θθ and where we can identify two nonequi-

librium amplitudes S
(s)
θθ (q̃, Ra) and S

(o)
θθ (q̃, Ra) associated

with the stationary and with the oscillatory instability,
respectively.

In addition, we recall from Section 2 that the Rayleigh
instability appears when the first denominator in equa-
tion (44) vanishes, while the Hopf instability appears when
the second denominator vanishes. We encounter again that
(linear) instabilities correspond to divergences in a (linear)
theory of nonequilibrium fluctuations, as was extensively
discussed for a one-component fluid [6,25,26]. We addi-
tionally remark that all fluctuations (velocity, tempera-
ture and concentration) diverge for the same value of Ra.

Equations (43) and (44) are a compact and convenient
way of expressing the various nonequilibrium static struc-
ture factors in general, allowing a clear and simple physical
interpretation. We next shall discuss more extensively the
particular cases of temperature and concentration fluctua-
tions, giving explicit expressions for the amplitudes of the
stationary and oscillatory nonequilibrium fluctuations in
each case.

6.1 Temperature fluctuations

Substituting equation (26) into equation (28) and per-
forming the various integrations, we obtain an expression
with a structure similar to equation (43), namely:

Sθθ(q̃) = SE
θθ

{

1 +
C2(q̃)Pr F̃NE(q̃, Ra)

PrC2(q̃) + C1(q̃)
Ra

}

, (45)

with SE
θθ given by equation (42a). Note that, when Ra = 0

(equilibrium), equation (45) reduces to equation (42a) for
the equilibrium structure factor in the Galerkin approxi-
mation. The nonequilibrium contribution in equation (45)

is proportional to the dimensionless function F̃NE(q̃, Ra),
whose expression is quite involved. Of course, it may be
cast in the form (44), that separates the contributions
from oscillatory and stationary nonequilibrium fluctua-
tions. Namely:

F̃NE(q̃, Ra) =
F̃

(s)
NE(q̃, Ra)

1− Ra

Rs(q̃)

+
F̃

(o)
NE(q̃, Ra)

1− Ra

Ro(q̃)

, (46)

where

F̃
(s)
NE(q̃, Ra) =

1 + ψ +

[

PrRT −
P 2

0ψ[1 + ψ(1−R−1
D )]

LeB(q̃)

]

Ra

Rs(q̃) [1 + ψG0(q)]
,

(47a)

and

F̃
(o)
NE(q̃, Ra) =

1 + ψD4(q̃) +RTPrRa

Ro(q̃) [1 + ψD3(q)]
− F̃

(s)
NE(q̃, Ra)

Ro(q̃)
,

(47b)
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with

D4(q̃) = 1 +
2P0

√
2

πP1

[Pr C2(q̃) + Le]

Pr C2(q̃)
, (48a)

G0(q̃, ψ) = C3(q̃) +
C1(q̃)[C3(q̃)−D3(q̃)]

P 2
1C4(q̃)− C1(q̃)

. (48b)

Similarly to equation (41) for RD, we have introduced a
dimensionless ratio between the strengths of the random
stress tensor and of the random heat flow:

RT =
a2cp

α2g2L4T
. (49)

The functions D4(q̃) and G0(q̃, ψ) defined in equation (48)
are always positive and have finite limits at q̃ →∞. When
q̃ → 0, D4(q̃) (as all previous D functions) reaches a finite
limit, while G0(q̃, ψ) diverges proportionally to q̃−4.

Next we proceed to discuss equations (46-47). First of
all, we observe that, when condition (35) holds, we en-
counter a divergence in the first term of the RHS of equa-
tion (46). Consequently, our expression for SNE

θθ (q̃) is only
valid for Ra values up to the Rac,s obtained from equa-
tion (35). In addition, a second divergence is found in the
second term of the RHS of equation (46), which corre-
sponds to the Hopf instability (36). As is well known [9],
when ψ > 0, the Hopf instability is secondary with re-
spect to the (primary) stationary instability. Thus, the
divergence associated with the Hopf mode occurs at Ra
values larger than the Rac,s obtained from (35), so that
the Ra interval of validity of equation (46) is not changed
(for ψ > 0), in spite of the presence of a second instability
mechanism.

