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Abstract We use fluctuating hydrodynamics to evaluate the enhancement of thermally ex-
cited fluctuations in laminar fluid flow using plane Couette flow as a representative exam-
ple. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy am-
plification arising from thermally excited wall-normal fluctuations by solving a fluctuating
Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising
from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The ther-
mally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution
to the energy amplification. In addition, we show that thermally excited streaks, even in the
absence of any externally imposed perturbations, are present in laminar fluid flow.

Keywords Energy amplification - Fluctuating hydrodynamics - Laminar fluid flow -
Orr-Sommerfeld equation - Plane Couette flow - Squire equation - Vorticity fluctuations

1 Introduction

The presence of gradients, such as temperature gradients, concentration gradients, or veloc-
ity gradients, always causes non-equilibrium enhancements of thermal fluctuations that are
spatially long ranged, even when the system is far away from any hydrodynamic instabil-
ity [1, 2]. The present paper is part of a detailed study of the nature of thermally excited
fluctuations in laminar fluid flow using plane Couette flow as a representative example. It
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has been verified that fluctuating hydrodynamics, originally developed for thermal fluctua-
tions in equilibrium states [3, 4], can be extended to deal with thermal fluctuations in non-
equilibrium states [2]. In fluctuating hydrodynamics the usual deterministic hydrodynamic
equations are supplemented with random dissipative fluxes of thermal (natural) origin. In the
case of laminar fluid flows one has to consider a random stress tensor to account for intrin-
sic thermal noise that always will be present. This noise will be amplified by the presence
of a velocity gradient. Energy amplification induced by the flow has attracted the attention
of many investigators. In many of the studies reported in the literature the noise is not of
thermal origin and does not obey a fluctuation-dissipation relation [5-9]. Fluctuating hydro-
dynamics provides a systematic method for assessing the nature of spontaneous fluctuations
in laminar flow induced by intrinsic noise. The application of fluctuating hydrodynamics
to shear flows has been initiated by some previous investigators, but without considering
confinement effects [10—14]. However, the long-ranged nature of the fluctuations is highly
anisotropic and for certain directions of the wave vector the fluctuations encompass the en-
tire fluid system, so that boundary effects will affect these fluctuations.

Previously we have derived the appropriate fluctuating hydrodynamics equations for lam-
inar fluid flow. Specifically, we have shown how the thermally excited wall-normal velocity
fluctuations can be described by a stochastic Orr-Sommerfeld equation [15] and the ther-
mally excited vorticity fluctuations by a stochastic Squire equation [16]. Accounting for re-
alistic boundary conditions we obtained solutions of the stochastic Sommerfeld and Squire
equations based on semi-quantitative Galerkin approximations [15-17]. We now have de-
rived more exact solutions of these stochastic equations in terms of an expansion of the
eigenfunctions (hydrodynamic modes) of the hydrodynamic operator. The more exact solu-
tion of the stochastic Orr-Sommerfeld equation for the wall-normal velocity fluctuations has
been presented in a previous article in this series, to be referred to as paper I [18]. We found
that the flow-induced enhancement of the wall-normal velocity fluctuations and the result-
ing energy amplification increases with the Reynolds number Re approximately as Re?. The
actual enhancement of the velocity fluctuations strongly depends on the wave number. For
large wave numbers (in the bulk of the fluid), this enhancement varies as the fourth power
of the inverse wave number, independent of any boundary conditions. For small wave num-
bers the enhancement vanishes as the square of the wave number due to the presence of
boundaries. Our previous approximate solution based on a Galerkin approximation [15] did
reproduce the correct dependence of the non-equilibrium enhancement of the fluctuations
on the wave number but underestimated the magnitude of the enhancement at intermediate
wave numbers [18].

