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Abstract. We present, based on fluctuating hydrodynamics, the theory of concentration fluctuations in a
ternary mixture subjected to a stationary temperature gradient, so that composition gradients are present
due to thermal diffusion (Soret effect). We neglect gravity and confinement (boundary conditions) but
consider a completely generic diffusion matrix, including cross-diffusion effects. We find, as in the case of
binary mixtures, an important non-equilibrium enhancement of the concentration fluctuations, which is
proportional to the square of the gradient and inversely proportional to the fourth power of the fluctuations
wave number, q−4. The results of this paper are expected to be asymptotically correct for fluctuations of
large q, while for shorter q gravity and confinement effects need to be incorporated. Comparison with
previous work in the topic is included.

1 Introduction

Transport processes are theoretically studied in the frame-
work of non-equilibrium thermodynamics [1–3]. Non-
equilibrium thermodynamics is not only a theory of fluxes,
it also includes a theory of thermal fluctuations [4,5].
Therefore, a complete understanding of thermodynamic
transport phenomena has to include an analysis of the as-
sociated fluctuations of the relevant thermodynamic prop-
erties. For binary mixtures transport by diffusion and
thermal diffusion, and their associated fluctuations, are
nowadays relatively well understood, a large amount of re-
liable experimental data being available for many binary
systems [5]. Hence, in the last few years the focus has been
shifted to transport phenomena in ternary systems [6–15].

In contrast to binary fluid mixtures, the study of trans-
port phenomena in ternary mixtures still presents some
challenges both experimentally and theoretically. Many of
these are related to the difficulty of performing accurate
measurements of diffusion matrices, in particular of cross-
diffusion coefficients. In this context, it is worth mention-
ing that the European Space Agency (ESA) is currently
performing the DCMIX series of experiments onboard the
International Space Station (ISS) [16,17], where micro-
gravity conditions allow to perform measurements that
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otherwise are not possible on Earth due to convective phe-
nomena.

These current efforts suggest that concentrations fluc-
tuations induced by the Soret effect in ternary mixtures
will become a topic of interest in the coming years, lead-
ing us to embark on some further theoretical analysis of
the nature of these fluctuations. Indeed, in a first pub-
lication [18] the theory of concentration fluctuations in
a ternary mixture in equilibrium was reviewed, and ex-
pressions for the correlation matrix based on fluctuating
hydrodynamics [19,20] were presented.

We note that previous works on equilibrium fluctua-
tions in ternaries [21–24] evaluated these correlation func-
tions on the basis of the Mountain method of arbitrary
initial conditions [25,26], that is the most popular in
books dealing with thermodynamic fluctuations [27–29].
Expressions obtained by following any of these two alter-
native paths fully agree for equilibrium systems, includ-
ing ternary mixtures [18]. However, although not gener-
ally known, only fluctuating hydrodynamics can be ex-
tended to deal with fluctuations in systems that are out
of global equilibrium [5]. The dynamics of equilibrium and
non-equilibrium fluctuations is the same at large wave
numbers (see a more complete discussion below), while
important differences appear in the fluctuations intensity.
Fluctuating hydrodynamics include a natural way of eval-
uating the intensity of fluctuations (a local fluctuation-
dissipation theorem), while the arbitrary initial condition
method relies on some external input. For equilibrium
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systems, statistical physics and equilibrium thermody-
namic potentials naturally provide such an input [25,
26]. However, there are not out-of-equilibrium thermody-
namic potentials that everybody agrees on, and the Moun-
tain method [25,26] cannot be readily extended to out-of-
equilibrium situations.

Consequently, as a first step, we reworked the theory
of equilibrium fluctuations in ternaries, but based on fluc-
tuating hydrodynamics [18]. We are now in the position
of taking a second step, and consider how thermal fluctu-
ations spectra are affected by the presence of a stationary
composition gradient. This same problem has been ad-
dressed recently by Balakrishnan et al. [30], but they only
consider a particular diffusion matrix, adequate for the
gas mixture they were performing computer simulations
on. Here we shall consider a generic diffusion matrix, and
adopt approximations satisfactory for the liquid state.

