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In this Letter, we consider the fluctuation-induced force exerted between two plates separated by a

distance L in a fluid with a temperature gradient. We predict that for a range of distances L, this

nonequilibrium force is anomalously large compared to other Casimir forces. The physical reason is that

correlations in a nonequilibrium fluid are generally of longer range than other correlations, even than those

near an equilibrium critical point. This giant Casimir force is related to a divergent Burnett coefficient that

characterizes an Onsager cross effect between the pressure and the temperature gradient. The predicted

Casimir force should be detectable with currently available experimental techniques.
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Fluctuation-induced forces are common in nature [1].
The well-known prototype of such a force is the Casimir
force between conducting plates due to quantum fluctua-
tions of the electromagnetic (EM) field [2]. In this case the
overall energy scale is set by Planck’s constant @, and the
force per unit area, or pressure, is

pEM ¼ � �2
@c

240L4
; (1)

where L is the distance between the plates, c is the speed
of light, and the minus sign indicates an attractive force.
More recently, nonequilibrium electromagnetic fluctua-
tions when the two plates are at different temperatures
have been considered [3,4]. Other commonly discussed
induced forces involve thermal fluctuations where the en-
ergy scale is set by kBT, where kB is Boltzmann’s constant
and T the temperature [1]. These thermal forces are impor-
tant when the fluctuations are large and long range. The
first instance of this type was noticed by Fisher and de
Gennes, who considered finite-size corrections to the free
energy in a fluid near a critical point [5]. One then finds a
scale-dependent force per unit area, or critical Casimir
pressure pc that is given by [6]

pc ¼ kBT

L3
�ðL=�Þ; (2)

where �ðxÞ is a finite-size scaling function with � the
correlation length. One defines a Casimir amplitude � ¼
limx!0�ðxÞ, which for the Ising-like universality class may
vary from �0:01 to þ2 depending on the boundary con-
ditions [7]. Note that at larger L, jpcj> jpEMj. That is, the
fluctuations that cause pc are effectively of longer range
than those that cause pEM. Similar Casimir forces have
been predicted to exist generally in equilibrium systems
when long-range correlations are present due to the exis-
tence of Goldstein modes. The systems investigated
include superfluid helium and liquid crystals [1].

It has by now been well established that thermal fluctu-
ations in fluids in nonequilibrium steady states are anom-
alously large and very long range. The most studied case is
a quiescent fluid in the presence of a uniform temperature
gradient, rT. Then the nonequilibrium contribution to the
temperature fluctuations as a function of the wave number
k is given by [8]

hj�TðkÞj2iNE ¼ kBT

�DTð�þDTÞ
ðkkrTÞ2

k6
: (3)

Here the temperature gradient is taken to be in the z
direction, the plates are located at z ¼ 0, L, and kk is

the magnitude of the component of the wave vector k in
the direction parallel to the plates. In this equation, � is the
mass density, DT the thermal diffusivity, and � the kine-
matic viscosity. This result for the temperature fluctuations
at hydrodynamic length scales was predicted a long time
ago [9,10] and has been verified accurately by light scat-
tering [11,12] and by shadow-graph experiments [13].
From Eq. (3) one sees that the intensity of the temperature
fluctuations diverges as k�4 when k ! 0. The purpose of
this Letter is to show that, as a consequence, these non-
equilibrium temperature fluctuations will cause a Casimir
effect that is even more significant than the one induced by
critical fluctuations, whose intensity only varies as k�2

[14]. Specifically, for the scale-dependent nonequilibrium
fluctuation contribution pNE to the pressure, we have found

pNE ¼ cpkBT
2ð�� 1Þ

96�DTð�þDTÞ
�

�
1� 1

�cp

�
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@T

�
p
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�2

�
@�

@T

�
p

�
L

�rT
T

�
2
: (4)

Here cp is the isobaric specific heat capacity, � is the ratio

of the isobaric and isochoric heat capacities, and � is the
thermal expansion coefficient. Note that for a fixed tem-
perature gradient, this Casimir force actually grows with
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increasing L. This anomalous behavior is a reflection of the
very long spatial correlations in a fluid in a nonequilibrium
state. Experimentally, it may be easier to measure the L
dependence of the nonequilibrium Casimir pressure by
fixing the temperature difference �T between the two
plates and varying the distance L. If a uniform temperature
gradient is present, thenrT ¼ �T=L, and for fixed�T the
nonequilibrium Casimir effect decreases as L�1 for larger
L. Also note that pNE can be positive or negative.

