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Abstract In recent years it has become evident that fluctuating hydrodynamics predicts that
fluctuations in nonequilibrium states are always spatially long ranged. In this paper we con-
sider the application of fluctuating hydrodynamics to laminar fluid flow, using plane Couette
flow as a representative example. Specifically, fluctuating hydrodynamics yields a stochas-
tic Orr-Sommerfeld equation for the wall-normal velocity fluctuations, where spontaneous
thermal noise acts as a random source.This stochastic equation needs to be solved subject
to appropriate boundary conditions. We show how an exact solution can be obtained from
an expansion in terms of the eigenfunctions of the Orr-Sommerfeld hydrodynamic operator.
We demonstrate the presence of a flow-induced enhancement of the wall-normal velocity
fluctuations and a resulting flow-induced energy amplification and provide a quantitative
analysis how these quantities depend on wave number and Reynolds number.

Keywords Hydrodynamic fluctuations · Laminar fluid flow · Plane Couette flow ·
Orr-Sommerfeld equation

1 Introduction

The theory of fluctuations in fluids that are in thermodynamic equilibrium is well developed
on the basis of Landau’s fluctuating hydrodynamics [1, 2]. More recently, it has been verified
that fluctuating hydrodynamics can be extended to deal with thermally excited fluctuations
in fluids in stationary nonequilibrium states. Specifically, fluctuating hydrodynamics has
been used to examine in considerable detail temperature and concentration fluctuations in
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fluids and fluid mixtures subjected to an externally imposed temperature gradient or concen-
tration gradient, as reviewed in a recent monograph [3]. These studies have revealed that the
presence of such gradients causes nonequilibrium amplification of the fluctuations that are
always long ranged, even far away from any hydrodynamic instability. As a consequence,
nonequilibrium fluctuations are generically affected by the presence of boundaries.

The present paper is concerned with the application of fluctuating hydrodynamics to eval-
uate velocity fluctuations in laminar fluid flow by using plane Couette flow as a represen-
tative example. In fluctuating hydrodynamics the usual deterministic hydrodynamic equa-
tions are supplemented with random dissipative fluxes of thermal (natural) origin, obeying a
fluctuation-dissipation relation. In the case of laminar isothermal flows, one has to consider a
random stress tensor representing the stochastic nature of molecular collisions, which are re-
sponsible for friction in fluids. Hence, intrinsic “thermal” noise will be always present even
for isothermal problems like planar Couette flow. This noise will be amplified by the flow,
as is generically expected for any nonequilibrium state [3]. Energy amplification induced by
the flow has attracted the interest of many investigators [4–8]. However, in many of these
papers the noise is not of thermal origin, does not obey a fluctuation-dissipation relation nor
does it have the particular spatial spectrum that is imposed by momentum conservation in
molecular collisions. In summary, fluctuating hydrodynamics provides a systematic method
for assessing the nature of spontaneous fluctuations in laminar flow induced by intrinsic
thermal noise.

The application of fluctuating hydrodynamics to shear flows has been initiated by a num-
ber of investigators, but without consideration of any confinement effects [9–13]. However,
the long-ranged spatial nature of the fluctuations is highly anisotropic and for certain di-
rections of the wave vector the fluctuations will encompass the entire fluid system, so that
boundary effects need to be accounted for. For this reason we have initiated a research
project aimed at a detailed evaluation of the intensity of velocity fluctuations of thermal
origin in plane Couette flow [14–16]. We started by linearizing the hydrodynamic equa-
tions for the fluctuations and derived fluctuating Orr-Sommerfeld and Squire equations to
describe wall-normal velocity and vorticity fluctuations, respectively. These equations are
the stochastic versions of the deterministic Orr-Sommerfeld and Squire equations tradition-
ally discussed in the linear stability analysis of laminar flows [17, 18]. It is well known that,
for laminar plane Couette flow or laminar pipe flow, a traditional linear instability analysis,
based on infinitesimal perturbations, does not yield a critical value of the Reynolds num-
ber associated with a transition from laminar to turbulent flow, and these flows are always
linearly stable [17–21]. For similar reasons, linearized fluctuating hydrodynamics cannot
explain the nature of the instability, but it will be relevant at moderate Reynolds numbers,
as long as the laminar state is clearly stable. Furthermore, since the intensity of the thermal
fluctuations depends strongly on the wave vector, fluctuating hydrodynamics may identify
the least stable modes, a knowledge that could be helpful in developing possible nonlinear
models.

Our previous solutions of the stochastic Orr-Sommerfeld and Squire equations were
based on semi-quantitative Galerkin approximations to accommodate realistic boundary
conditions. We have subsequently obtained exact solutions of these stochastic equations
in the presence of boundaries by formulating an expansion of the eigenfunctions (normal
modes) of the hydrodynamic operator. These exact solutions enable us to test the quality of
the Galerkin approximations. The purpose of the present paper is to present such an analysis
for the stochastic Orr-Sommerfeld equation. Our main aim is to analyze the wave-vector
dependence (spatial spectrum) of the intensity of the intrinsic thermal velocity fluctuations
at moderate Reynolds numbers. The solution of the stochastic Squire equation will be pre-
sented in a subsequent publication.
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Fig. 1 Schematic representation
of plane Couette flow

We shall proceed as follows. In Sect. 2 we recall the form of the stochastic Orr-
Sommerfeld equation for the wall-normal velocity fluctuations. In Sect. 3 we sketch the
procedure for solving the stochastic Orr-Sommerfeld equation and we derive an expression
for the autocorrelation function of the wall-normal velocity fluctuations. Section 4 contains
the main results of this paper, where we discuss the intensity of the intrinsic flow-induced
wall-normal velocity fluctuations, as a function of the wave number and the Reynolds num-
ber, and make a comparison with our previous Galerkin-based estimates. We conclude with
a discussion of the results in Sect. 5. Some technical aspects of the analysis are presented in
an Appendix.