We proceed by first presenting in sect. 2 the equa-
tions of fluctuating hydrodynamics for a ternary system
subjected to a stationary temperature gradient, in an ap-
proximation valid for liquid mixtures. In sect. 3 we then
explain how a solution to the fluctuating hydrodynamic
equations can be obtained in “bulk”, without accounting
for boundary conditions of the fields. In sect. 4 we present
the main results of the paper, giving explicit expressions
for the time correlation matrix of the composition fluctu-
ations. Our main conclusions are summarized in sect. 5.

2 Fluctuating hydrodynamics of a ternary
mixture

In a ternary mixture, there are two independent concen-
trations c1 and c2 that we take as mass fractions. Hence,
there are two independent diffusion fluxes, J1 and J2,
and Fick’s law in isotropic systems is expressed by a 2× 2
diffusion matrix D. Similarly, there exist two thermodiffu-
sion coefficients, D′

T1 and D′
T2, so that in the simultane-

ous presence of temperature and concentrations gradients,
diffusion fluxes are expressed as

J1 = −ρ (D11∇c1 + D12∇c2 + D′
T1∇T ) ,

J2 = −ρ (D21∇c1 + D22∇c2 + D′
T2∇T ) , (1)

with Dij the components of the diffusion matrix

D =
[
D11 D12

D21 D22

]
, (2)

where SI units of m2 s−1 are used, and ρ is the mass den-
sity of the mixture. Here we consider a completely general
diffusion matrix, the Dij values being restricted only by
generic symmetry properties [2].

In this paper we consider a ternary liquid mixture sub-
jected to a uniform stationary temperature gradient ∇T ,
of magnitude ∇T , in the direction of the z-axis. If one
assumes the various diffusion and thermodiffusion coeffi-
cients to be constant, the system evolves to a stationary
state characterized by vanishing diffusion fluxes. Hence,

Soret effect induces the appearance of steady concentra-
tion gradients that for isotropic mixtures are parallel (or
antiparallel) to the temperature gradient, and whose mag-
nitudes can be obtained from eq. (1) as[

∇c1

∇c2

]
= −D−1

[
D′

T1
D′

T2

]
∇T. (3)

Borrowing nomenclature from one-component fluids, we
refer to this state as the “conductive” state. Since we ne-
glect here the effects of gravity, the conductive state is
stable.

The purpose of this paper is to study concentration
fluctuations around the non-equilibrium steady conduc-
tive state given by eq. (3). Initially, this is a complicated
problem for which one has to consider velocity, density,
temperature and two concentration fluctuations, leading
to a system of seven coupled partial differential equations.
However, not all the couplings are equally strong and,
in the end, we are interested only in the fluctuations of
the two concentrations. Thus, it is quite advantageous to
adopt a series of approximations from the beginning, be-
fore attempting any detailed calculation. This approach,
already adopted by other researchers in the field [18,24,
30], greatly simplifies the problem while emphasizing the
physically most relevant terms. Hence, we adopt the fol-
lowing approximations:
1. Neglect Dufour effect, that is only relevant for gas mix-

tures.
2. Assume incompressible flow.
3. Linearize the equations on the fluctuating fields.
4. Take mass density and all other thermophysical prop-

erties to be constant, evaluated at temperature and
concentrations representative of the full layer.

5. Adopt a large Lewis number approximation [31–33], or
a large Schmidt number approximation [30] as alter-
natively referred to by other authors.

In the case of ternary mixtures, the large Lewis number
approximation means that both the thermal diffusivity a
and the kinematic viscosity ν are much larger than the
two eigenvalues of the diffusion matrix [18,24]. Similarly
to the case of binary mixtures [31–33], in the limit of large
Lewis (and Schmidt) numbers any coupling between the
concentration fluctuations (δc1 and δc2 for a ternary mix-
ture) and the temperature fluctuations vanishes [18,24].
Only if concentration gradients exist, there is a coupling
with the component of the velocity fluctuations parallel to
the gradient. Then, after all the simplifications mentioned
above, the fluctuating hydrodynamics equations for the
fluctuations around the conductive state of eq. (3) become

0 = ν∇4δvz +
1
ρ

[
∇ × ∇ × (∇δΠ)

]
z
,

∂δc1

∂t
= D11∇2δc1 + D12∇2δc2 − δvz ∇c1 −

1
ρ
∇ · δJ1,

∂δc2

∂t
= D21∇2δc1 + D22∇2δc2 − δvz ∇c2 −

1
ρ
∇ · δJ2.