To understand the physical origin of Eq. (4), we start
with the general observation that a temperature gradient
can cause normal stresses or pressures if nonlinear effects
are taken into account. Specifically, we consider a non-
linear Onsager cross effect characterized by a nonlinear
kinetic coefficient that we define as �NL. On these general
grounds, one expects a nonequilibrium contribution to the
pressure that is given by

pNE ¼ �NLðrTÞ2: (5)

In standard transport theory, �NL is referred to as a
nonlinear Burnett coefficient [15]. It is well known that
these transport coefficients, which go beyond ordinary
Navier-Stokes transport coefficients, do not exist due to
the presence of long-time-tail (LTT) effects [8,16]. Indeed,
at this order one expects that �NL has a LTT contribution
that diverges linearly with the system size [17,18].
To account for such a LTT contribution, one should con-

sider �NL as the sum of a bare contribution �ð0Þ
NL associated

with short-range correlations, and a divergent contribution

�L due to long-range correlations with a coefficient �ð1Þ
NL.

Substituting �NL ’ �ð0Þ
NL into Eq. (5) yields a pressure effect

associated with short-range correlations. Since the ratio

�ð0Þ
NL=�

ð1Þ
NLLwill be of the order of	=L, where	 is a typical

intermolecular distance, this contribution is small and can
be neglected. Also, such an effect is one of several at
molecular scales, including accommodation of the velocity
and kinetic energy of the molecules with the wall, which do
not satisfy universal laws and should not be characterized

as Casimir effects [6]. However, the substitution of �NL ’
�ð1Þ
NLL into Eq. (5) yields a genuine nonequilibrium Casimir

pressure due to long-range correlations:

pNE ¼ �ð1Þ
NLLðrTÞ2: (6)

Hence, Eq. (4) represents a calculation of the LTT or
divergent part of �NL. It thus follows that a measurement
of the nonequilibrium Casimir pressure pNE will not only
verify the existence of a novel type of Casimir effect, but it
would also be a direct measure of a divergent Burnett
coefficient.

Our main result, Eq. (4), can be derived by two distinct
approaches. The first approach uses a general statistical-
mechanical method [19] to express the normal stress in
terms of a nonequilibrium time-correlation function:

pNE ¼ � 1

kBT
2
rT

Z 1

0
dthJlðtÞJ"ð0ÞiLE: (7)

Here Jl is a microscopic longitudinal stress current, J" is a
microscopic energy current, and the angular brackets
denote an average over an N-particle local equilibrium
(LE) distribution function. This time correlation function
can then be evaluated in what amounts to a mode-coupling
approximation by using techniques developed previously
[20,21]. The chief difference with equilibrium mode-
coupling theory is that in this case one must use hydro-
dynamic modes appropriate for the nonequilibrium steady
state considered here. It also means that the modes are
constructed for a system finite in the z direction. To obtain
an explicit analytic result, we assume stress-free boundary
conditions for the fluctuations. The net result is Eq. (4).
One sees explicitly that this equation is proportional to the
mode-coupling amplitude for the heat conductivity times
the one for the longitudinal, i.e., bulk, viscosity [22]. That
is, the nonequilibrium pressure is an Onsager cross effect
with a divergent �L Burnett kinetic coefficient.
The second method to derive Eq. (4) starts from a non-

linear fluctuating pressure, relating it to the temperature
fluctuations, and then evaluating the temperature fluctua-
tions by, for example, the method of nonequilibrium fluc-
tuating hydrodynamics [23]. It is convenient to consider
the pressure as a function of a fluctuating energy density
eþ �e and a fluctuating number density nþ �n and write
the pressure in terms of the mean values e, n and their
fluctuations �e, �n:

pðeþ �e; nþ �nÞ ¼ pðe; nÞ þ �p: (8)

Taylor expanding this pressure and averaging the result
leads to a fluctuation renormalization of pðe; nÞ. The fluc-
tuations that lead to Eq. (3) arise from a combination of
entropy and transverse velocity fluctuations with vanishing
linear pressure fluctuations [8,9,23]. This implies that to
second order in the fluctuations, the nonequilibrium pres-
sure renormalization is given by

pNE ¼ ðn�Þ2
2

��
@2p

@n2

�
e
� 2w

�
@2p

@e@n

�

þ w2

�
@2p

@e2

�
n

�
hð�TÞ2iNE (9)

with

w ¼
�
@p

@n

�
e

��
@p

@e

�
n
: (10)