2 Stochastic Orr-Sommerfeld Equation

We consider a liquid with uniform temperature T under incompressible laminar flow (thus
with uniform density ρ) between two horizontal boundaries separated by a distance 2L,
as indicated schematically in Fig. 1. We adopt a coordinate system with the X axis in the
streamwise direction, the Y axis in the spanwise direction, and the Z axis in the wall-normal
direction. This coordinate system agrees with the one adopted by Drazin and Reid [18]
and has been referred to as the meteorological convention [8]. The stationary velocity v0 =
{γ̇ z,0,0} is in the X direction and depends linearly on the vertical coordinate with a constant
shear rate γ̇ . It is convenient to use a dimensionless position variable r measured in terms of
the length L, a dimensionless time t obtained by multiplying the actual time with the shear
rate γ̇ , a dimensionless fluid velocity v in terms of the product Lγ̇ , and a dimensionless
stress tensor � in terms of ρL2γ̇ . As shown in a previous publication [14], fluctuating
hydrodynamics then yields for the fluctuations of the wall-normal component δvz of the
fluctuating dimensionless velocity δv a stochastic Orr-Sommerfeld equation of the form:

∂t (∇2δvz) + z∂x(∇2δvz) − 1

Re
∇4(δvz) = {∇ × ∇ × [∇(δ�)

]}
z
, (1)

where Re is the Reynolds number

Re = γ̇ L2

ν
(2)
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with ν being the kinematic viscosity of the fluid. One recognizes in (1) the usual Orr-
Sommerfeld equation for plane Couette flow, but with an extra stochastic forcing term, ex-
pressed as derivatives of a random stress tensor δ�(r, t). In accordance with the guidelines
of fluctuating hydrodynamics [1, 3], Newton’s viscosity law is modified by the addition of
a stochastic contribution δ�(r, t) to the stress tensor that accounts for the random nature
of molecular collisions. Then, substitution of the new expression for the stress tensor into
the momentum-balance equation yields a stochastic Navier-Stokes equation. Since the ran-
dom contribution to the stress tensor averages to zero over the fluctuations, 〈δ�(r, t)〉 = 0,
the mean stationary solution of the stochastic Navier-Stokes equation, v0(r), is the same
as if thermal fluctuations were not present. However, because of the noise term, there will
be spontaneous thermal velocity fluctuations around the steady-state solution. Equation (1)
is then obtained by substituting v0(r) + δv(r, t) for the velocity into the stochastic Navier-
Stokes equation and taking a double curl [14].

The presence of the random noise term makes (1) a Langevin-like stochastic partial dif-
ferential equation, δvz(r, t) being now a dependent stochastic field and δ�(r, t) an inde-
pendent stochastic forcing. Our goal is to obtain the statistical properties (autocorrelation
function) of δvz(r, t) from the known statistical properties of the thermal noise δ�(r, t).
The latter are given by the fluctuation-dissipation theorem, that for an incompressible fluid
reads [1, 3, 22, 23]:

〈
δ�ij (r, t) · δ�kl(r′, t ′)

〉 = 2S̃(δikδjl + δilδjk)δ(r − r′)δ(t − t ′), (3)

where S̃ is the dimensionless strength of the thermal noise [14]:

S̃ = kBT

γ̇ 3L7

ν

ρ
= kBT

ρL3

1

γ̇ 2L2

1

Re
, (4)

with kB being the Boltzmann constant. The correlation functions of random dissipative
fluxes, as given by (3) for δ�(r, t), are short ranged in time (Markov processes) as well
as in space. In the hydrodynamic limit this short-ranged nature is represented by delta func-
tions, as in the right-hand side (RHS) of (3). The fluctuation-dissipation theorem (3) is to be
expressed in terms of the local values of the appropriate thermodynamic and transport prop-
erties. The validity of adopting such a local version of the fluctuation-dissipation theorem
for dealing with thermal fluctuations in nonequilibrium states has now been well established
[3, 22–24].

We emphasize that balance of momentum causes the presence of a double curl and a
divergence acting upon the random stress tensor in (1). This gives the stochastic forcing a
characteristic spatial spectrum that will influence the spatial spectrum of the velocity fluc-
tuations. Finally, we note that the actual correlation function of the fluctuating stress tensor
only depends on the properties of the fluid (namely, temperature and kinematic viscosity);
the Reynolds number appears in (4) only as a consequence of the manner in which the stress
tensor has been made dimensionless.

Equation (1) needs to be solved for the wall-normal velocity fluctuation δvz(r, t) subject
to realistic boundary conditions:

δvz = ∂zδvz = 0, at z = ±1. (5)

Equations (1)–(5) determine the intrinsic wall-normal velocity fluctuations and the resulting
energy amplification, as will be shown in this paper.
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3 Procedure for Solving the Orr-Sommerfeld Equation

To solve (1) with the boundary conditions (5) at z = ±1, we apply a Fourier transform in
time and in the horizontal xy-plane. The resulting expression can be written as:

[iωD + H] · δvz(ω,q‖, z) = F(ω,q‖, z), (6)

where we have introduced two (linear) differential operators:

H = izqx

(
∂2

z − q2
‖
) − 1

Re

(
∂2

z − q2
‖
)2

, (7)

and

D = (
∂2

z − q2
‖
)
. (8)

The differential operator H is commonly referred to as the hydrodynamic operator. In (6)–
(8), q‖ = {qx, qy} represents the wave vector of the fluctuations in the horizontal plane and
q2

‖ = q2
x + q2

y . Furthermore, in (6), F(ω,q‖, z) represents an additive random noise term
given by the Fourier transformation in time and in the horizontal plane of the RHS of (1).
Equation (6) has to be solved subject to the boundary conditions (5), or equivalently:

δvz(ω,q‖, z) = ∂zδvz(ω,q‖, z) = 0, at z = ±1. (9)

It is possible to find such a solution by expanding the hydrodynamic operator in a se-
ries of normal modes. For completeness we sketch here briefly the procedure and refer the
interested reader to the relevant literature [17, 18] for details. Specifically, we consider the
following eigenvalue problem:

H · RN(q‖, z) = 	N(q‖)
[

D · RN(q‖, z)
]
, (10)

where 	N(q‖) are the eigenvalues (decay rates), and where the right eigenfunctions
RN(q‖, z) have to satisfy the boundary conditions

RN(q‖, z) = ∂zRN(q‖, z) = 0, at z = ±1. (11)

It can be demonstrated [17, 18] that, for given q‖, there exists an infinite numerable set of
solutions to (10), and the index N distinguishes among them (see Appendix). To complete
the formulation of the eigenvalue problem we need also to consider the adjoint operator
[17, 18]:

H† = −izqx

(
∂2

z − q2
‖
) − 1

Re

(
∂2

z − q2
‖
)2 − 2iqx∂z, (12)

and left eigenfunctions LN(q‖, z) such that:

H† · LN(q‖, z) = 	∗
N(q‖)

[
D · LN(q‖, z)

]
, (13)

where the left eigenfunctions LN(q‖, z) should satisfy the same boundary conditions (11)
as the right ones. In (13) we anticipated that the eigenvalues of the adjoint operator are
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the complex conjugate (	∗
N ) of the eigenvalues of H (see Appendix). The set of right/left

eigenfunctions form a biorthogonal set [18], in the sense that:

∫ 1

−1
L∗

M(q‖, z)
[

D · RN(q‖, z)
]
dz = BN(q‖)δNM, (14)

where BN(q‖) has to be interpreted as the “norm” of the eigenpair {RN(q‖, z),LN(q‖, z)}:

BN(q‖) =
∫ 1

−1
L∗

N(q‖, z)
[

DRN(q‖, z)
]
dz

=
∫ 1

−1

[
DL∗

N(q‖, z)
]
RN(q‖, z) dz. (15)

We are now ready to solve our original problem, (6), by expanding the solution in a series
of (right) eigenfunctions:

δvz(ω,q‖, z) =
∞∑

N=0

GR
N(ω,q‖)RN(q‖, z). (16)

If we substitute (16) into (6), make use of (10), and project the result over an arbitrary left
eigenfunction LM(q‖, z), we obtain, with the biorthogonality condition (14), an expression
for the coefficients in the series expansion (16), namely:

GR
N(ω,q‖) = FN(ω,q‖)

BN(q‖)[iω + 	N(q‖)] (17)

with FN(ω,q‖) being the projections of the random noise onto the left eigenfunctions:

FN(ω,q‖) =
∫ 1

−1
L∗

N(q‖, z) · F(ω,q‖, z) dz. (18)

Equation (18) also indicates the general way of projecting an arbitrary function F(z) over a
left eigenfunction.

The main difference with an evaluation procedure of the corresponding deterministic
equation [17, 18] is that we shall also need here the statistical correlations among the various
projections FN(ω,q‖) of the random noise. For the same random noise term F(ω,q‖, z) in
(6), these correlations have been considered in a recent monograph [3], but with a different
set of eigenfunctions. Upon following the same procedure [3], it is relatively simple to see
that these correlation functions can be expressed as:

〈
F ∗

N(ω,q‖) · FM(ω′,q′
‖)

〉 = S̃
NM(q‖)(2π)3δ(ω − ω′)δ(q‖ − q′
‖), (19)

where, following Schmitz and Cohen [22, 23], we have introduced mode-coupling coeffi-
cients:


NM(q‖) = 2q2
‖

∫ 1

−1
dz

[
D2LN(q‖, z)

]
L∗

M(q‖, z). (20)

Using the adjoint problem (13) and the boundary conditions (11), we can further simplify
expression (20) for 
NM(q‖) to obtain


NM(q‖) = −q2
‖ Re

{[
	∗

N(q‖) + 	M(q‖)
]



(E)
NM(q‖) + qx Re2 


(NE)
NM (q‖)

}
, (21)
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where we have separated the mode-coupling coefficients into two parts:



(E)
NM(q‖) =

∫ 1

−1
dz

[
DLN(q‖, z)

]
L∗

M(q‖, z), (22)



(NE)
NM (q‖) = 2i

Re2

∫ 1

−1
dz

[
∂zLN(q‖, z)

]
L∗

M(q‖, z). (23)

The decomposition (21) of the mode-coupling coefficients will enable us to separate the
equal-time autocorrelation function of the wall-normal velocity fluctuations into an equilib-
rium and a nonequilibrium part. In the definition (21) of the nonequilibrium mode-coupling
coefficient 


(NE)
NM , we have extracted a factor qx Re2 to emphasize the Squire symmetry of

the problem, to be discussed later.
From the preceding analysis, combining (16) and (19) and averaging over fluctuations,

we conclude that the autocorrelation function of wall-normal velocity fluctuations can be
expressed as:

〈
δv∗

z (ω,q‖, z) · δvz(ω
′,q′

‖, z
′)
〉 = Czz(ω,q‖, z, z′)(2π)3δ(ω − ω′)δ(q‖ − q′

‖), (24)

where Czz(ω,q‖, z, z′) is a double series of right eigenfunctions. Here we are interested in
the equal-time correlation function which determines the intensity of the fluctuations. After
applying inverse Fourier transforms in ω and ω′ to (24), we can express the equal-time
correlation function as:

〈
δv∗

z (q‖, z, t) · δvz(q′
‖, z

′, t)
〉 = Czz(q‖, z, z′)(2π)2δ(q‖ − q′

‖) (25)

with the static correlation function

Czz(q‖, z, z′) = 1

2π

∫ ∞

−∞
Czz(ω,q‖, z, z′) dω. (26)

Next, we combine (16) and (17), and use (19) to obtain Czz(ω,q‖, z, z′) in (24). If we then
substitute this result into (26) the integral over the frequency can be performed, since all the
decay rates 	N have a non-zero real part [25, 26]. We then obtain an explicit expression for
the equal-time (static) autocorrelation function in terms of the hydrodynamic modes:

Czz(z, z
′) = S̃

∞∑

N,M=0


NMR∗
N(z)RM(z′)

B∗
NBM [	∗

N + 	M ] , (27)

where for ease of notation we did not indicate explicitly the dependence on the wave vec-
tor q‖. With the help of the decomposition (21) of the mode-coupling coefficients, we also
separate the equal-time autocorrelation function Czz(q‖, z, z′) into an equilibrium and a
nonequilibrium part:

Czz(q‖, z, z′) = C(E)
zz (q‖, z, z′) + C(NE)

zz (q‖, z, z′), (28)

with

C(E)
zz (z, z′)
S̃ Re

= −q2
‖

∞∑

N,M=0



(E)
NMR∗

N(z)RM(z′)
B∗

NBM

, (29)

C(NE)
zz (z, z′)