As was elucidated earlier, all the C functions, as well
as the D functions, have finite limiting values for q →∞.
Consequently, the behavior of the structure factor in this
limit will be dominated by the inverse of the Rs(q) and
Rs(q) functions, appearing in the denominators of equa-
tions (47). Hence, taking the difference between equa-
tions (45) and (42a), we find that the enhancement of
nonequilibrium fluctuations in the large q limit is propor-
tional to q̃−4, namely:

SNE
θθ (q̃)

q→∞−−−→ S
(NE,∞)
θθ

1

q̃4
+O(q̃−6), (50)

with

S
(NE,∞)
θθ

SE
θθ

=
P 2

1 Pr

Pr + 1

×



1 +
ψ
(

Le+ 1− 2
√

2P0

πP1

)

Le+ 1
+ PrRTRa



 , (51)

where SE
θθ is the same equilibrium contribution given by

equation (42a). In equations (50) and (51) we have added
the contributions from the stationary and from the os-
cillatory fluctuations, in order to obtain a more compact
expression. At large q, boundary effects are negligible, so

that equation (50) may be compared with the result ob-
tained by performing a full spatial Fourier transform, sim-
ilar to the procedure explained in Section 5 for the equilib-
rium fluctuations. A calculation of such a “bulk” structure
factor, using a definition like equation (50), would result
in [12]

S
(NE,∞)
θθ

SE
θθ

=
Pr

Pr + 1

[

1 +
ψLe

Le+ 1
+ PrRTRa

]

, (52)

where SE
θθ now represents the exact “bulk” contribution,

as given by equation (39). Equation (52) is the expected
exact result, to be compared with equation (51), which
is what was obtained from our Galerkin approximation.
We notice two differences: first, the presence of an over-
all prefactor P 2

1 ≈ 0.973 which is a 3% lower than the

expected value; second, a term 1 − 2
√
2P0/πP1 ≈ 0.242,

which is close to the expected zero value. The fact that
these two differences are small supports again the validity
of our Galerkin approximation.

The other interesting limit is q → 0. Similarly to the
large-q limit discussed in the previous paragraph, from
the first-order Galerkin approximation with rigid and im-
permeable boundaries, equation (47), we obtain for the
nonequilibrium enhancement for small q:

SNE
θθ (q̃)

SE
θθ

q̃→0−−−→ P 2
1Pr

16Λ4

1 +
(

1− 2
√

2P0

πP1

)

ψ +RTPrRa

Pr +
P0π

2(P0Λ
2 − 8)

16Λ2

q̃2

+O(q̃4). (53)

In this case the “bulk” structure factor, i.e., without con-
sidering boundary conditions, predicts a finite nonzero
value of the enhancement at q → 0. Thus, the bound-
ary conditions (vanishing temperature fluctuations at the
walls) causes the enhancement of the nonequilibrium tem-
perature fluctuations to vanish at small q.

Another limiting case that is worth studying is ψ = 0,
in which case our problem reduces to the Rayleigh-Bénard
problem for a one-component fluid, which has been con-
sidered in a previous publication [6], where a different set
of Galerkin test functions was employed. Simply setting
ψ = 0 in equations (45) and (47), we obtain

Sθθ(q̃) = SE
θθ









1 +
PrRa

Pr +
C1(q̃)

C2(q̃)

1 + PrRTRa

C1(q̃)B(q̃)