The present paper is concerned with an analysis of the solution of the stochastic Squire
equation for the wall-normal vorticity fluctuations. We shall proceed as follows. In Sect. 2
we recall the expressions for the stochastic Orr-Sommerfeld and Squire equations in terms
of suitable dimensionless variables. The Squire equation for the wall-normal vorticity fluc-
tuations includes a coupling with the Orr-Sommerfeld equation for the wall-normal velocity
fluctuations. Hence, the solution of the stochastic Squire equation for the wall-normal vor-
ticity fluctuations to be obtained in the present paper will depend on the solution of the
stochastic Orr-Sommerfeld equation for the wall-normal velocity fluctuations obtained in
our preceding paper [18]. In Sect. 3 we describe the procedure for solving the stochastic
Squire equation. For this purpose we expand the solution in terms of the eigenfunctions of
the linear hydrodynamic operator associated with the Squire equation. In Sect. 4 we de-
rive the corresponding hydrodynamic modes and decay rates. In Sect. 5 we then obtain the
expressions for both the equilibrium and nonequilibrium contributions to the intensity of
the vorticity fluctuations, while in Sect. 6 we deduce the nonequilibrium energy amplifica-
tion arising from these vorticity fluctuations. The nonequilibrium energy enhancement turns
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out to be proportional to the square of the Reynolds number. Specifically, we evaluate the
nonequilibrium energy amplification associated with the vorticity fluctuations for fluctua-
tions with wave vector in the spanwise direction which appears to be the most interesting
case. We also find good agreement between the exact solution, obtained in this paper, and
the semi-quantitative solution previously obtained in a Galerkin approximation [16]. We
conclude with some general comments in Sect. 7.

2 Fluctuating Hydrodynamics of Shear Flow. The Stochastic Orr-Sommerfeld and
Squire Equations

We consider a liquid with uniform temperature 7 under incompressible laminar flow with
uniform density p between two horizontal plates separated by a distance 2L. As in our previ-
ous publication [18] we adopt a coordinate system with the X-axis in the streamwise direc-
tion, the Y -axis in the spanwise direction, and the Z-axis in the wall-normal direction [19].
Thus the mean flow velocity vo = {yz, 0, 0} is in the X -direction with y representing a con-
stant shear rate in the Z-direction. The bounding upper plate, at the position z = +L, moves
in the positive X-direction with velocity y L, while the lower plate, at the position z = —L,
moves with the same velocity in the opposite direction. This flow configuration is commonly
referred to as plane Couette flow. It is convenient to use a dimensionless position variable r,
measured in terms of the length L, a dimensionless time ¢ obtained by multiplying the actual
time with the shear rate y, a dimensionless fluid velocity v in terms of the product y L, and
a dimensionless stress tensor IT in terms of pL2y.

We want to study velocity fluctuations around the stationary flow solution of the Navier-
Stokes equation. Specifically, we are interested in fluctuations of thermal origin, i.e., fluc-
tuations resulting from the intrinsically stochastic nature of molecular motions. Such fluc-
tuations are always present and are unavoidably linked to any dissipative processes that are
present in the system, Newton’s law of viscosity in the present case. Fluctuating hydro-
dynamics provides a general and systematic framework for describing such thermal fluc-
tuations, even when the system is in a non-equilibrium state [1, 2]. The idea is that the
linear phenomenological laws representing dissipation in the system are to be supplemented
with random dissipative fluxes (thermal noise), whose statistical properties are given by
the fluctuation-dissipation theorem, see e.g. [20]. The goal is then to obtain the correlation
functions of the fluctuating thermodynamic fields, velocity fluctuations §v in our case, in
terms of the statistical properties of the thermal noise, the stochastic stress tensor §II in our
case. Implementing this procedure we have shown in previous publications that the fluctu-
ations év, of the wall-normal velocity component v, satisfy a stochastic Orr-Sommerfeld
equation [15]

3 (V28v.) + 20, (V?8v,) — éw(am =—{VxVx[VvEm]}, (1)
and the vorticity fluctuations w, = d,6v, — 9,v, a stochastic Squire equation [16]
3 (Sw;) + 20, (Sw;) — 9,8v, — évz(awz) ={Vx[VEm]}.. 2)
In these equations Re is the Reynolds number
Re = "V'an 3)
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with 7 being the shear viscosity of the fluid. By combining Eqgs. (1) and (2) with the in-
compressibility assumption, V - §v, one can obtain the three components of the fluctuating
velocity field 8v.