(4)
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According to fluctuating hydrodynamics, the linear phe-
nomenological laws for the dissipative fluxes are supple-
mented with random contributions reflecting the stochas-
tic nature of molecular motion [5,19]. Hence, eqs. (4) con-
tain a stochastic stress tensor δΠ(r, t), and two stochastic

diffusive fluxes, δJ1(r, t) and δJ2(r, t). Subscript z in the
first of eqs. (4) refers to the z-component of the vector be-
tween brackets.

We note that eqs. (4) are the same working equations
of Balakrishnan et al. [30], with several differences: First,
here we include the random diffusive fluxes, δJ1 and δJ2,
that were neglected elsewhere [30]. Second, on the left-
hand side (LHS) of the first of eqs. (4) we neglect the tem-
poral derivative of the velocity fluctuations. This is con-
gruent with the large Lewis number approximation [31–
33] and valid for liquids, while for the gases considered
by ref. [30] this derivative must be retained. Of course,
an additional difference with Balakrishnan et al. [30] is
that eqs. (4) are for a generic diffusion matrix, see eq. (2),
and not just for the particularly restrictive case consid-
ered by them [30]. We finally note in eqs. (4) that the
stationary composition gradient couples the spatiotempo-
ral evolution of the concentration fluctuations with the
fluctuations in the velocity component parallel to the gra-
dient. Hence, in contrast to equilibrium, the three equa-
tions must be solved simultaneously. As further discussed
below, this coupling, that does not exist in equilibrium,
will be responsible of a giant enhancement of the concen-
tration fluctuations.

To complete the setting of the problem, one has to
specify the statistical properties of the random dissi-
pative fluxes. They are: zero average, 〈δΠnm(r, t)〉 =
〈δJ1,n(r, t)〉 = 〈δJ2,m(r, t)〉 = 0; and correlation func-
tions given by the fluctuation-dissipation theorem [5,18,
19], which for incompressible flows reads

〈δΠnm(r, t) · δΠkl(r′, t′)〉 = 2kBTη (δnkδml + δnlδmk)
×δ(r − r′) δ(t − t′) (5)

for the random stress tensor, and [18]

〈δJ∗
i,n(r, t) δJj,m(r′, t′)〉 = 2kBLij δnm δ(t − t′) δ(r − r′)

(6)
for the random diffusive forces. In accordance with the
Curie principle, the random stress is uncorrelated with the
random diffusion fluxes. In eqs. (5), (6) kB is Boltzmann
constant, η the shear viscosity, Lij the elements of the On-
sager matrix L (with L12 = L21). Here and elsewhere in
this paper, the indices i, j span the two independent mix-
ture components i, j ∈ {1, 2}, while the indices n,m, k, l
span the three spatial coordinates n,m, k, l ∈ {x, y, z} (we
are implicitly assuming that the system is isotropic).

Initially, in a state out of global equilibrium, temper-
ature and thermophysical properties appearing as prefac-
tors in eqs. (5), (6) are locally dependent. This has some
effect on the fluctuations, as theoretically analyzed for
some simple cases [34–38] and also experimentally inves-
tigated [39]. However when, like in eqs. (4) coupling(s)
between fluctuating fields are present at linear order, the

effects of the locally dependent prefactors are fully negli-
gible [38], being of the same order as, for instance, those
from a locally dependent diffusion coefficient. Hence, we
assume the prefactors in the fluctuation-dissipation theo-
rem (5), (6) to be constants, as evaluated at a single point
representative of the full layer.

The Onsager matrix L of phenomenological coefficients
in eq. (6) is the same that, in the general context of non-
equilibrium thermodynamics, linearly relates the dissipa-
tive fluxes (J1 and J2) with the thermodynamic “forces”
associated to these fluxes in the expression of the en-
tropy production. For the case of diffusion, these ther-
modynamic forces are ∇(μ̂1/T ) and ∇(μ̂2/T ) [1], with
μ̂1 = μ1 − μ3 being the chemical potential difference be-
tween component 1 of the mixture and component 3, and
the same for μ̂2 = μ2 −μ3. Component 3 is the one whose
mass fraction concentration is taken as a dependent vari-
able, i.e., c3 = 1 − c1 − c2. Consistent with the use of
concentrations in terms of mass fractions, the chemical
potentials are expressed here per unit mass, while in other
works [24] chemical potentials per mole have been used.