P 2
1

−Ra









, (54)

to be compared with equation (25) in reference [6]. From
such a comparison, we first find that the result obtained
for the equilibrium structure factor (substituting Ra = 0
in Eq. (54)) is a 19% lower than the exact “bulk” re-
sult, equation (39), while with the Galerkin test func-
tions used in previous publications [6,2], the approxima-
tion for the equilibrium structure factor was 17% lower.
Secondly, the critical Rayleigh number obtained from (54)
is Rc = 1728 [30], which agrees better with the true
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Rc = 1708 than the value Rc = 1750 obtained from the
Galerkin test functions employed in reference [6]. On the
other hand, the behavior for large q obtained from equa-
tion (54) is a 21% lower than the true asymptotic value,
to be compared with a 20% difference obtained from the
Galekin test functions used in reference [6]. It is thus diffi-
cult to say which of the two sets of Galerkin test functions
are best for the representation of the nonequilibrium struc-
ture factor. We conclude that, since equation (54) gives
a best approximation for Rac, it will probably represent
best the true nonequilibrium structure factor for q values
close to qc.

From the asymptotic behaviors, equations (50)
and (53), we note that the nonequilibrium enhancement
exhibits a crossover from a q̃−4 behavior at large q̃ to a
q̃2 behavior at small q̃. This implies that, at least, there
will be a local maximum for some nonzero wave number
q̃m. However, the most interesting thing is that, depend-
ing on ψ and Ra, the amplitude of nonequilibrium tem-
perature fluctuations may display two maxima, implying
a bimodal distribution of the nonequilibrium fluctuations
as a function of q̃. The two maxima correspond to the two
competing instability mechanisms (Rayleigh and Hopf).
This is clearly shown in Figure 1, where we have plotted
as a function of q̃ and for two Ra numbers, the ampli-
tude of nonequilibrium temperature fluctuations, normal-
ized to the coefficient multiplying q̃−4 in the asymptotic
expansion for large q̃. The data in Figure 1 correspond to
Le = 0.015, Pr = 4.16 and ψ = 0.025, which are quite rea-
sonable numbers for ordinary liquid mixtures. Addition-
ally, the data in Figure 1 are for RD = 10−3 and RT = 5;
these values are also quite reasonable for liquid mixtures,
although the final shape of the curve does not depend very
much on the values chosen for these two parameters. The
solid curve in Figure 1 corresponds to Ra = 419, which
is approximatively Ra ≈ 0.99Rac,s for the quoted values
of Pr, Le and ψ, while the dotted curve corresponds to
Ra = 0.5Rac,s. In Figure 1 the appearance of a bimodal
structure factor as the instability is approached is evident.
For the larger Ra, the right broader maximum (at higher
values of q̃) is caused by Hopf fluctuations, while the left
sharper maximum is caused by Rayleigh fluctuations. For
the data displayed in Figure 1, as Ra → Rac,s, a diver-
gence will appear at the position q̃c,s of the left maximum.
For the lower Ra value, the broad maximum correspond-
ing to Hopf fluctuations masks the second maximum cor-
responding to Rayleigh fluctuations.

6.2 Concentration fluctuations

Concentration fluctuations are not present in the case of
a pure fluid. In the case of a binary mixture, they are usu-
ally easier to observe than temperature fluctuations [32,
33]. Consequently, it is important to derive an expression
for the concentration fluctuations. Here, we may calcu-
late the amplitude of the nonequilibrium concentration
fluctuations from the temperature autocorrelation, the
ζ-variable autocorrelation, and the cross-correlation be-
tween temperature and ζ fluctuations, remembering that
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Fig. 1. Appearance of a bimodal distribution for the amplitude
of nonequilibrium temperature fluctuations as the stationary
instability is approached. The broad peak corresponds to the
Hopf fluctuations, while the sharper peak to the left for larger
Ra corresponds to the Rayleigh fluctuations. Parameter values
are quoted in the text.

Γ = β−1[ζ − ψαθ]. The result may be cast in a form sim-
ilar to equations (43) and (44) for the autocorrelation of
ζ fluctuations, so as to identify the independent contribu-
tions from the Hopf and the Rayleigh mechanisms. This
requires a lot of algebra, and the resulting expressions are
very long, considerably longer than those for the tempera-
ture fluctuations discussed above. For this reason, we pre-
fer to discuss here the concentration fluctuations graphi-
cally and numerically to elucidate the physical features of
the results obtained for the concentration fluctuations.