The difference between the stochastic Orr-Sommerfeld equation (1) and the stochastic
Squire equation (2) and their deterministic counterparts [19, 21] is the presence of noise
terms on the right-hand side (RHS). These additive noise terms appear as derivatives of the
random stress §IT; their correlation functions can be deduced from the fluctuation dissipa-
tion theorem which in this case reads [2]

(81T (e, 1) - 81Ty (¥, 1)) = 28(8:8 0 + 88 1) (r —¥')8 (¢ — ). 4)

In this equation S is the dimensionless strength of the thermal noise [18]:

~ kg T kT 1 1
S=-f712= B%-z 2 Ra ®)
Y’L" py  poL® y*L*Re

where kg is Boltzmann’s constant. We note that the actual correlation function for the fluctu-
ating stress tensor only depends on the properties of the fluid, namely temperature, density,
and viscosity; the shear rate and the Reynolds number only appears in (5) as a consequence
of the manner in which the stress has been made dimensionless.

Equations (1) and (2) form a pair of coupled stochastic differential equations which have
to be solved for the velocity and vorticity fluctuations subject to appropriate no-slip bound-
ary conditions:

Sv,(r, 1) = 3.8, (r, 1) = Sw,(r, 1) =0, atz==%l. (©)

In our earlier work we have accounted for these boundary conditions by solving Egs. (1)
and (2) using a Galerkin method that allowed for analytical but approximate expressions for
the correlation functions of the wall-normal velocity and vorticity fluctuations [15, 16]. We
have summarized these approximate solutions of the two stochastic equations in a subse-
quently publication [17]. While the Galerkin-approximation technique enabled us to obtain
relatively simple analytical results, the approximation is somewhat uncontrolled. Hence, we
found it desirable to compare the approximate analytical solutions with exact numerical so-
Iutions that can be obtained through expansions in eigenfunctions of the hydrodynamic op-
erators. We have implemented this project for the solution of the Orr-Sommerfeld stochastic
equation (1), yielding the correlation function for the wall-normal velocity fluctuations in
paper I in this series [18]. In the present paper we analyze the solution of the stochastic
Squire equation (2) for the wall-normal vorticity fluctuations. There is an important differ-
ence between the Orr-Sommerfeld equation (1) and the Squire equation (2). The solution
of the Orr-Sommerfeld equation for the velocity fluctuations is independent of the solution
of the Squire equation for the vorticity fluctuations. On the other hand, the Squire equa-
tion (2) is coupled with the Orr-Sommerfeld equation though the presence of the term 9,dv,
in Eq. (2). Physically it means that the wall-normal velocity fluctuations involve only a cou-
pling between the same (viscous) hydrodynamic mode (at different wave numbers) to which
we have referred as “self-coupling” [15]. However, the solution of the Squire equation for
the wall-normal vorticity fluctuations is related to two mode-coupling mechanisms: a self-
coupling between vorticity fluctuations and a cross-coupling between velocity and vorticity
fluctuations. We shall recover our earlier observation [16] that the self-coupling mechanism
in the Squire equation determines the intensity of the vorticity fluctuations in equilibrium
and that the cross-coupling mechanism in the Squire equation determines the nonequilib-
rium intensity enhancement of the wall-normal vorticity fluctuations.
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To put our present work in the context of previous investigations of the effect of externally
imposed stochastic forcing on shear flows we may mention the following. In their original
papers, Farrell and Ionannou [5, 6] and Bamieh and Dahleh [7] introduced a stochastic forc-
ing term directly into the RHS of the Orr-Sommerfeld and Squire equations (1) and (2), not
in the stress tensor as the thermal forcing incorporated by us. More recently, Jovanovic and
Bamieh [8] introduced the forcing in the more basic Navier-Stokes equation, resulting in a
more transparent interpretation of the random terms as actual forces. Moreover, Jovanovic
and Bamieh [8] allowed for some flexibility in the spatial spectrum of the noise, distinguish-
ing between structured and unstructured noise. However, in spite of this flexibility, thermal
noise is not included as a particular case of the random forcing considered by the authors [8].
Indeed, from the fluctuation-dissipation relation (4), it follows that the spatial spectrum of
the resulting stochastic forcing in the RHS of Eqgs. (1) and (2) is not contained in the ex-
pressions of Jovanovic and Bamieh [8]. Hence, the results obtained here will differ from
previous investigations.