S̃ Re
= −q2

‖
∞∑

N,M=0

qx Re2 

(NE)
NM R∗

N(z)RM(z′)
B∗

NBM [	∗
N + 	M ] . (30)
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To simplify (29), we can use the fact that:

δ(ξ − z′) =
∞∑

N=0

(∂2
ξ − q2

‖ )L
∗
N(q‖, ξ)

BN(q‖)
RN(q‖, z′), (31)

which is obtained by expanding δ(ξ − z′) in a series of right eigenfunctions, which, as a
function of z′, fulfill the relevant boundary conditions. Then, combining (31) and the explicit
expression (22) for 


(E)
NM(q‖), the sum over one of the indices in (29) can be performed

exactly, and the correlation function C(E)
zz (q‖, z, z′) becomes:

C(E)
zz (z, z′) = −S̃ Req2

‖
∞∑

N=0

R∗
N(z)

B∗
N

LN(z′). (32)

Equation (32) can be further simplified by applying the differential operator (∂2
z′ − q2

‖ ) to
C(E)

zz (q‖, z, z′), so that, in view of (31), the resulting expression becomes proportional to a
delta function δ(z − z′). We thus obtain a differential equation for C(E)

zz (q‖, z, z′) that can
be easily integrated by using the fact that, for any z′,C(E)

zz (q‖, z, z′) vanishes at both z = +1
and z = −1. Following this procedure we can sum the series (32) and obtain:

C(E)
zz (q‖, z, z′) = S̃ Re

q‖
2

[
cosh(q‖|z − z′|)

tanh 2q‖
− cosh(q‖|z + z′|)

sinh 2q‖
− sinh(q‖|z − z′|)

]
, (33)

which, when reverted to units with physical dimensions, is independent of the shear rate γ̇

and, hence, represents a true equilibrium contribution. We have also verified (33) by numer-
ically evaluating up to eight of the lower hydrodynamic modes RN(q‖, z) for Re = 0 (see
Appendix), substituting the results into (29), and observing a fast (numerical) convergence
to (33).

Further confirmation of (33) can be obtained by noticing that in the “bulk” q‖ → ∞ limit
one can adopt the approximations tanh 2q‖ 
 1 and sinh 2q‖ 
 ∞. Then

C(E)
zz (q‖, z, z′)

q‖→∞−→ S̃ Re
q‖
2

exp(−q‖|z − z′|). (34)

From which, upon substitution into (25) and application of a double Fourier transformation
in z and z′, we obtain:

〈
δv∗

z (q, t) · δvz(q′, t)
〉(E) q‖→∞−→ S̃ Req2

‖
q2

‖ + q2
z

(2π)3δ(q − q′), (35)

which reproduces the well-known result for the intensity of transverse-velocity fluctuations
from the theory of fluctuations in bulk equilibrium fluids (i.e., without accounting for bound-
ary conditions) [27, 28].

In summary, the main result of this section is (28), which shows that the intensity of ve-
locity fluctuations is the sum of an equilibrium contribution, given by (33) for C(E)

zz (q‖, z, z′),
and a nonequilibrium contribution given by (30). This structure appears to be a universal fea-
ture of fluids in nonequilibrium states [3, 29], for which mode-coupling phenomena generi-
cally enhance the intensity of thermal fluctuations. The existence of such enhancements has
been demonstrated experimentally for fluids in the presence of temperature gradients [3].
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4 Nonequilibrium Enhancement of the Wall-Normal Velocity Fluctuations

The nonequilibrium enhancement of spontaneous velocity fluctuations induced by the flow
is given by C(NE)

zz (q‖, z, z′) in (30) in terms of the hydrodynamic normal modes and their
corresponding decay rates. These modes have been discussed extensively in the litera-
ture [17, 18], and we could build on these results to evaluate the intensity C(NE)

zz (q‖, z, z′)
numerically. However, we are primarily interested in the wave-vector dependence of the
nonequilibrium enhancement of the intensity of the fluctuations and, hence, in the wave-
number dependence of the decay rates. Since a comprehensive analysis of the wave-vector
dependence is not common, we have performed our own (medium resolution) numerical
computation of the decay rates. For this purpose we find it advantageous to use the ex-
plicit expressions of the normal modes in terms of Airy functions due to Romanov [25] and
Dyachenko and Shkalikov [26]. For completeness, we present the expressions in the Ap-
pendix, while we here discuss only how they can be used to evaluate the decay rates and the
nonequilibrium wall-normal velocity correlation function numerically.

4.1 Numerical Computation of Decay Rates

We prefer to write the decay rates 	N(q‖) in (30) as

	N(q‖) = qxaN(q‖) + q2
‖

Re
. (36)

In the Appendix we show how aN(q‖) and, hence, the decay rates 	N(q‖), can be determined
by expressing the eigenfunctions of the hydrodynamic operator in terms of Airy functions.
We have obtained aN(q‖) as a function of q‖ for several values of the effective Reynolds
number Re = Re cosϕ (with ϕ being the azimuthal angle of q‖) by solving (51) in the
Appendix numerically using commercial software. Rather than converting these results into
the actual decay rates through (36), we shall present instead the results obtained directly for
aN(q‖) to which we, for convenience, also refer as “decay rates” in this subsection. Since
we are interested in the decay rates as a function of the wave number q‖ of the fluctuations,
our plots differ slightly from those commonly shown in the literature [17, 18, 30]. We first
display in Fig. 2 the eight lowest “decay rates”, a0(q‖) through a7(q‖), as a function of q‖ for
an effective Reynolds number Re = 25. The upper panel shows the real part and the lower
panel the imaginary part of aN .

As can be seen from Fig. 2, the decay rates are real numbers at low values of q‖. However,
after a certain non-zero value of q‖, the real parts of pairs of decay rates merge and the two
merged decay rates become pairs of complex conjugate numbers. When two decay rates
converge to form a complex conjugate pair, it means that the modes become propagating,
because the thermally excited velocity perturbations have time to oscillate before decaying
to zero. At large enough values of q‖ only such propagating modes are present.

Other consequences that can be inferred from Fig. 2 are: for q‖ → 0 the aN(q‖) become
proportional to q−1

‖ ; for q‖ → ∞ the real parts of the complex conjugate pairs of aN(q‖)
decay to zero proportionally to q

−1/3
‖ , while the imaginary parts exponentially approach ±i.

