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We use fluctuating hydrodynamics to derive expressions for the spatial and temporal
spectra of concentration fluctuations in a ternary liquid mixture in equilibrium. Our results
agree with those found by other investigators who have used a procedure in which
arbitrary initial values are adopted. Our method of using fluctuating hydrodynamics has
the advantage that it can also be extended to deal with fluctuations in systems out of
equilibrium.
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1. Introduction

Nowadays, a considerable amount of experimental data is available for diffusion and thermal-diffusion coefficients in
binary fluid mixtures. As a consequence, in recent years the focus has been shifting to transport phenomena in ternary
systems [1–9]. Studies of transport phenomena in ternary mixtures present some additional challenges. Many of these
are related to the difficulty of performing accurate measurements of diffusion matrices, in particular of cross-diffusion
coefficients, in low molecular weight liquid mixtures at room temperatures. In this context, it is worth mentioning that the
European Space Agency (ESA) is currently performing the Diffusion and Thermodiffusion Coefficients Measurements in Ternary
Mixtures (DCMIX) experiment onboard the International Space Station (ISS) [10], where microgravity conditions make it
possible to perform measurements that otherwise are not possible on earth.

Transport processes are theoretically studied in the framework of nonequilibrium thermodynamics [11–13]. Nonequilib-
rium thermodynamics is not only a theory of fluxes but also provides a theory of thermal fluctuations [14,15]. Therefore,
a complete understanding of thermodynamic transport in ternary systems should include an analysis of the associated
thermal fluctuation phenomena. This fact, together with the expected new experimental information from low-gravity ex-
periments [10], motivated us to embark on some further analysis of the nature of thermal concentration fluctuations in
ternary mixtures, as they may become accessible in possible subsequent dynamic light-scattering (DLS) experiments.

As reviewed by other authors [14,16], there are two general methods for dealing with thermal fluctuations in equilibrium
systems, namely, the arbitrary initial condition (Mountain) method and fluctuating hydrodynamics. The second is based on
an extension by Fox and Uhlenbeck [17] of Landau’s original ideas [18], and consists in introducing random contributions to
the dissipative fluxes and adopting a fluctuation–dissipation theorem (FDT) for their statistical properties. Then, stochastic
differential equations have to be solved and the statistical properties of the fluctuating fields are calculated from the known
correlation functions of the random dissipative fluxes [15,17].
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Alternatively, one can use an approach, pioneered by Mountain [19,20], and adopted in the well-known books of Boon
and Yip [21], Berne and Pecora [22], or Hansen and McDonald [23]. It consists in solving deterministic (with no random
contributions) linearized hydrodynamic equations with arbitrary initial conditions. For instance [20], one solves for a con-
centration fluctuation δc(t) as it evolves as a function of the time t starting from an arbitrary initial value δc(0). One
then multiplies the solution by the arbitrary initial condition, averages over the initial conditions, and obtains the dynamic
〈δc(t) · δc(0)〉 correlation function as a function of the static 〈δc(0) · δc(0)〉 correlation(s). Equivalently [24], some other au-
thors multiply the hydrodynamic equations by an arbitrary initial condition and average the equations themselves (not their
solution), arriving at evolution equations for the dynamic correlations that are then solved. Of course, both paths lead to
the same result: an expression relating 〈δc(t) · δc(0)〉 with the initial condition 〈δc(0) · δc(0)〉. To complete the calculation by
the Mountain [19] method one needs expressions for the static correlations, that are obtained from equilibrium statistical
physics. In particular, one uses Einstein’s hypothesis that the probability of a given fluctuation is proportional to exp(δS/kB),
where δS is the associated entropy fluctuation per molecule and kB Boltzmann’s constant. The two approaches: fluctuating
hydrodynamics and arbitrary initial conditions, are fully equivalent for fluctuations in equilibrium systems.

Unlike the Mountain approach, fluctuating hydrodynamics can be extended to also deal with fluctuations in systems
in nonequilibrium states, as theoretically shown and experimentally confirmed for one-component and binary fluid mix-
tures [15,25,26]. It turns out that the decay rates of nonequilibrium fluctuations are generally the same as equilibrium
fluctuations at wave numbers where boundary effects can be neglected (see, e.g. Ref. [27]). The most significant difference
between equilibrium and nonequilibrium fluctuations is in the intensity of these fluctuations: the presence of gradients
induces a huge enhancement of the intensity of the fluctuations. This enhancement is caused by mode-coupling phenomena
at the linear level that are not present in equilibrium and which lead to highly anisotropic fluctuations that are spatially
long ranged in nonequilibrium. The problem with the arbitrary initial-condition (Mountain) approach is that there is not, in
general, an accepted expression for the “entropy” in a nonequilibrium system, from which to get the static correlation(s);
e.g. 〈δc(0) · δc(0)〉, for concentration fluctuations.