In terms of the input-output nomenclature that, borrowed from the dynamics and control
literature, has become popular lately [8, 22]; we take as input the thermal noise and our
output (through the linearized Navier-Stokes equations) is the wall-normal vorticity auto-
correlation function.

3 Procedure for Solving the Stochastic Squire Equation

Just as the procedure used for solving the Orr-Sommerfeld equation [18], to solve the Squire
equation (2) we apply a Fourier transform in time and in the horizontal XY -plane parallel
to the walls:

liw+H] - dw (0, q, 2) = ig,dv. (@, q), 2) + S: (@, q, 2), @)

where w is the frequency of the fluctuations w, and q; = {gx, ¢, } the corresponding wave
vector in the plane parallel to the walls. In Eq. (7), H represents a linear hydrodynamic
operator:

1
H=izq, — g("’f —q;). 8)

The RHS of Eq. (8) contains two stochastic forcing terms. The first one, ig,év., accounts
for a stochastic forcing originating from the wall-normal velocity fluctuations, which can
be represented in terms of the exact solution of the Orr-Sommerfeld equation with thermal
forcing derived in paper I [18]. The second forcing term S, is given by the Fourier transform,
in time and in the XY -plane, of the combination of derivatives of the random stress §II in
the RHS of Eq. (2):

S, =i0:[qx8 Ty — qy81T.,] — g8y + qy8 Iy + qqy [8 T — 81T,,]. )

Since the hydrodynamic operator is linear we find the solution of Eq. (7) by expanding in a
set of right eigenfunctions, Ry (q, z), or hydrodynamic modes as:

Sw.(@.q1.2) = »_ Gy(w.q)Ry(q). 2). (10)
N=0
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where the hydrodynamic modes are the solution of:

H- Ry(qy,2) =I'n(q)Ry(q, 2) an

with I'y(qy) being the corresponding eigenvalue or decay rate. In Eq. (11) Ry(qy, z) must
satisfy the boundary conditions Ry (q;, £1) = 0. In Egs. (10)—(11) we anticipated the fact,
to be discussed in more detail in Sect. 4, that the right eigenvalue problem of the Squire
operator, Eq. (11), has indeed an infinite numerable set of solutions. Next, to evaluate the co-
efficients Gy (w, q) of the series expansion (10) we use the property that the complex con-
jugates Ry (qy, z) are the left eigenfunctions of the Squire operator (8), with corresponding
eigenvalues Iy (q;). Indeed, by using the boundary conditions (6) it can be readily shown
that the adjoint of the operator H is simply its complex conjugate and the left eigenfunction
is just the complex conjugate of the right eigenfunction. As a consequence, the biorthogo-
nality [23] condition reads:

1
/ Rur(@y 2)Ry (a2 dz = By (q))Swnr. (12)
-1

Equation (12) determines the normalization of the eigenfunctions. Next, we evaluate the co-
efficients Gy (w, q;) in the expression (10) for dw,(w, qy, z) by substituting Eq. (10) into

Eq. (7). The resulting expression is then projected onto Ry (qy, z) and using the biorthogo-
nality condition (12), one readily obtains:

FN(w! (II|)
By (o, qliw + Ty (q)]’

Gy(o,q) = 13)

where Fy(w, q;) are the projections of the RHS of Eq. (7) onto the Ry(qy, z) functions,
namely:

1

Fy(w,q) = f Ry (qy. 2)[igydv-(w, qy, 2) + S: (o, q;, 2) ] dz. (14)
1

For the evaluation of the vorticity fluctuations, we need the correlation functions (Fy (@, q;) -
Fuy (o, qil)). These, in turn, can be deduced from the correlations:

(80 (@, gy, 2) - 8v. (¢, ), 2')) = 27)*6 (0 — )8 (q) — 4)) Cec(@. @y, 2, 2),  (152)
(@, qy, 2) - S:(e, q), ) = 27)*8( — )5 (q) — q)

x 28g; (qf +0:0.)8(z — 2, (15b)

(82 (. qp.2) - vz (o', ). 7)) = (S0 (. q1. 2) - S:(e', ). 7)) = 0. (15¢)

Equation (15a) represents the solution of the stochastic Orr-Sommerfeld equation ob-
tained in paper I [18] (see Eq. (24) in [18]), where explicit expressions for the function
C.(w, qy, z, Z') in terms of the hydrodynamic modes and decay rates of the Orr-Sommerfeld
operator have been presented. We shall not reproduce those expression here, although they
shall be used in some of the following calculations. Equation (15c) is a consequence of the
fact that the random noise terms in the stochastic Orr-Sommerfeld and Squire equations are
uncorrelated, see Eq. (18) in Ref. [16]. Finally, Eq. (15b), which is new in this paper, is
readily obtained from the definition (9) of S (w, q, z) and the fluctuation-dissipation theo-
rem (4) for the random stress tensor. The expression for the prefactor S is given by Eq. (5).
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With the help of Egs. (15a)~(15c¢), the correlations (Fy (@, q)) - Fu(«', q;)) between the
coefficients defined in Eq. (14), can be expressed as:

(Fi(,q) - Fu(o' q))) = [E5u (@) + BN (@, q)]@7)*8 (0 — )8(q) — q)),  (16)

with mode-coupling coefficients
1
Eyn(q) =23q] / ] dz Ry(qy. 2)[af — 02]Ru(qy. 2), (17a)

1
EN (@, q) =¢? f/ dzd? Ry (q), Cei(@, a1, 2,7 )Ru (g1, 7). (17b)
—1

The first expression, (17a), is obtained from Eqs. (14) and (15b) if one performs integrations
by parts to move the derivatives in (15b) from the delta function to the hydrodynamic modes,
and uses the boundary conditions Ry (qy, £1) = 0. In Eqgs. (16) and (17a) and (17b) we
have introduced superscripts (E) and (NE) to distinguish between the two contributions,
anticipating the fact (to be discussed at length later) that the first set of mode-coupling
coefficients will contribute only to the equilibrium equal-time vorticity fluctuations, while
the second set of mode-coupling coefficients (due to the coupling of wall-normal velocity
and vorticity fluctuations) contains the nonequilibrium amplification (enhancement) of those
fluctuations.

Equation (17a) for & ](VEA),I (qy) can be further transformed by integrating by parts while
making use of the eigenvalue problem (11), to obtain an expression more useful for future
use:

1

Eyn(ap = SReqf[ gy + Nulqp] / ] d& Ry (q), &) Ru(q). ), (18)

where we renamed the integration variable as &.

4 Hydrodynamic Modes and Decay Rates

The hydrodynamic modes Ry (qy, z) of the operator H are obtained by solving Eq. (11) with
the appropriate boundary conditions, i.e., Ry (qy, £1) = 0. In view of the definition (8) of 7,
the general solution of Eq. (11) can be expressed as a linear combination of Airy functions.
The boundary condition at z = 1 can be easily accommodated by a convenient selection of
the coefficients. Then the solution of Eq. (11) satisfying the boundary condition at z = 1 can
be written in the form [24]:

Ry(2) = Bi[(g:Re)'(ay — ) ]Ai[(q:Re)*(ay —iz)]
— Ai[(g:Re)'*(ay —1)]Bi[(¢:Re)' (ay —i2)]. (19)

In principle, the parameter ay in (19) can be any complex number. The decay rate of the
hydrodynamic mode (19) is expressed in terms of this parameter ay as:

2
I (qy) = gean(q) + % (20)
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For the hydrodynamic mode (19) to satisfy the boundary condition at z = —1 we need to
impose the condition:

0= Bi[(¢:Re)"*(ay — D]Ai[(g:Re) " (ay +1)]
— Ai[(¢:Re)' P (ay —1)]Bi[(¢.Re)(ay +1)]. 21)

Because of the oscillatory character of the Airy functions, Eq. (21) has an infinite numerable
set of complex roots ay . This fact has been anticipated in Eq. (10), and the index N has been
used throughout to distinguish among the various modes. In principle, the decay rates ay
depend on the parallel wave vector q; = {g., g,} and on the Reynolds number Re. However,
as a consequence of the structure of Eq. (21), the decay rates only depend on the magnitude
q) of the wave vector q in the plane parallel to the plates and on an effective Reynolds
number

Re =Recos g, (22)

where ¢ is the azimuthal angle of the wave vector q;, measured with respect to the stream-
wise X-direction. Hence, g,Re = g Re. This simplification is commonly referred to as
Squire symmetry [19]. As was discussed in detail in the preceding paper [18], the eigen-
values and the eigenfunctions of the Orr-Sommerfeld hydrodynamic operator obey the same
Squire symmetry. However, in contrast to the decay rates of the Orr-Sommerfeld hydrody-
namic operator, the decay rates ay of the Squire hydrodynamic operator have an additional
symmetry property, namely

an(q, Re) = ay(qy/*, Rer) (23)

for any real parameter value A. As a consequence, it is sufficient to determine the solutions
of Eq. (21) for a single value of the effective Reynolds number, such as Re = 1.

In Fig. 1 we show, as a function of the wavenumber g, the decay rates of the Squire
hydrodynamic operator H for Re = 1. Use of the explicit exact expression (19) for the
eigenfunctions (and, hence, Eq. (21)) enables us for a much simpler computation of the data
displayed in Fig. 1 when compared to a direct numerical integration of Eq. (11) performed
by Gustavsson and Hultgren [25]. As expected, the results are the same: see, e.g., Fig. 1 of
Ref. [25]. For small g the decay rates are real numbers and a simple perturbative calculation
allows us to obtain the first terms in a series expansion in powers of g, namely:

2.2

4q

an(q))ge=1 = +0O(q), forN=1,2,3... (24)

For larger ¢ and depending on the order N, the decay rates merge in pairs of complex con-
jugate numbers. For even larger ¢ — oo the real part of ay decays to zero as g '3 while
the imaginary parts of each pair approach +i. As explained above, this general landscape
of decay rates is maintained for any Reynolds number because of the scaling relation (23).
In particular, none of the decay rates becomes zero for any value of the wave vector or the
Reynolds number. The same is true for the Orr-Sommerfeld equation and, as is well known,
there is no linear hydrodynamic instability in plane Couette flow.

One difference with the landscape of eigenvalues of the Orr-Sommerfeld operator is that
there is no transient merging of eigenvalues in a limited “window” of wave numbers, nor
crossing of eigenvalues of different order. Hence, the curious behavior of the decay rates
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Fig. 1 Real (upper panel) and
imaginary (lower panel) parts of 100
the eight slowest decay rates as a E
function of q| for effective

Reynolds number Re = 1

N=8

> E
< ]
K B
K ]

14 E

A

0.1 1 10 100 1000
9

associated with the Orr-Sommerfeld hydrodynamic operator, as illustrated in Fig. 2 of pa-
per I [18] or in Fig. 2 of Gustavsson and Hultgren [25], is absent in the case of the decay
rates associated with the Squire hydrodynamic operator. The general nature of the eigen-
value map for the Squire operator is the same as depicted in Fig. 1 here, independent of the
Reynolds number.

In view of the structure (19) of the eigenfunctions and of the boundary conditions
Rn(qy, £1) = 0, the normalization constants (12) can be evaluated exactly by using both
the known integrals of products of the Airy functions [26] and the Wronskian of Airy func-
tions. This procedure yields:

G : i Ail(g:Re)" P (ay — )]
Bulan) = /_1 de[Rvian 2] = e {1 ~ Ail(g:Re) Play +1)] } @

and a similar expression in terms of the Bi functions, see Eq. (21). Again, as a consequence
of the Squire symmetry, the normalization constant By(g) only depends on the product
q.Re =g Re.