These asymptotic dependencies of the decay rates on q‖ can also be derived analytically by
solving (50) perturbatively [25, 30].

Another interesting feature is a qualitative difference in the dependence of the decay
rates aN(q‖) on q‖ at small and larger values of Re. To illustrate this difference, we show in
Fig. 3 plots of the real parts of the four lower aN as a function of q‖ for Re = 25 (left panel)
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Fig. 2 Real (upper panel) and
imaginary (lower panel) parts of
the eight slowest decay rates as a
function of q‖ , for an effective
Reynolds number Re = 25

Fig. 3 Real part of the eight
lower decay rates for effective
Reynolds numbers Re = 25 and
Re = 100. Notice the different
qualitative behavior, since at
larger Re there exists a window
of wave numbers where the
second and the third decay rates
form a complex conjugate pair

and for Re = 100 (right panel). At the larger value of Re (right panel) we find a crossover
between the second and third decay rate at intermediate values of q‖ which is absent at the
lower value of Re (left panel). It turns out that the transition from the behavior shown in
the left panel to that shown in the right panel occurs at Re 
 63. At larger values of Re the
landscape indicating the dependence of the various decay rates on q‖ becomes progressively
more complicated with multiple crossovers appearing between different pairs of aN(q‖).

To conclude the discussion of the decay rates we emphasize, as demonstrated by Ro-
manov [25, 30], that the real parts of the decay rates do not exhibit a change of sign at any
value of the Reynolds number. Hence, integrations leading to (30) are justified and we do
not find fluctuations with a diverging intensity due to a vanishing value of the real part of
a decay rate. This observation agrees with the well-known fact that a linear theory by itself
does not account for the appearance of instability in planar Couette flow [17, 18, 20].

4.2 Numerical Computation of the Wall-Normal Velocity Correlation Function

From (25) we see that the correlation function 〈δv∗
z (q‖, z, t) · δvz(q′

‖, z
′, t)〉 is translationally

invariant in the horizontal plane (parallel to the walls), but, as a consequence of the bound-
ary conditions, it is not translationally invariant in the z-direction. As we have discussed
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elsewhere [14, 15], this problem can be dealt with by integrating the correlation function
Czz(q‖, z, z′) in (25) over the height of the fluid layer to obtain a two-point mean correlation
function as a function of the wave vector in the horizontal plane:

Czz(q‖) = 1

2

∫ 1

−1
dz

∫ 1

−1
dz′ Czz(q‖, z, z′). (37)

As a consequence of (28), the averaged correlation function (or spatial spectrum of the fluc-
tuations) Czz(q‖) is also the sum of two contributions: Czz(q‖) = C(E)

zz (q‖) + C(NE)
zz (q‖). The

equilibrium contribution C(E)
zz (q‖) is obtained by substituting (33) into (37). Some simple

integrations yield:

C(E)
zz (q‖) = S̃ Re

[
1 + 1 − cosh 2q‖

q‖ sinh 2q‖

]
. (38)

Again we emphasize that, just as the expression (33) for C(E)
zz (q‖, z, z′), the expression (38)

for C(E)
zz (q‖) is indeed independent of the Reynolds number when converted to dimensional

units. The explicit dependence of C(E)
zz (q‖) on the wave number q‖ means that the correla-

tion function for the wall-normal velocity fluctuations, even in equilibrium, is spatially long
ranged and, hence, affected by confinement of the fluid between the two plates. In particular,
when we take the limit q‖ → 0 in (38), we observe that the mean intensity of the equilibrium
velocity fluctuations vanishes. Thus fluctuations at extremely large wavelengths are effec-
tively suppressed by the boundaries. On the other hand, at very short wavelengths, i.e., in
the “bulk” limit q‖ → ∞, the intensity of the fluctuations becomes S̃ Re, independent of the
wave number and not affected by the presence of boundaries.

The spatial spectrum C(NE)
zz (q‖) of the nonequilibrium wall-normal velocity fluctuations

is obtained by substituting (30) into (37). It is not possible to obtain a closed-form analytic
expression for this quantity. The most compact expression we can present is:

C(NE)
zz

S̃ Re
= −q2

‖
2

∞∑

N,M=0

qx Re2 

(NE)
NM X∗

NXM

B∗
NBM [	∗

N + 	M ]

= −1

4

∞∑

N,M=0

(qx Re)3

(NE)
NM X∗

NXM

B̂∗
NB̂M [1 + qx Re

2q2‖
(a∗

N + aM)] , (39)

where we have made use of the relation (36) between the actual decay rates 	N and the
coefficient aN and a similar relation between 	∗

M and the coefficients a∗
M . As a consequence

of the Squire symmetry transformation (discussed in the Appendix), the spatial spectrum
C(NE)

zz (q‖) of the nonequilibrium fluctuations only depends on two variables, namely on the
magnitude q‖ of the wave vector q‖ and on the effective Reynolds number Re = Re cosϕ.

Introducing the numerical solutions for aN and a∗
M into (39) we can calculate C(NE)

zz (q‖).
Although not completely evident from (39), the spectrum C(NE)

zz (q‖), when expressed in
physical units, is roughly proportional to the square of the effective Reynolds number. This
is more clearly shown in the asymptotic expansions for large and small q‖, which are both

indeed proportional to Re
2

exactly. For this reason we have displayed in Fig. 4 plots of

the normalized spectrum C(NE)
zz (q‖)/Re

2
as a function of q‖ for three values of the effective

Reynolds number Re (replacing the dimensional prefactor S̃ Re by unity). For two of these
values, namely Re = 25 and Re = 100, the corresponding values of aN(q‖) were presented
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Fig. 4 Normalized
nonequilibrium autocorrelation

function C
(NE)
zz (q‖)/Re2 of the

wall-normal velocity fluctuations
as a function of q‖ for three
different values of Re = Re cosϕ

as indicated. The curves have
been obtained by numerical
evaluation of (39). The exact
asymptotic 1/2q4 behavior for
large q‖ (common for all
Reynolds numbers) is plotted, for
reference, as a thin line

in Figs. 2 and 3. The third effective Reynolds number value displayed in Fig. 4 is Re = 250,
which is closer to the value where the instability may manifest itself [17]. For Reynolds
number substantially larger, the system is unstable and the Orr-Sommerfeld equation fails
to describe the spatiotemporal evolution of the fluctuations.