As is well known [2,21,24], the experimentally accesi-
ble diffusion matrix D is proportional to the product of the
Onsager matrix L by the equation of state (EOS) matrix
G of derivatives of chemical potential differences

Gij =
(

∂μ̂i

∂cj

)
T

. (7)

In particular, we have

[
D11 D12

D21 D22

]
=

1
ρT

[
L11 L12

L21 L22

]
⎡
⎢⎢⎢⎣

(
∂μ̂1

∂c1

)
T

(
∂μ̂1

∂c2

)
T(

∂μ̂2

∂c1

)
T

(
∂μ̂2

∂c2

)
T

⎤
⎥⎥⎥⎦ . (8)

Note that we follow the nomenclature of de Groot and
Mazur [1] instead of the nomenclature of Taylor and Kr-
ishna [2], and that the Onsager matrix L as defined here
is ρT times the inverse of the Onsager matrix H as used
by others [24]: H = ρTL−1.

Because of a Maxwell thermodynamic relation, the
EOS matrix is symmetric [2,24]. From the symmetry of
G the following relation between Onsager and diffusion
coefficients can be derived:

L12(D11 − D22) − D21L11 + D12L22 = 0. (9)

In addition, the symmetry of the Onsager matrix implies
the following relation between diffusion coefficients and
chemical potential derivatives [2,21,24]:

−D12G11 + G12D11 = −D21G22 + G12D22, (10)

that is independent of whether one uses the convention of
de Groot and Mazur [1] or of Taylor and Krishna [2] for
the Onsager matrix.



Page 4 of 7 Eur. Phys. J. E (2014) 37: 77

3 Bulk solution

The goal of fluctuating hydrodynamics is to solve the sys-
tem of stochastic differential equations (4), and to obtain
expressions for the correlation functions of the two fluctu-
ating concentrations from the correlation functions of the
random dissipative fluxes, eqs. (5) and (6). In general, such
a procedure must include boundary conditions for the fluc-
tuating fields which, as discussed elsewhere at length [5],
strongly modify the spectrum of the fluctuations at small
q. Furthermore, as further discussed elsewhere [40], the
presence of gravity also affects the fluctuations at interme-
diate values of q. These effects are a direct consequence of
the non-equilibrium fluctuations having, generically, long
spatial range [38]. In any case, it is also known that a
bulk calculation, that does not take into account bound-
ary conditions nor gravity, gives the correct asymptotic
large q behavior of both the decay rate and the intensity
of the fluctuations [5]. Hence, we proceed next with such
a bulk calculation, that will be highly useful as a compar-
ison reference for future work incorporating both gravity
and boundary conditions.

If one does not consider boundary conditions, fluctua-
tions of any length or time scales are allowed in the system.
Then, to solve eqs. (4) one performs full spatiotemporal
Fourier transforms, so as to obtain

M(ω, q)

⎡
⎣δvz(ω, q)

δc1(ω, q)
δc2(ω, q)

⎤
⎦ =

⎡
⎣Fz(ω, q)

F1(ω, q)
F2(ω, q)

⎤
⎦ , (11)

where ω is the frequency and q the wave vector of the
fluctuations, and Fα(ω, q) represents the (Fourier trans-
formed) random forcing terms on the right-hand side
(RHS) of eqs. (4), namely

Fz(ω, q) = −i εznkεkml
qn

ρ
qmqp δΠpl(ω, q),

F1(ω, q) = −i
qn

ρ
δJ1,n(ω, q),

F2(ω, q) = −i
qn

ρ
δJ2,n(ω, q), (12)

where εnmk is the Levi-Civita permutation tensor, sub-
script p ∈ {x, y, z} and sum over repeated indices is un-
derstood. Finally, in eq. (11), the linear response matrix
M(ω, q) is given by

M(ω, q) =

⎡
⎣−νq4 0 0
∇c1,0 iω + D11q

2 D12q
2

∇c2,0 D21q
2 iω + D22q

2

⎤
⎦ . (13)

Next, the solution for the fluctuating fields in eq. (11)
is obtained by inverting the matrix M(ω, q) defined by
eq. (13). To express the solution it is convenient to sepa-
rate the random forcing on the RHS of eq. (11) into two
parts, namely:⎡

⎣Fz(ω, q)
F1(ω, q)
F2(ω, q)

⎤
⎦ =

⎡
⎣ 0

F1(ω, q)
F2(ω, q)