5 Nonequilibrium Vorticity Fluctuations

Starting from the general theory presented in Sect. 3 and using the expressions for the hydro-
dynamic modes and decay rates derived in Sect. 4 we can now evaluate the autocorrelation
function (Sw}(w, qy, 2) - Sw. (e, q;, 2)) of the wall-normal vorticity fluctuations. By com-

bining Egs. (10), (13), and (16), one readily obtains:

(sw!(w, qy,2) - dw. (o, q, 7)) =Weo(w. g, 2, 7)2n)*8(0 — o')8(q) — qi\) (26)
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with

00 = (E) ~ (NE) ((1))

Efu+E
We(w.qp.2.2) = ) Nm T ENm
( ” ) N,M=0 By Byl—iw + I'ylliw + I'y]

Ry () Ru(Z). 27)

To simplify the notation we have suppressed on the RHS of Eq. (27) the explicit dependence
of the quantities on the wave vector q;. In principle, Eq. (27) enables us to investigate
not only the intensity of the vorticity fluctuations, but also the time-dependent correlation
function characterizing the dynamics of these fluctuations. However, just as in the case of
the velocity fluctuations derived in paper I [18], we consider here only the intensity of the
nonequilibrium vorticity fluctuations, which is given by the equal-time correlation function
(8wi(qy, z,1) - Sw (qy, ', 1)). This equal-time correlation function is obtained by applying
a double inverse Fourier transform, in frequencies w and «’, to Eq. (26) so that

(8t (qy, 2, 0) - Sw.(q), 2, 1)) = Wee(ay, 2, 2) 27)?8 (q) — @), (28)
with

1 o0
W, (qll! Z, Z/) = E / doW,, (a)’ q, 2, Z/)' (29)

Substituting Eq. (27) into Eq. (29), and performing the integration over the frequency w
of the fluctuations, one readily obtains an expression for the amplitude of the equal-time
correlation function. In view of the structure of Eq. (27), we conclude that the resulting
expression will contain two additive contributions, namely an equilibrium contribution (E)
and a nonequilibrium contribution (NE):

Wee(ay z.2) = W (qy. 2, 2') + WP (qy. 2. 2). (30)
5.1 Equilibrium Contribution to the Intensity of the Fluctuations
Since the mode-coupling coefficients & ,(\, ,fl do not depend on the frequency w, the integration

in Eq. (29) can be readily performed for the equilibrium contribution. Combining the result
with the expression (18) for the “equilibrium” mode-coupling coefficients we arrive at:

WP (qy,z,7) SReq‘| Z / dSRX’@)RM(S)R,’Q(Z)RM(Z/),

N,M=0

_SRequ/ d& N(S)R,f,( )8(¢ —2),

= SReqs(z — 7). 31
where we have made use of the expansion of the delta function in terms of the hydrodynamic

modes Ry (qy, 2),

[e°]

1
8¢ -2 = Z Buian V@ HR @2, (32)

which is obtained by using the orthogonality condition (12). It is obvious that §(§ — z), as
a function of z, satisfies the relevant boundary conditions. Expression (32) is valid for any
value of the wave number g or the effective Reynolds number Re. The important result is
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that the expression (31) for W¥(qy, z, z') indeed reproduces the intensity of the equal-time
autocorrelation function of the wall-normal vorticity fluctuations for a fluid in equilibrium.
Note that the prefactor SRe appears in Eq. (31) as a consequence of the adoption of dimen-
sionless variables; when one reverts to physical variables the resulting prefactor is indeed
independent of the shear rate.