In numerically computing the values displayed in Fig. 4 we truncated the double series
(39) at N = M = 11, or less. Because of the finite number of modes, we have encoun-
tered numerical convergence problems at large wave numbers due to the rapidly oscillatory
nature of the Airy functions, a problem that became increasingly serious the higher the
value of the Reynolds number. In this case alternative methods to approximate the eigen-
values seem advantageous [30]. On the other hand, for large q‖, where fluctuations be-
come independent of the boundary conditions, explicit analytic expressions for the spectrum
C(NE)

zz (q‖) of nonequilibrium fluctuations can be obtained. Specifically, in the asymptotic
limit q‖ → ∞,C(NE)

zz (q‖) becomes proportional to q−4
‖ [13, 14]; this asymptotic limit is dis-

played in Fig. 4 as a thin line. Thus for Re = 25 we were indeed able to evaluate C(NE)
zz (q‖)

from (39) (retaining only a limited number of modes) for sufficiently large values of q‖ to
reach the asymptotic limiting behavior proportional to q−4

‖ as shown in Fig. 4. However, for
larger Re, where the landscape of decay rates becomes progressively more complicated with
the multiple crossovers described in Sect. 4.1, it became more and more difficult to include
higher values of q‖. What is evident from Fig. 4 is that, due to the boundary conditions,
C(NE)

zz (q‖) goes to zero proportional to q4
‖ in the limit q‖ → 0.

4.3 Comparison with a Galerkin Approximation

In a previous publication [14] we evaluated the autocorrelation function for the wall-normal
velocity fluctuations in a second-order Galerkin approximation. We want to compare these
earlier results with the more exact results obtained here from an expansion in terms of the
eigenfunctions of the Orr-Sommerfeld hydrodynamic operator.

For the equilibrium contribution to the autocorrelation function we found in the Galerkin
approximation:

C(E)
zz (q‖) = 7

10

q2
‖

q2
‖ + 3

S̃ Re (40)
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Fig. 5 Intensity of the
nonequilibrium wall-normal
fluctuations obtained in the
present paper (circles) and the
intensity previously obtained [14]
in a Galerkin approximation
(dashed curve) for Re = 100. The
solid curve represents the exact
asymptotic behavior for large q‖
if one neglects boundary effects

to be compared with the exact result given by (38). We observe first an overall shift due
to the factor 7/10 in the Galerkin approximation (40), which should be unity. In addition,
the exact expression reaches the asymptotic limit C(E)

zz 
 1 for large q‖ → ∞ more slowly.
Indeed, the exact expression (38) reaches this limit as q−1

‖ , while the Galerkin approximation

(40) reaches the large q‖ limit as q−2
‖ . This qualitative difference is a clear shortcoming of

the Galerkin approximation.
With regards to the nonequilibrium contribution to the intensity of the wall-normal ve-

locity fluctuations, we should note that in the previous publication [14] a distinction was
made between an (absolute) intensity C(NE)

zz (q‖) and a (relative) nonequilibrium enhance-
ment C̃(NE)

zz (q‖), such that

C(NE)
zz (q‖) = C(E)

zz (q‖)C̃(NE)
zz (q‖). (41)

Specifically, Fig. 1 in the previous paper [14] shows plots of the relative enhancement
C̃(NE)

zz (q‖) as a function of q‖ and not of the absolute intensity C(NE)
zz (q‖), as was mistak-

enly indicated by the label along the vertical axis in that figure.
To compare the results obtained in this paper with the Galerkin approximation pre-

sented in the previous publication [14], we have plotted in Fig. 5 the normalized inten-

sity C(NE)
zz (q‖)/Re

2
as a function of q‖ for Re = 100. Again, as in Fig. 4, we have set the

dimensional prefactor S̃ Re to be equal to unity. The plot with circles represents the numer-
ical results obtained from the expansion method in the present paper up to the maximum
value of q‖ for which the calculation was feasible for this value of the Reynolds number.
The solid curve in Fig. 5 represents the exact solution which has been obtained in the ab-
sence of any boundary conditions [12–14]. This exact solution not only incorporates the
asymptotic behavior for large q‖ proportional to q−4

‖ , but also a crossover to a wave-number

dependence proportional to q
−4/3
‖ , first noticed by Lutsko and Dufty [12] and recovered by

Wada and Sasa [13]. The dashed curve in Fig. 5 represents the Galerkin approximation for

C(NE)
zz (q‖)/Re

2
obtained in our previous publication [14].

Since at small q‖,C(NE)
zz (q‖) varies as q4

‖ and C(E)
zz (q‖) as q2

‖ , it follows from (41) that the

relative nonequilibrium enhancement C̃(NE)
zz (q‖) will vanish proportional to q2

‖ as q‖ → 0.
On the other hand, we know from the exact solution for large q‖ that both C(NE)

zz (q‖) and
C̃(NE)

zz (q‖) will vary as q−4
‖ (since C(E)

zz (q‖) becomes independent of the wave number in the
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bulk limit). Hence, we confirm our previous observation that the relative nonequilibrium en-
hancement C̃(NE)

zz (q‖) exhibits a crossover from a q−4
‖ behavior for large q‖ to a q2

‖ behavior
for small q‖ [16].

We see in Fig. 5 that our numerical results do approach the known asymptotic behavior
for large q‖. However, we are unable to resolve the question whether a confluent singular
behavior proportional to q

−4/3
‖ in the absence of boundary conditions [12] does or does not

survive in the presence of boundary conditions. Figure 5 shows that the exact result for small
values of q‖ is in very good agreement with the estimates obtained from the Galerkin approx-
imation. Moreover, in our previous publication we have shown that the Galerkin approxi-
mation is also in satisfactory agreement with the limiting behavior for large q‖. However,
we see from Fig. 5 that for intermediate values of q‖ our previous Galerkin approximation
underestimates the intensity of the wall-normal velocity fluctuations by a factor that can be
as large as 100.