⎤
⎦ +

⎡
⎣Fz(ω, q)

0
0

⎤
⎦ , (14)

noticing that, since the random stress is uncorrelated with
the random diffusion fluxes, the first random forcing vec-
tor on the RHS of eq. (14) will also be uncorrelated with
the second. The decomposition (14) also splits the solution
to eq. (11) into two additive components, namely

δc1(ω, q) = δcE
1 (ω, q) + δcNE

1 (ω, q),

δc2(ω, q) = δcE
2 (ω, q) + δcNE

2 (ω, q), (15)

where the superscripts “E” and “NE” stand for Equilib-
rium and Non-Equilibrium, respectively. Indeed, it turns
out that the “E” components in eq. (15) are exactly the
same as if the system were at equilibrium at tempera-
ture and composition representative of the full layer, the
same temperature and composition at which density and
other transport properties are evaluated in eqs. (4) and
in the prefactors of eqs. (5), (6). Moreover, because the
two random forces in eq. (14) are uncorrelated, the “E”
and “NE” components in eq. (15) will be uncorrelated
too. Hence, we conclude that the correlation functions be-
tween fluctuating concentrations split additively into equi-
librium and non-equilibrium contributions. The equilib-
rium part is exactly the same investigated in a previous
publication [18] (evaluated at representative temperature
and composition), so that we skip it here and from now
on we investigate the non-equilibrium part only.

But, before focusing on the non-equilibrium part,
we should note that a similar decomposition to that of
eqs. (14) and (15) can be done for binary mixtures. In that
case, a more complete investigation that includes grav-
ity [40], shows that the simultaneous presence of gravity
and a gradient affects the decay rate of the concentra-
tion fluctuations, even of what is called the equilibrium
component. The gravity-induced decay rate modification
is particularly important at small wave numbers q [40],
being negligible at large q. This has been experimentally
checked in a number of experiments in normal gravity [39,
41–45] and in micro-gravity [46,47]. We expect something
similar in ternaries, although a more comprehensive in-
vestigation is left for future work. In any case, as already
commented, the theory presented here shall give the cor-
rect asymptotic large q behavior of a more complete devel-
opment that would include gravity, and even confinement.
Actually the effect of confinement on the dynamics for a
binary mixture has not been investigated until now.

Hence, we concentrate next in our goal of obtaining
the non-equilibrium part of the correlations among the
fluctuating concentrations. For that we need the correla-
tion function 〈F ∗

z (ω, q) Fz(ω′, q′)〉 of the random forcing,
which can be obtained from its definition (12) and the cor-
responding fluctuation-dissipation theorem in real space,
eq. (5). Such a calculation has been presented several times
in the literature [5,32,40], hence, we display here only the
final result

〈F ∗
z (ω, q) Fz(ω′, q′)〉 = 2kBT

ν

ρ
q2
‖q

4

×(2π)4δ(ω − ω′) δ(q − q′), (16)
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where q2
‖ = q2

x + q2
y is the component of the fluctuations

wave vector q in the plane parallel to the walls (perpen-
dicular to the gradient).

4 Non-equilibrium concentration fluctuations

4.1 Decay rates

The bulk solution for the non-equilibrium part of the fluc-
tuating concentrations requires the inversion of the linear
response matrix M(ω, q) in eq. (11), that depends criti-
cally on its determinant. The ω-roots of the determinant
are the decay rates of the fluctuations. Here, as we ne-
glected the temporal derivative of the velocity fluctuations
on the LHS of eq. (4), there are only two decay rates, D̂1q

2

and D̂2q
2, defined by

|M(ω, q)| = −νq4 [iω + D̂1q
2] [iω + D̂2q

2], (17)

where |M(ω, q)| represents the determinant of the linear
response matrix. Simple algebra shows that the decay
rates calculated from eq. (13) are exactly the same as in
equilibrium. That is, the two eigenvalues of the diffusion
matrix [10,11,15,18,24], namely

D̂1,2 = 1
2

[
D11 + D22 ±

√
(D11 − D22)2 + 4D12D21

]
,

(18)
with the plus sign applying to D̂1 and the minus to D̂2.
Hence, with the approximations adopted in this paper the
decay rates of the non-equilibrium composition fluctua-
tions are the same as if the system were at equilibrium
at representative temperature and composition. This con-
firms the comments in the Introduction that most rele-
vant differences between equilibrium and non-equilibrium
fluctuations are in the statics (intensity) and not in the
dynamics.