Thermal fluctuations in ternary liquid mixtures have been investigated theoretically so far only by the arbitrary initial-
condition approach. Therefore, a first necessary step in developing the theory of nonequilibrium fluctuations in ternary
systems is to re-derive the equilibrium results on the basis of fluctuating hydrodynamics, which is the main purpose of the
present paper. In Section 2 we present the equations of fluctuating hydrodynamics for a ternary system in an approximation
that is adequate for liquid mixtures. In Section 3 we then derive the time-dependent correlation function of the concentra-
tion fluctuations, as they can be observed in, e.g., DLS experiments. In Section 4 we show the equivalence of the expression
for the thermal fluctuations derived from fluctuating hydrodynamics for equilibrium fluids with those obtained by previous
authors [28–31] on the basis of the Mountain method [19,20].

2. Fluctuating hydrodynamics of a ternary mixture in a large Lewis number approximation

A first modern analysis of thermal fluctuations in ternary fluid mixtures was presented by Lekkerkerker and Laidlaw [28].
They considered the generic case of a compressible fluid in which up to five hydrodynamic modes are coupled, and obtained
the full spectrum of the fluctuations at any wave number in the hydrodynamic regime. This original study was performed
closely following the Mountain approach, but was focused on the dynamics of the fluctuations so that an explicit discussion
of the equal-time (static) correlation functions was not included. Later, van der Elsken and Bot [29] considered the inten-
sity of fluctuations in multicomponent mixtures in equilibrium, and derived an expression for the Landau–Placzek ratio,
i.e., the ratio of the intensities of Rayleigh and Brillouin scattering. They used statistical mechanics [19,20,24], and their
results are relevant for the statics of the fluctuations only. More recently, Ivanov and Winkelmann [30] re-derived the ex-
pressions of Lekkerkerker and Laidlaw [28] for the Rayleigh peak of a ternary mixture, and studied the slowing-down of
the concentration fluctuations close to a critical consolute point but without including a discussion of the statics of the
fluctuations. Finally, Bardow [31] combined previous works, studying in a single paper both the statics and the dynamics
of fluctuations in equilibrium ternary systems. In addition, Bardow [31] adopted some approximations that are adequate for
mixtures in the liquid state, taking advantage of the property that concentration fluctuations in liquids relax much more
slowly than temperature fluctuations. This is equivalent to the large Lewis number approximation,1 introduced by Velarde
and Schechter [32], to simplify the calculation of the stability diagram of convection in binary fluids.

In a ternary mixture, there are two independent concentrations c1 and c2 that we take as mass fractions. We define
the two corresponding diffusion fluxes, J1 and J2, in the barycentric frame of Ref. [12], having units of mass per second
and surface area. Hence, Fick’s law in isotropic systems is expressed by a 2 × 2 diffusion matrix D (with SI units of m2 s−1)
linearly relating the two fluxes with the two concentration gradients. As it is the case in binary mixtures, for ternary systems
the diffusion matrix D will, in general, depend on concentrations and/or temperature [3–6]. However, in this paper we shall
adopt the approximation of constant D, since we are dealing with small fluctuations around a uniform concentration state
(equilibrium). Furthermore, as was also done by Barlow [31], we adopt a large Lewis number approximation meaning that

1 Here we adopt the IUPAC/IUPAP definition Le = a/D , where a is the thermal diffusivity and D the diffusion coefficient. However, many authors use a
definition of the Lewis number that is the inverse of the one adopted here. Thus, what for us is a large Lewis number approximation is for some other
authors a small Lewis number approximation.
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the thermal diffusivity a is much larger than the two eigenvalues of the diffusion matrix. Similarly to the case of binary
mixtures [32–34], in the limit Le → ∞ any coupling between the concentration fluctuations (δc1 and δc2 for a ternary
mixture) and the temperature fluctuations vanishes and one only needs to consider coupling between the concentration
fluctuations and the transverse-velocity fluctuations [33]. Furthermore, for fluctuations in an equilibrium state, the coupling
between velocity and concentrations also vanishes [31], so that the fluctuating hydrodynamics equations simplify to:

∂δc1

∂t
= D11∇2δc1 + D12∇2δc2 − 1

ρ
∇ · δJ1

∂δc2

∂t
= D21∇2δc1 + D22∇2δc2 − 1

ρ
∇ · δJ2 (1)

where ρ is the mass density of the fluid. Eqs. (1) are equivalent to Eqs. (7) and (8) used by Bardow [31] with the following
differences: first, we use here concentrations in terms of mass fractions instead of mole fractions. Second, Eqs. (7) and (8) of
Bardow [31] are for c1 and c2 themselves, while Eqs. (1) here are for fluctuations around an equilibrium state: δc1 = c1 −c1,E
and δc2 = c2 − c2,E. This makes no difference because the equilibrium concentrations, c1,E and c2,E, are spatially uniform.
The third and most important difference is the presence in Eqs. (1) of random dissipative fluxes δJ1 and δJ2. According
to fluctuating hydrodynamics [15,18], the linear phenomenological laws for the dissipative fluxes (the fluxes appearing in
the expression of the entropy production) have to be supplemented with random contributions reflecting the stochastic
nature of molecular motion. In a ternary mixture, the two independent diffusion fluxes imply the presence of two random
contributions. The stochastic properties of these two random fluxes are: zero average, 〈δJ1〉 = 〈δJ2〉 = 0; and correlation
functions given by the fluctuation–dissipation theorem [15,18], which in this case reads,〈

δ J∗
i,k(r, t) δ J j,m

(
r′, t′)〉 = 2kBLi jδkmδ

(
t − t′)δ(r − r′) (2)

where Li j represents the Onsager matrix of phenomenological coefficients (with L12 = L21) and where the indices k and
m span the three spatial coordinates k,m ∈ {x, y, z} (we are implicitly assuming that the system is isotropic). The matrix
L relates the dissipative fluxes (J1 and J2) linearly with the thermodynamic “forces” that appear in the expression of the
entropy production associated with these fluxes, which are the gradients of the chemical potential differences divided by
the temperature, ∇(μ̂1/T ) and ∇(μ̂2/T ). Here μ̂1 = μ1 − μ3 is the chemical potential difference between component 1
of the mixture and component 3 (solvent), and the same for μ̂2 = μ2 − μ3. Component 3 is the one whose mass fraction
concentration is taken as a dependent variable, i.e., c3 = 1 − c1 − c2. Consistent with the use of concentrations in terms of
mass fractions, the chemical potentials here are per unit mass, while in the work of Bardow [31] chemical potentials per
mole have been used.

As is well known [12,28,31], the experimentally accessible diffusion matrix D is proportional to the product of the
Onsager matrix L by the equation of state (EOS) matrix G of derivatives of chemical potential differences:

Gij =
(

∂μ̂i

∂c j

)
T

(3)

In particular, we have[
D11 D12
D21 D22

]
= 1

ρT

[
L11 L12
L21 L22

][
(
∂μ̂1
∂c1

)T (
∂μ̂1
∂c2

)T

(
∂μ̂2
∂c1

)T (
∂μ̂2
∂c2

)T

]
(4)

where T is the temperature. Note that we follow the nomenclature of de Groot and Mazur [11] instead of the nomenclature
of Taylor and Krishna [12], and that the Onsager matrix L as defined here is ρT times the inverse of the Onsager matrix H
as used by Bardow [31]: H = ρT L−1.

Because of a Maxwell thermodynamic relation, the EOS matrix G is symmetric [12,31]. From the symmetry of G the
following relation between Onsager and diffusion coefficients can be derived:

L12(D11 − D22) − D21L11 + D12L22 = 0 (5)

In addition, the symmetry of the Onsager matrix implies the following relation between diffusion coefficients and chemical-
potential derivatives [12,28,31]:

−D12G11 + G12 D11 = −D21G22 + G12 D22 (6)

that is independent of whether one uses the convention of de Groot and Mazur [11] or of Taylor and Krishna [12] for
the Onsager matrix. As discussed by many other authors [12,28,31,35–38], Eq. (6) is a direct consequence of the Onsager
reciprocal relations, meaning that the four components of the diffusion matrix of a ternary system are not independent,
but are related by the equilibrium properties of the system. Eq. (6) has been experimentally verified in several systems for
which precise concentration measurements are possible, like molten metal alloys [35], molten silicates [36] or electrolyte
solutions [37]. Kett and Anderson [38] verified Eq. (6) for low molecular weight nonassociating liquid mixtures. However, as
reviewed by Bardow [31], recent diffusion measurements in some nonideal ternary liquid mixtures could not confirm Eq. (6),
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a fact that indicates large experimental inaccuracies. The DCMIX experiment [10] is expected to yield accurate diffusion
matrices for selected ternary systems, in particular cross-diffusion coefficients. These measurements, when combined with
good EOS model(s) for the ternary mixture, are expected to pass the quality-control test of Eq. (6).

3. Correlation functions of concentration fluctuations

We can readily calculate the correlation functions among the various concentration fluctuations by applying, as in pre-
vious investigations [28,31], spatiotemporal Fourier transforms to Eqs. (1). In addition we need to apply also a Fourier
transformation to the fluctuation–dissipation expression (2). Details of this procedure are not given here, since they are
similar to many examples that can be found in the literature, such as in Ref. [15]. The final result is conveniently expressed
in terms of a correlation matrix Cij(ω,q), defined by〈

δc∗
i (ω,q) δc j

(
ω′,q′)〉 = Cij(ω,q)(2π)4δ

(
ω − ω′)δ(q − q′) (7)

where ω is the frequency and q the wave vector of the fluctuations. The correlation matrix is expressed as the sum of two
diffusion modes:

C(ω,q) = kBT

ρ
G−1

[
A1

2D̂1q2

ω2 + D̂2
1q4

+ A2
2D̂2q2

ω2 + D̂2
2q4

]
(8)

where D̂1 and D̂2 are the eigenvalues of the diffusion matrix:

D̂1,2 = 1

2

[
D11 + D22 ±

√
(D11 − D22)2 + 4D12 D21

]
(9)

The larger D̂1 eigenvalue is customarily referred to as the cooperative diffusion coefficient, while the smaller D̂2 eigenvalue
is referred to as the interdiffusion coefficient. The result (8), containing two diffusion modes and coming from fluctuating
hydrodynamics, fully agrees with the expression obtained by other investigators [28,30,31] on the basis of the Mountain
method.

The dimensionless matrices A1 and A2 in Eq. (8) control the relative amplitude of the two diffusion modes. They depend
only on the dynamics (diffusion matrix). Some long but otherwise straightforward algebra, with the help of Eq. (5), yields:

A1,2 = ± D̂2
1,2DT − (det D)2(DT)−1

D̂1,2(D̂2
1 − D̂2

2)
(10)

where DT is the transpose of the diffusion matrix and det D its determinant (units of diffusion squared). Application of
Fourier anti-transforms in the two frequencies to Eq. (7) yields:〈

δc∗
i (q, t) δc j

(
q′, t′)〉 = Cij

(
q,

∣∣t − t′∣∣)(2π)3δ
(
q − q′) (11)

where, due to the time invariance of the equilibrium state, the time-correlation matrix depends only on the difference
|t − t′|. From Eq. (8) one arrives at:

C(q, τ ) = kBT

ρ
G−1[A1 exp

(−D̂1q2τ
) + A2 exp

(−D̂2q2τ
)]

(12)

demonstrating that the time-correlation functions, as measured in DLS experiments probing times of the order of the dif-
fusive decay times, will be composed of two exponentials, with decay rates D̂1q2 and D̂2q2 determined by the eigenvalues
of the diffusion matrix. Two diffusive modes are routinely measured by DLS in ternary systems consisting of two different
polymers in a solvent (see, for instance, Ref. [39]), or the same polymer at two different molecular weights in a solvent.
However, as discussed by Bardow [31], available ternary DLS experiments in low molecular weight fluids report only a single
mass diffusion mode. This may be due to very different numerical magnitudes of the two amplitude matrices of Eq. (10),
as Bardow [31] has pointed out. But we should also mention the intrinsically more difficulty of DLS experiments in low
molecular weight mixtures as compared to polymer solutions. Diffusion in polymers is orders of magnitude slower and the
intensity of concentration fluctuations2 is usually larger, two facts that cooperate to make DLS simpler and more reliable in
polymers as compared with regular mixtures. In addition, for low-molecular weight mixtures it may happen that only one
of the eigenvalues of the diffusion matrix is negligible compared to the thermal diffusivity of the mixture.