4.4 Energy Amplification Due to Thermal Noise

A quantity of considerable interest is the energy amplification associated with the velocity
fluctuations. Bamieh and Dahleh [6] and Jovanovic and Bamieh [7] have investigated the
energy amplification in channel flows as a result of applying stochastic forcing of nonther-
mal origin to the linearized Navier-Stokes equation. Our method enables us to determine the
energy amplification from intrinsic thermal noise. As discussed elsewhere [14], the kinetic-
energy content can be defined in terms of the “average” fluctuation in a given volume V :

δv(t) = 1

V

∫

V

δv(r, t) dr. (42)

Then the kinetic energy ε associated with the fluctuations can be obtained as:

ε = 1
2

〈[δv(t)]2
〉 = 1

2V 2

∫ ∫

V ×V

〈
δvi(r, t)δvi(r′, t)

〉
drdr′, (43)

where summation over repeated indices is understood. In stationary flow the specific energy
ε does not depend on the time t . In a compressible fluid in equilibrium Mε = (3/2)kBT ,
where M is the mass contained in the volume V . If the system is incompressible, as assumed
in the present paper, the equilibrium kinetic energy Mε = kBT , because incompressibility
does not allow for independent fluctuations of the three spatial component of the velocity
[27, 28]. Here we only consider the contribution to the energy amplification obtained by
identifying the velocity component vi in (43) with vz. Considering a volume element that
extends over the full height of the fluid layer, we can obtain the spatial spectrum εzz(q‖) of
the wall-normal kinetic-energy amplification from the relationship:

1

8

∫ 1

−1
dz

∫ 1

−1
dz′〈δv∗

z (q‖, z, t) · δvz(q′
‖, z

′, t)
〉 = εzz(q‖)(2π)2δ(q‖ − q′

‖). (44)

Hence, the spatial spectrum of the kinetic energy resulting from the wall-normal velocity
fluctuations is simply proportional to the autocorrelation function Czz(q‖) that was discussed
in Sects. 4.2–4.3. From Figs. 4 and 5 we see that Czz and, hence, εzz exhibit a nonequilib-
rium enhancement in the presence of flow approximately proportional to the square of the
Reynolds number. However, in spite of the wild behavior of the decay rates with crossover
regions and crossings as described in Sect. 4.1, εzz is a smooth function of q‖ and does re-
main finite at any value of the Reynolds number in agreement with the conclusions reached
by other authors on the basis of stochastic forcing.
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5 Discussion

We have shown how intrinsic velocity fluctuations in laminar fluid flow, that are al-
ways present in the absent of any external perturbation, can be evaluated on the basis
of the method of fluctuating hydrodynamics. This method shows that wall-normal ve-
locity fluctuations in plane Couette flow, within a linear approximation, should satisfy a
stochastic Orr-Sommerfeld equation. In the absence of boundary conditions this stochas-
tic Orr-Sommerfeld equation can be readily solved explicitly as discussed in previous
works [12–14]. However, since the velocity fluctuations turn out to be spatially long ranged,
the presence of boundaries cannot be neglected and it is necessary to solve the stochastic
Orr-Sommerfeld equation subject to appropriate boundary conditions. In a previous publi-
cation [14] an attempt was made to solve the stochastic Orr-Sommerfeld equation in the
presence of boundaries by adopting a second-order Galerkin approximation. In the present
paper we have checked the Galerkin approximation by comparing it with the exact solution
expressed as an expansion in terms of the eigenfunctions of the Orr-Sommerfeld hydrody-
namic operator.

The flow causes an enhancement of the wall-normal velocity fluctuations. We have con-
firmed our previous observation, based on semi-quantitative Galerkin approximations, that
the relative enhancement of the wall-normal velocity fluctuations with wave vector q‖ in
the horizontal plane exhibits a crossover from a q−4

‖ behavior for large q‖ independently of
boundary effects to a q2

‖ behavior for small q‖ as a result of the confinement of the fluid
layer between two plates. The previous Galerkin approximation [14] yields good agreement
with the exact limiting behavior for large and small q‖, but underestimates somewhat the
enhancement at intermediate values of the wave number. The main conclusion of this inves-
tigation is that the flow-induced enhancement of the velocity fluctuations increases with the
Reynolds number approximately as Re2. The actual amplitude strongly depends on the wave
number, as shown in Fig. 4. The enhancement of spontaneous thermal fluctuations is con-
sidered nowadays a generic feature [3, 29] of systems outside of equilibrium, arising from
mode-coupling effects that are not present in equilibrium. The nonequilibrium enhancement
described in this paper is due to the coupling between δvz modes with different horizontal
wave vectors that is implicit in the second term of the Orr-Sommerfeld equation (1).

Previous studies of energy amplification of disturbances in shear flows have shown
that the dominant contribution arises from a coupling of the Orr-Sommerfeld and Squire
equations [4–7]. Our previous investigation, based on a Galerkin approximation, has in-
dicated that the same feature holds for the nonequilibrium amplification of the thermal
noise [14, 15]. Therefore, the next important question is how the exact solution of the
stochastic Orr-Sommerfeld equation obtained in the present paper, will couple with the
stochastic Squire equation. We plan to address this issue in a subsequent publication.
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versidad Complutense de Madrid, where part of the article was prepared. The research was supported by the
Spanish Ministry of Science and Innovation through research grant FIS2008-03801.

Appendix: Analytical Expression of the Hydrodynamic Modes and Their
Corresponding Decay Rates

With the definition:

(
∂2

z − q2
‖
)
RN(q‖, z) = PN(q‖, z), (45)
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we can rewrite (10) for the right hydrodynamic modes, with H given by (7), as an equation
for PN(q‖, z) whose general solution can be expressed as a combination of Airy functions
[31], namely:

PN(q‖, z) = A0 Ai
[
(qx Re)1/3(aN − iz)

] − A1 Bi
[
(qx Re)1/3(aN − iz)

]
, (46)

where A0 and A1 are two integration constants to be determined later, while the parameter
aN depends on the wave vector q‖ of the fluctuations and is related to the decay rate 	N(q‖)
by:

	N(q‖) = qxaN(q‖) + q2
‖

Re
. (47)

The right eigenfunctions RN can be obtained by integrating (45) and imposing the boundary
conditions (11). Some straightforward analysis shows that the right eigenfunctions can be
simply expressed by:

RN(q‖, z) = 1

q‖

∫ z

−1
PN(q‖, ξ) sinh(q‖(z − ξ)) dξ, (48)

where PN(q‖, z), given by (46), has to satisfy the following two conditions:

∫ 1

−1
PN(t) sinh(q‖(t − 1)) dt = 0,

∫ 1

−1
PN(t) cosh(q‖(t − 1)) dt = 0.