In deriving Eq. (9), we have used that vanishing linear
pressure fluctuations imply �e¼�w�n and �n¼�n��T.
To evaluate the temperature fluctuations induced by the
presence of a temperature gradient, one should notice that
the k�4 variation of the temperature fluctuations as a
function of the wave number in Eq. (3) causes large
finite-size effects when the fluid layer is bounded by plates
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separated by a finite distance L. These finite-size effects
have been evaluated both for stress-free boundary condi-
tions [24] and for no-slip boundary conditions [25]. If
we assume stress-free boundary conditions, for which an
explicit analytic expression is available [24], we obtain

hð�TÞ2iNE ¼ 1

V

Z
dxh�TðxÞ2iNE

¼ kBT

48��DTð�þDTÞLðrTÞ2: (11)

Upon substituting Eq. (11) into Eq. (9) and using some
thermodynamic manipulations, we find Eq. (4) again.

To estimate the nonequilibrium Casimir pressure pNE

implied by Eq. (4), we consider as an example liquid
toluene for which accurate light-scattering measurements
of the nonequilibrium temperature fluctuations are avail-
able [11,12]. Using information for the thermodynamic
and transport properties [12,26], we have calculated from
Eq. (4) values of pNE in the case of liquid toluene with
�T ¼ 10 K at an average temperature of 25 �C. In Table I
we compare these values of pNE with values for the elec-
tromagnetic Casimir pressure pEM calculated from Eq. (1),
and the critical Casimir pressure pc ¼ kBT�=L

3 with a
Casimir amplitude � ¼ �0:15 corresponding to periodic
boundary conditions [27], which are conceptually closest
to the stress-free boundary conditions adopted in the
present Letter for the nonequilibrium temperature fluctua-
tions. It is seen that at L ¼ 1 
m, pNE is one order of
magnitude larger than jpcj, and at L ¼ 1 mm it is 7 orders
of magnitude larger than jpcj. In terms of a nonequilibrium
Casimir force per unit area, FNE=A with A ¼ 1 mm2, a
typical value quoted in the literature [6], it means that at
L ¼ 1 
m, FNE ’ 1:5� 10�8 N, and at L ¼ 1 mm,
FNE ’ 1:5� 10�11 N. With modern experimental resolu-
tions approaching femtonewtons [6,28,29], it may even
become possible to measure a nonequilibrium Casimir
effect at a distance L ¼ 1 mm where the more traditional
Casimir effects are unobservable. Another nonequilibrium
Casimir effect can be expected in liquid mixtures where a
temperature gradient induces long-range concentration
fluctuations through the Soret effect [12,30–33].

In deriving Eq. (4) for the nonequilibrium Casimir pres-
sure, we have not included any possible effect of gravity on
the nonequilibrium fluctuations. Gravity does not affect the
intensity of the temperature fluctuations at small and large
wave numbers. However, gravity suppresses temperature

fluctuations at intermediate wave numbers in liquid layers
with a negative Rayleigh number and enhances tempera-
ture fluctuations in liquid layers with a positive Rayleigh
number [34,35]. This means that in liquid layers heated
from above, the nonequilibrium Casimir pressure will be
somewhat smaller, and in liquid layers heated from below,
it will be somewhat larger than that deduced from Eq. (4)
and diverging when the critical value of the Rayleigh
number associated with the onset of convection is
approached. In developing experimental techniques for
measuring the nonequilibrium Casimir effect, it will be
highly desirable to be able to measure not only the magni-
tude of the proposed nonequilibrium Casimir effect but
also its dependence on the distance L, since both quantities
are qualitatively different from those of the more tradi-
tional Casimir effects.
We note that Najafi and Golestanian [36] have consid-

ered a nonequilibrium Casimir effect due to inhomogene-
ous noise correlations in a medium that is otherwise in
local equilibrium. However, it is known that nonequilib-
rium fluctuations arising from inhomogeneous noise cor-
relations are considerably less significant than those arising
from hydrodynamic couplings induced in the fluid by a
temperature gradient [37].
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