The final result of our calculations for the amplitude
of the nonequilibrium concentration fluctuations is shown
in Figure 2, where we have plotted the amplitude of the
nonequilibrium concentration fluctuations as a function of
q̃ for three values of Ra and with all other coefficients con-
stant. Again, the data in Figure 2 have been normalized in
terms of the coefficient multiplying q̃−4 in the asymptotic

expansion for large q̃, S
(NE,∞)
ΓΓ , defined in a way similar to

S
(NE,∞)
θθ in equation (50) for the temperature fluctuations.

Then, the three sets of data displayed go asymptotically
as q̃−4 for large q̃. The solid curve corresponds to the same
set of parameters for which the temperature fluctuations
were displayed in Figure 1 as a solid curve. The dotted
curve also corresponds to the same set of parameters, ex-
cept the Rayleigh number, for which a large and negative
value was chosen, Ra = −1500, corresponding to the the
overstable situation investigated in some experiments [34].
The dashed curve corresponds to a Ra number close to
zero, which represents thermal nonequilibrium in micro-
gravity. From a close examination of the data displayed in
the figure, as well as from further numerical and analytical
investigations, we arrive at the following conclusions:
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Fig. 2. Normalized amplitude of nonequilibrium concentration
fluctuations as a function of q̃, for three values of Ra. The
solid curve is for Ra = 419, which is close to the Rac,s. The
dashed curve is for Ra ≈ 0, which corresponds to thermal
nonequilibrium in microgravity. The dotted curve is for large
and negative Rayleigh number Ra = −1500, as have been used
in some experiments [34].

1. The presence of two maxima which was so evident
in Figure 1 for the nonequilibrium temperature fluctua-
tions is masked in the concentration fluctuations. Notice
that the solid curve in Figure 2 is for the same Ra num-
ber as for the solid curve of Figure 1. We believe this
feature is mainly a consequence of the fact that, for usual
binary fluids, the Le number is small, so that the contri-
bution of Hopf fluctuations to concentration fluctuations
is negligible. This point will be discussed in more detail in
Section 7.

2. Most importantly, the amplitude of nonequilibrium
concentration fluctuations does not go to zero at q̃ → 0,
contrary to the case of the nonequilibrium temperature
fluctuations. For concentration fluctuations the nonequi-
librium contribution reaches a constant limit at q̃ → 0,
for any Ra number. This behavior is due to the different
kind of boundary conditions: null derivative instead of null
function itself. This explanation is confirmed by a previ-
ous investigation [8], where for mathematical simplicity
the unrealistic case of two free and permeable walls (im-
plying no concentration fluctuations at the boundaries),
was considered. In that case [8], the equivalent SNE

ΓΓ (q̃)
vanished at q̃ → 0.

3. As a consequence of #2, below a certain Ra num-
ber, the maximum enhancement is reached at q̃ = 0. This
seems evident in the plots for negative or small Ra in Fig-
ure 2. Note that this is never true for the temperature
fluctuations.

The constant limit at q → 0 of the nonequilibrium en-
hancement of concentration fluctuations may be analyt-
ically evaluated within the Galerkin approximation em-

ployed in this paper. We obtain

SNE
ΓΓ (q̃, Ra)

q̃→0−−−→ kBTξ3
ρβ2L4

Ra
P 2

0 (ψ + PrRTRDRa)

LeΛ4 − ψP 2
0Ra

. (55)

In Figure 2, for the case of large and negative Ra num-
ber, a small dip in the amplitude of the nonequilibrium
fluctuations appears for q̃ values close to the ones where,
for positive Ra, there appears the maximum associated
with the stationary convective instability. It is difficult to
assess whether such a small dip is real or is an artifact of
the Galerkin approximation. Further work will be neces-
sary to clarify this point.