We do not want to be too repetitive, but if gravity
and/or confinement are included in the theory, one expects
differences with eq. (18), in particular a mixing between
the two diffusive modes (18) and the viscous mode that
will depend on the wave number q [40]. Such differences
will be more pronounced at small q, while at larger q,
eq. (18) will still give the correct asymptotic behavior of
the decay rates.

4.2 Correlation matrix

The non-equilibrium part of the composition fluctuations
is conveniently expressed in terms of a correlation ma-
trix CNE(ω, q), with components CNE

ij (ω, q) that we define
by [18]

〈δc∗i (ω, q) δcj(ω′, q′)〉NE

= CNE
ij (ω, q) (2π)4 δ(ω − ω′) δ(q − q′). (19)

Some straightforward but long calculations show that the
correlation matrix can be expressed as the sum of two
diffusion modes

CNE(ω, q) =
ρkBT

ν

q2
‖

q6

[
ANE

1

2D̂1q
2

ω2 + D̂2
1q

4

+ANE
2

2D̂2q
2

ω2 + D̂2
2q

4

]
. (20)

Consequently, the corresponding time correlation matrix
is expressed as the sum of two exponentials

CNE(q, t) =
ρkBT

ν

q2
‖

q6

[
ANE

1 e−D̂1t + ANE
2 e−D̂2t

]
. (21)

For an explicit and compact expression of the ampli-
tude matrices, ANE

1 and ANE
2 , we found convenient to in-

troduce a “gradient” matrix defined in terms of the sta-
tionary concentration gradients as

X =
[
∇c1 ∇c1

∇c2 ∇c2

]
. (22)

Then, the amplitude matrices in eq. (20) are simply given
by

ANE
1 =

D̂1 XX� − D̂2|D| D−1XX�(D−1)�

2(D̂2
1 − D̂2

2)
, (23)

where |D| indicates the determinant of the diffusion ma-
trix. The expression for ANE

2 is obtained by exchanging
the subscripts 1 and 2 in eq. (23) (not in the expressions
of X or D).

We note that, in general, one also obtains a
nonzero imaginary part for the cross-correlation
〈δc∗1(ω, q) δc2(ω′, q′)〉NE in the matrix CNE(ω, q),
which was not reported in eqs. (20)-(23). Such imaginary
part, although mathematically present, is physically
un-relevant. In a typical experiment one would observe
the correlation function of refractive index fluctua-
tions, δn(r, t), at a given wavelength, that is related to
composition fluctuations by

δn(r, t) =
(

∂n

∂c1

)
δc1(r, t) +

(
∂n

∂c2

)
δc2(r, t). (24)

Hence, in the (Fourier transformed) autocorrelation func-
tion 〈δn∗(ω, q) δn(ω′, q′)〉, the concentrations cross corre-
lation will appear as a term

[〈δc∗1(ω, q) δc2(ω′, q′)〉 + 〈δc∗2(ω, q) δc1(ω′, q′)〉]
so that any imaginary part does not contribute and is
unobservable. Notice that if, hypothetically, index of re-
fraction fluctuations at two different wavelengths were ob-
served simultaneously, their cross-correlation cannot be
measured, since light of different wavelengths does not
interfere. For the case of observing the cross-correlation
between two thermodynamic properties (that, in general,
will be expressed as derivatives of some thermodynamic
potential) a Jacobian appears, that cancels as a conse-
quence of some Maxwell relation.
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4.3 Statics

Application of double inverse Fourier transforms in the fre-
quencies to eq. (20) defines an equal-time non-equilibrium
correlation matrix, that gives the intensity of the fluctua-
tions. Namely

〈δc∗i (q, t) δcj(q′, t)〉NE = CNE
ij (q) (2π)3 δ(q − q′), (25)

with

CNE(q) =
1
2π

∫ ∞

−∞
CNE(ω, q) dω = CNE(q, t = 0).