(49)

The first of the conditions (49) can be readily satisfied for given values of q‖ and Re (and,
thus, for any aN) by choosing the integration constants A0 and A1 in (46) such that:

A0 =
∫ 1

−1
Bi

[
(qx Re)1/3(aN − it)

]
sinh(q‖(t − 1)) dt,

A1 =
∫ 1

−1
Ai

[
(qx Re)1/3(aN − it)

]
sinh(q‖(t − 1)) dt.

(50)

However, satisfying the second of the conditions (49) is not so trivial. Upon substitution of
(50) into (46), the second of (48) becomes:

∫ 1

−1
A(t) sinh(q‖t) dt

∫ 1

−1
B(t) cosh(q‖t) dt

=
∫ 1

−1
A(t) cosh(q‖t) dt

∫ 1

−1
B(t) sinh(q‖t) dt, (51)

where, to simplify the notation, we have adopted the following abbreviations:

A(z) = Ai
[
(qx Re)1/3(aN − iz)

]
,

B(z) = Bi
[
(qx Re)1/3(aN − iz)

]
.

(52)

We consider condition (51), for given values of q‖ and Re, as an equation to obtain
aN and, then the decay rate 	N(q‖), through (47). In general, the solutions of (51) for aN
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can only be obtained numerically, and some numerical results are presented in Sect. 4.1.
Due to the oscillatory character of the Airy functions, there exists an infinite numerable
set of solutions. By introducing a modified Reynolds number as Re = Re cosϕ(with ϕ the
azimuthal angle, so that qx = q‖ cosϕ), we note that the solution of (51) for aN depends
only on the magnitude q‖ of the horizontal wave number and on the modified Reynolds
number Re. This symmetry of the decay rates is well known, and usually referred to as
the Squire transformation [18]. As shown elsewhere [6, 7, 32], for the particular case of
streamwise modes (qx = 0) (48) and (51) simplify appreciably, and it then becomes possible
to obtain more explicit expressions (not involving integrations) for the normal-modes and
for the decay rates.

In the general case, the left eigenfunction corresponding to an eigenvalue aN solution
of (51) can also be expressed analytically in terms of integrals of Airy functions. The solu-
tion of (13) is

LN(z) = iπ Re

(qx Re)1/3

∫ z

−1

[
A∗(z)B∗(t) − A∗(t)B∗(z)

][
B0 cosh(q‖t) − B1 sinh(q‖t)

]
dt. (53)

We observe that the solution (53) vanishes and has a zero vertical derivative at z = −1,
independent of the integration constants B0 and B1. Imposing the boundary conditions at
z = 1, we conclude after some analysis that the left mode LN(z) and its z-derivative will be
zero at z = 1, if and only if the two following conditions are met:

∫ 1

−1
A∗(t)

[
B0 cosh(q‖t) − B1 sinh(q‖t)

]
dt = 0,

∫ 1

−1
B∗(t)

[
B0 cosh(q‖t) − B1 sinh(q‖t)

]
dt = 0.

(54)

The first of the conditions (54) can be readily satisfied for any given values of q‖ and Re.
For instance, one can just choose the integration constants B0 and B1 such that:

B0 =
∫ 1

−1
A∗(t) sinh(q‖t) dt, B1 =

∫ 1

−1
A∗(t) cosh(q‖t) dt. (55)

However, to satisfy the second of the conditions (54) and to obtain a valid nonzero LN(z),
we need to consider a more complicated expression, that is similar to (51) except that the
arguments of the Airy functions now appear as complex conjugates. Since the Airy functions
have the property Ai(z∗) = Ai∗(z) (and the same for Bi), if aN is a solution of (51), then a∗

N

will be a solution of a similar equation obtained by replacing (aN − it) by (a∗
N + it) in the

argument of the Airy functions. Hence, the left eigenvalues are the complex conjugate of the
right eigenvalues.

So far, we have considered the left and right hydrodynamic modes with arbitrary nor-
malization. For a complete specification of the modes we must evaluate the normalization
constants BN(q‖), as defined by (14). First of all, we observe that the expression for BN(q‖)
can be simplified with the help of (45), so that:

BN(q‖) =
∫ 1

−1
L∗

N(q‖, t)PN(q‖, t) dt. (56)

Substituting (46) and (53) into (56), we find that the resulting integral can be evaluated
analytically after integrating by parts and using the Wronskian of the Airy functions [31]



Hydrodynamic Fluctuations in Laminar Fluid Flow 791

with the result:

BN(q‖) = − i

qx

B̂N(Re, q‖) (57)

with

B̂N(Re, q‖) = PN(q‖,1)
[
B∗

0 cosh(q‖) − B∗
1 sinh(q‖)

]

− PN(q‖,−1)
[
B∗

0 cosh(q‖) + B∗
1 sinh(q‖)

]
. (58)

Again, because of the Squire symmetry, the coefficients B̂N depend only on the magnitude
q‖ and the product qx Re (or on wave number q‖ and modified Reynolds number Re).

Another quantity required to discuss the energy amplification is the vertical integration
of the right modes, XN :

XN(Re, q‖) =
∫ 1

−1
RN(q‖, t) dt = − 1

q2
‖

∫ 1

−1
PN(q‖, t) dt. (59)

The integral (59) can be expressed analytically in terms of Scorer functions [31], but the
corresponding expression is quite long and not very informative. We do not display it here,
but we have used this analytic expression in the numerical computations. Again, due to
the Squire symmetry, XN depends only on the magnitude q‖ and on the product qx Re.
To complete the discussion of the Squire symmetry, we note that due to the multiplicative
prefactor Re in the expression (53) for the left eigenfunctions, the nonequilibrium mode-
coupling coefficients 


(NE)
NM (q‖), as defined by (23), will also depend only on the magnitude

q‖ and on the product qx Re.
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