7 Small-Lewis-number approximation for

ψ > 0

In the previous section, we have shown how one can derive
complete expressions for the nonequilibrium structure fac-
tor for arbitrary values of Le, Pr and Ra. However, even
with our simple Galerkin approach, such expressions are
rather long and complicated; thus a practical and simple
approximation would be useful. To obtain such a simple
approximation, as usual [35], we take advantage of the
separation in order of magnitude of the various diffusivi-
ties, since for commonly used liquid mixtures ν À aÀ D.
Mathematically, we consider Le = O(ε) and Pr = O(ε−1)
in some small parameter ε. Additionally it should be re-
called that the Rayleigh number is proportional to ν−1,
so that Ra = O(ε). This kind of approximation means
considering our system subjected to a given value of ∇T0

(always below the instability), and taking the leading term
in the small parameter ε. Following previous authors [36],
we refer to this approximation scheme as a small-Lewis-
number approximation. For instance, if we replace in equa-
tions (35) and (36), Pr by Pr/ε, Le by Le ε, and Ra by
Ra ε, expanding in ε, we readily obtain

1− Ra

Rs(q)
= 1− P 2

0ψRa

B(q̃) Le
+O(ε), (56a)

1− Ra

Ro(q̃)
= 1 +O(ε). (56b)

Of course, we recognize in the LHS of equations (56) the
denominators appearing in the general expression of the
amplitude of nonequilibrium fluctuations, equation (44).
We conclude from equation (56) that, in zeroth-order
approximation, the divergence associated with the Hopf
bifurcation disappears, while the divergence associated
with Rayleigh bifurcation remains. Thus, our small-Lewis-
number approximation neglects the oscillatory instability,
since there is no divergence when Rac,o is approached.
Next, we perform the same kind of expansion for the am-
plitudes of the Rayleigh and Hopf fluctuations in the ζ-
variable. The leading terms are

S
(s)
ζζ (q̃, Ra) = O(ε−1), S

(o)
ζζ (q̃, Ra) =O(1). (57)
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In this expansion the dimensionless ratios, RD and RT ,
are taken as O(1). From equations (56) and (57), we con-
clude that the amplitude of the Hopf nonequilibrium ζ
fluctuations is negligible compared to the amplitude of
the Rayleigh nonequilibrium ζ fluctuations. Performing
similar expansions for the amplitudes of the temperature
fluctuations, and for the amplitudes of the T -ζ cross fluc-
tuations, we find that they contribute, at most, as O(1).
Therefore the dominant contribution to the nonequilib-

rium concentration fluctuations is given by S
(s)
ζζ (q̃, Ra) in

this small-Lewis-number limit. Neglecting any other con-

tribution, expanding S
(s)
ζζ (q̃, Ra) up to O(ε−1) and the cor-

responding denominator (56a) up to O(ε), and, finally,
substituting ε = 1, we obtain a rather simple expres-
sion for the amplitude of the nonequilibrium concentration
fluctuations:

SNE
ΓΓ (q̃, Ra) =

kBTξ3
ρβ2L4

P 2
0Ra

LeB(q̃)
[ψ + PrRTRDRa]

1− P 2
1Ra

B(q̃)C1(q̃)
[1 + ψC3(q̃)]

, (58)

where C3(q̃) was defined in equation (33). Approxima-
tion (58) exhibits the correct asymptotic behaviors for
both large and small q̃. Thus, it reaches a finite nonzero
limit at q̃ → 0 and it is proportional to q̃−4 for large q̃.
The proportionality coefficient of the large q̃ limit, similar
to the one defined in equation (50) for the temperature
fluctuations, is easily evaluated as

S
(NE,∞)
ΓΓ =

kBTξ3
ρβ2L4

P 2
0Ra

Le
[ψ + PrRTRDRa] . (59)