Simple integration of eq. (20) and use of the explicit ex-
pressions for the amplitude matrices gives the relatively
compact result

CNE(q) =
ρkBT

2ν(D11 + D22)

q2
‖

q6

×
[
XX� + |D| D−1XX�(D−1)�

]
. (26)

One observes in eq. (26) the q−4 dependence for wave
vectors perpendicular to the gradient and large q. This
q−4 dependence demonstrates the spatial long-range na-
ture of non-equilibrium fluctuations and it is also found
in one-component fluids [48,49] and binary mixtures [50].
Again, incorporation of gravity and confinement is ex-
pected to modify this dependence, particularly at interme-
diate and small wave numbers. However, even with gravity
and boundary conditions, eq. (26) will still give the correct
q → ∞ asymptotic limit.

One also observes in eq. (26) that the amplitude of the
correlation matrix, CNE(q), is proportional to the square
of the gradients, namely to the product of matrices

XX� = 2
[

∇c2
1 ∇c1∇c2

∇c2∇c1 ∇c2
2

]
. (27)

For the case of Soret-induced gradients one has to substi-
tute eq. (3) into eq. (27). Unfortunately, this procedure
does not lead to expressions more compact for CNE than
eqs. (21) or (26), although it is obvious that for Soret-
induced composition gradients one has an overall ∝ (∇T )2
dependence of CNE. This gradient square proportionality
is another typical feature of non-equilibrium fluctuations,
as it is also found in one-component fluids [47] and binary
mixtures [46].

5 Conclusions

In the present work fluctuating hydrodynamics has been
utilized to develop the theory of concentration fluctu-
ations in a ternary mixture subjected to a stationary
temperature gradient. The most important result is the
appearance of a non-equilibrium part, which must be
added to the equilibrium contribution that would be ob-
tained by simple substitution of average temperature and

compositions in the expression of the correlation matrix
of an isothermal ternary mixture. Although the local-
equilibrium hypothesis is valid for the average values of
the thermodynamic variables, that continue to be related
by equilibrium EOS, it is no longer valid for their fluctua-
tions, which contain terms that do not exist in equilibrium.

Equation (21) for the non-equilibrium time correla-
tion matrix (dynamics of the fluctuations) and eq. (26)
for the total intensity (statics) have been derived as the
main results of this work. Since gravity and confinement
have been neglected, the results of this paper are asymp-
totically correct for fluctuations of large wave vector q,
while for smaller q other effects need to be incorporated.
Overall, the obtained results appear to be comparable to
the case of a binary mixture, and the amplitude of non-
equilibrium concentration fluctuations is proportional to
the square of the gradient and inversely proportional to
the fourth power of the fluctuations wave number, q−4.
This last feature means that, depending on the value of
q, the fluctuations of non-equilibrium origin can have an
intensity much larger than the equilibrium fluctuations
(giant fluctuations [30,41]).

Here a fully generic diffusion matrix has been consid-
ered, see eq. (2), while previous investigations by Balakr-
ishnan et al. [30] considered a particularly restricted form
for the diffusion matrix only. Although not fully evident,
it can be shown that, for the particular diffusion matrix
investigated elsewhere [30], the current eq. (26) reduces to
the equation for 〈(δŶ)(δŶ)∗〉neq (in their alternative nota-
tion) after Eq. (B4) in the second appendix of [30]. Hence,
we generalize previous results, while expressing them in a
more compact and convenient form.

Finally, we mention that the current growing interest
in the measurement of thermal diffusion in ternary mix-
tures [6–15], including space experiments [16], means that
it is reasonable to foresee for the coming years experiments
measuring composition fluctuations in ternaries subjected
to stationary temperature gradients, whether by dynamic
light scattering [51] or by shadowgraphy [44]. The results
presented in this paper are intended as a starting point
for the analysis of these future experiments.
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5. J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctu-
ations in Fluids and Fluid Mixtures (Elsevier, Amsterdam,
2006).

6. M.M. Bou-Ali, J.K. Platten, J. Non-Equilib. Thermodyn.
30, 385 (2005).

7. A. Leahy-Dios, M.M. Bou-Ali, J.K. Platten, A. Firooz-
abadi, J. Chem. Phys. 122, 234502 (2005).

8. D.A. Ivanov, T. Grossmann, J. Winkelmann, Fluid Phase
Equilib. 228-229, 283 (2005).

9. D.A. Ivanov, J. Winkelmann, Int. J. Thermophys. 29, 1921
(2008).

10. T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54,
405 (2009).

11. T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54,
485 (2009).

12. P. Blanco, M.M. Bou-Ali, J.K. Platten, D.A. de Mezqúıa,
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