It is important to note from Eq. (10) that:

A1 + A2 =
[

1 0
0 1

]
= 1 (13)

2 As determined by the matrix G−1 in Eqs. (12) and (14), and also by the concentration derivatives of the refraction index that we do not discuss here.
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As a consequence, the equal-time correlation matrix,

C(q,0) = kBT

ρ
G−1 (14)

does not depend on the dynamics of the system (i.e., it does not depend on the matrix D), as it is to be expected physically.
Eq. (14) agrees with the one obtained by van der Elsken and Bot [29] for the equal-time correlation functions on the basis
of the Mountain method, i.e., from the expression of the entropy fluctuation.

4. Comparison with work of previous authors

Eqs. (8)–(10) give the relative amplitude of the two diffusion modes that can be observed in a ternary mixture by DLS
experiments. Our results have been obtained on the basis of fluctuating hydrodynamics, and are suitable as a starting point
for an analysis of thermal fluctuations in a ternary mixture subjected to a temperature gradient. Here we compare our
results from fluctuating hydrodynamics with previous results obtained for fluctuations of ternary mixtures in equilibrium
on the basis of the arbitrary-initial-condition method [28,31].

Lekkerkerker and Laidlaw [28] studied the spectra of light scattered by a ternary mixture, that is expressed in terms
of the time correlation functions of the various thermodynamic fields. Lekkerkerker and Laidlaw [28] did not adopt the
large Lewis number approximation, so that their results contain five coupled hydrodynamic modes, instead of only the two
present in our current Eq. (8). However, if one takes the large Lewis number limit to the Lekkerkerker and Laidlaw [28]
expressions, one does reproduce our results. The large Lewis number approximation is adequate for liquid mixtures, and it
is simpler and more transparent to take this limit in the original equations rather than in the final results. Moreover, for
liquids the decay times of thermal or viscous modes are well separated from the decay times of diffusive modes. Hence,
in DLS experiments probing the correlation-time range corresponding to the relaxation of the concentration fluctuations,
thermal and viscous modes have already fully decayed and cannot be observed.

Bardow [31] did adopt the same large Lewis number approximation that we used here. In addition, he discussed the
relative amplitude of the two diffusive modes and not just the dynamics as Lekkerkerker and Laidlaw [28] did. As mentioned
earlier, the analysis of Bardow [31] was based on the Mountain method which cannot be extended to nonequilibrium.
A comparison with his results for the relative equilibrium intensities of the two diffusive modes is less obvious, since
Bardow has presented the amplitudes in terms of certain uncoupled concentration variables, δĉi , whose definition depends
on the diffusion matrix.

Hence, we need to check whether it is possible to express our result, given by Eq. (8), in terms of the uncorrelated single-
mode concentration fluctuations, δĉi introduced by Bardow [31]. First, to look for uncorrelated modes one has to diagonalize
the amplitude matrices: G−1A1 and G−1A2, noting that, because of Eq. (13), the same hat-concentrations that diagonalize
the first matrix will automatically diagonalize the second matrix also (the matrix G−1 is itself symmetric). Second, it turns
out that the determinants of both amplitude matrices are zero, meaning that each of the two matrices has an eigenvalue
zero. We conclude from these observations that the decomposition in single-mode uncorrelated hat-concentrations exists,
and the δĉi are linearly related to the actual concentrations as δci = Pijδĉ j , where the transformation matrix P is indeed
correctly given by Eq. (13) in Bardow [31]. To evaluate the amplitude of the fluctuations of these uncorrelated concentrations
from our current Eq. (8), one needs to compute

P−1G−1A1
(
P−1)T = 1

Ĝ1

[
1 0
0 0

]

P−1G−1A2
(
P−1)T = 1

Ĝ2

[
0 0
0 1

]
(15)

so that 1/Ĝ1 is the nonzero eigenvalue of the first amplitude matrix, and 1/Ĝ2 the nonzero eigenvalue of the second
amplitude matrix. The expressions, that we obtain for Ĝ1 and Ĝ2 after substituting Eq. (10) for A1 and A2, reproduce
exactly the equations obtained by Bardow (Eqs. (18) and (19) in Ref. [31]). We thus conclude that the expressions obtained
by Bardow [31] on the basis of the Mountain method agree completely with the expressions obtained by us from fluctuating
hydrodynamics, as it is to be expected for fluctuations in a fluid in equilibrium.
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