Some further observations about equation (58) are
worth mentioning: First of all, we would like to stress that
the ε-expansion leading to equation (58) is completely sys-
tematic, except for the fact that we expanded the Rayleigh
instability condition in the denominator up to O(ε), in-
stead of retaining only the leading O(1) term. We have
proceeded in this way because it greatly improves the ap-
proximation, particularly for Ra values close to the insta-
bility. A completely systematic small-Lewis-number ap-
proximation would have given the O(1) term of the RHS
of equation (56a) as the denominator in equation (58). A
consequence will be that the maximum (as a function of
q̃) of the nonequilibrium structure factor will always be at
q̃ = 0. As discussed elsewhere [14], this is actually the case
when a strict zeroth-order small-Lewis-number approxi-
mation is applied to the starting Boussinesq equations.
A second consequence will be that the critical Rayleigh
number, thus, the Ra value at which nonequilibrium fluc-
tuations diverge, will be no longer given by equation (35).
However, one should notice that the structure factor, as
given by (58), diverges (for ψ > 0) for the same con-
dition (35) obtained for the linear Rayleigh instability
within our Galerkin approximation [9], which usually hap-
pens at a qc,s 6= 02. This is the main reason why we prefer

2 The comments about the value of q̃c,s after equation (35)
apply here.

to expand the denominator up to O(ε). Also it demon-
strates the advantage of having obtained equation (58)
from the full set of binary Boussinesq equations (4), in-
stead of having adopted the Le→ 0 approximation in the
starting equations.

Secondly, it would evidently be highly desirable to have
explicit analytical expressions for the value of the wave
number of fluctuations maximally enhanced as a function
of the Rayleigh and Lewis numbers, and of the separa-
tion ratio ψ. However, it turns out that such expressions
are quite involved, and a numerical investigation is more
useful. This is the same situation encountered by Lhost
et al. [9] when studying the critical wave number and
Rayleigh number, as discussed in Section 4. Though such
a numerical investigation may be easily performed from
equation (58), we do not pursue this here.

Thirdly, we note that by taking the “bulk” limit (i.e.,
P1 = P2 = C1(q̃) = C3(q̃) = 1, and B(q̃) = q4L4) of
the strictly systematic version of equation (58), we re-
produce exactly a previous result [12] obtained without
taking into account boundary conditions, and starting
from the linearized binary Boussinesq equations within a
small-Lewis-number approximation. This feature of equa-
tion (58) is especially important, because the “bulk” limit
has been experimentally verified for negative Ra and rel-
atively large q values [12].

Finally, it is important to recall that, in deducing equa-
tion (58), we have completely neglected the oscillatory in-
stability. Consequently, equation (58) will be only valid
for ψ > 0. In the case ψ < 0, it happens that, though
the amplitude of the Hopf fluctuations is indeed O(1) in
our small-Le expansion, the corresponding denominator is
almost zero in the neighborhood of some q̃c,s, so that the
actual contribution of the Hopf fluctuations may be very
large. The approximation (58) will be particularly worse
for ψ < 0 and for q̃ values close to the q̃c,o of the Hopf in-
stability. We should also emphasize that neglecting Hopf
fluctuations, as was done in equation (58), is only justi-
fied for the nonequilibrium concentration fluctuations. For
the temperature fluctuations it turns out that the ampli-
tude of the Rayleigh and the Hopf components are of the
same order in ε. Therefore, both have to be taken into
account simultaneously, and this is the reason why the
amplitude of the concentration fluctuations shown in Fig-
ure 2 for Ra = 419 does not exhibit the bimodal distribu-
tion found in Figure 1 for the temperature fluctuations at
the same Ra.

To illustrate the appropriateness of the approxima-
tion (58), we show in Figure 3 a plot of equation (58)
for the same parameter values plotted in Figures 1 and 2,
that is, Le ε = 0.015, Pr/ε = 4.15, and for two of the
values of the Rayleigh number considered in Figure 2:
Ra ε = 419, which is close to the Rayleigh instability,
and for Ra ε = −1.5 × 103, which is a Rayleigh num-
ber of the order employed in some experiments [33]. As
in previous plots, we have normalized the nonequilibrium
structure factors by dividing with the corresponding pro-
portionality constant of the large q̃ asymptotic expansion,

S
(NE,∞)
ΓΓ . Consequently, all plots in the figure share the
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Fig. 3. Various small-Lewis-number approximations to the
nonequilibrium amplitude of concentration fluctuations. Solid
curves represent full Galerkin results, while dashed or dotted
curves represent various small-Le-number approximations (see
text).

same asymptotic limit for large q̃. The solid curves in
Figure 3 correspond to the full Galerkin expression for
the amplitude of the nonequilibrium concentration fluc-
tuations; they are actually the same curves plotted in
Figure 2. The dotted curves correspond to the small-Le
approximation: equation (58) divided by equation (59).
It is evident that the small-Lewis-number approximation
represents the full structure factor quite well; actually for
Ra close to Rac,s it is almost undistinguishable from the
one obtained in the full Galerkin approximation. Addi-
tionally, we have also displayed (dashed curve) the curve
that would be obtained with the systematic small-Le ap-
proximation (i.e., retaining only the term O(1) in the de-
nominator of equation (58)). It is evident that, while for
Ra close to Rac, the approximation (58) clearly improves
the strict Le → 0 approximation, for negative values of
Ra the difference is completely negligible. Actually, for
Ra = −1500 the plot of the strict Le → 0 approxima-
tion was removed from Figure 3, because it was com-
pletely indistinguishable from equation (58) divided by
equation (59).

8 Concluding remarks

In this paper, we have employed a simple Galerkin-
approximation scheme to calculate the nonequilibrium
contribution to the various thermodynamic fluctuations
from the linearized binary Boussinesq equations using re-
alistic boundary conditions. The same set of Galerkin test
functions has been previously employed by Lhost et al. [9]
to successfully study the linear instability problem. Since
the conclusions of our work may be hidden by the long

and cumbersome algebra, we summarize here our main
findings.

First of all, the nonequilibrium fluctuations in any
thermodynamic variable for the binary Boussinesq prob-
lem may be classified as arising from one of the two insta-
bility mechanisms present. So it is possible to distinguish
between nonequilibrium fluctuations associated with the
Rayleigh stationary instability and nonequilibrium fluctu-
ations associated with the Hopf oscillatory instability, see
equation (44).

The amplitude of nonequilibrium temperature fluctu-
ations, as a function of the wave number q of the fluctu-
ations, decays as q−4 for large q (in accordance with the
well-known behavior of the “bulk” structure factor [10])
and goes to zero as q2 for extremely small q, as previously
found for the case of a pure fluid [6]. Between these two
limiting behaviors (and close to the stationary instability
for ψ > 0) the nonequilibrium enhancement of tempera-
ture fluctuations may present two maxima, reflecting the
presence of two competing instability mechanisms.

Due to the different kinds of boundary condition (null
derivative versus null function), the nonequilibrium en-
hancement of concentration fluctuations does not go to
zero at q → 0, but it reaches a constant nonzero limit,
given by equation (55) in our Galerkin approximation. We
conclude that the physical nature of boundary conditions
determines the behavior at q → 0 of the corresponding
nonequilibrium fluctuations and, in principle, may be ex-
perimentally investigated. A consequence is that, for con-
centration fluctuations at ψ > 0, the maximum enhance-
ment is usually at q = 0, except for Ra numbers very close
to the stationary instability.

Finally, we have derived a simple approximation for
the amplitude of the nonequilibrium concentration fluctu-
ations taking advantage of the fact that the Le number is
small for common binary mixtures or solutions. We have
shown that, for ψ > 0, such an approximation is equiva-
lent to neglecting both temperature fluctuations and the
fluctuations associated with the Hopf instability. Our sim-
ple and systematic Le → 0 approximation compares well
with the full nonequilibrium enhancement of the concen-
tration fluctuations for reasonable values of the various
thermophysical properties involved.

We acknowledge useful comments received from David S. Can-
nell, Alberto Vailati and Marzio Giglio.
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