Equation (31) justifies the use of superscripts (E) and (NE) in Eq. (16). In addition, it
shows that the nonequilibrium contribution to the intensity of vorticity fluctuations arises
only from the coupling with the wall-normal velocity fluctuations in the stochastic Squire
equation (2), and not from the self-coupling also present in the stochastic Squire equa-
tion (2). This result was already found previously [16] on the basis of a Galerkin approx-
imation. We now see that this is exact, and not just a consequence of the simplicity of the
approximation used previously [16]. However, the self-coupling in the Squire contribution
does contribute to the time-dependent nonequilibrium correlation function which is not con-
sidered here.

The separation (30) of the effects of thermal noise into an equilibrium and a nonequi-
librium contribution is equivalent to what was found in the study of stochastic forcing, for
instance, Eq. (17) of Ref. [7] or Eq. (4.3) of Jovanovic and Bamieh [8]. The terms propor-
tional to the cube of the Reynolds number in those expressions [7, 8] vanish when there is
no flow in the system, but physically, the terms proportional to Re are present even when
there is no flow. Indeed, as is the case in our Eq. (31), one power of Re in Refs. [7, 8] is
due to dimensionality reasons. A forcing (stochastic or not) must have units of force and
the dimensionless time is in unit of the (inverse) shear rate. An important feature of our
calculation is that we recover the well-known expression (31) for the vorticity fluctuations
in equilibrium [27, 28].

5.2 Nonequilibrium Contribution to the Intensity of the Fluctuations

Upon substitution of the (NE) part of Eq. (27) into Eq. (29), one obtains the nonequilib-
rium contribution W (qy, z,z') to the vorticity fluctuations. By making further use of
Egs. (17a) and (17b) for the mode-coupling coefficients, we arrive at the explicit expres-
sion:

y = Ry(R
WoR(e, ) = 2y SO [ e o)
N.M=0

X /‘OO sz(a)v S! g/) da) (33)

oo [—iw + Tlliow + Tl

In principle one needs to substitute the autocorrelation function C,,(w, &, ') of the wall-
normal velocity fluctuations from paper I [18] into Eq. (33), and perform the various inte-
grations and summations to obtain the function of interest. This procedure yields rather com-
plicated expressions and only marginal analytical progress can be made, at the expense of
very large and cumbersome expressions. Therefore, unlike our previously solution obtained
on the basis of a Galerkin approximation [16], only a numerical computation of W (z, z')
is generally possible, and even this numerical procedure turns out to be rather long and
difficult.

There is one important issue that should be mentioned. Because of the presence of the
term qg as a prefactor in Eq. (33), it turns out that the intensity of the nonequilibrium vor-
ticity fluctuations has a maximum in the spanwise direction (g, = 0), while it is zero in the
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streamwise direction. This is opposite to the wave-vector dependence of the wall-normal
velocity fluctuations discussed in paper I [18]. In that case the intensity of the fluctuations
has a maximum in the streamwise direction (g, = 0) and is zero in the spanwise direc-
tion. Moreover, for the same Reynolds number, the intensity of the vorticity fluctuations is
substantially larger than the intensity of the wall-normal velocity fluctuations. Hence, an
important conclusion that can be derived from Eq. (33) is that the most important effect of
the flow on thermal fluctuations is the enhancement of wall-normal vorticity fluctuations
with wave vector in the spanwise direction; or, equivalently, fluctuations that are constant
in the streamwise direction. The same conclusion was obtained from our previous approx-
imate Galerkin solution [15, 16], see in particular Fig. 6 in Ref. [17]. A similar conclusion
is obtained both from direct numerical simulations of the full Navier-Stokes equations or
from analytical studies of transient growth (amplification) of perturbations, see, for instance
Refs. [22, 29].

Not only are the vorticity fluctuations in the spanwise direction the most dominant and
interesting. In addition, further analytical progress is also possible for this case. This is the
reason why previous investigators, who considered externally imposed forcing, have fo-
cused on vorticity response in the spanwise direction [5, 7, 9]. Indeed, when g, = 0 the
(Fourier transformed) Orr-Sommerfeld and Squire equations simplify notably. The eigen-
functions of the Squire operator can be simply expressed in terms of trigonometric func-
tions, while the corresponding eigenvalues can be obtained analytically. The eigenfunctions
of the Orr-Sommerfeld operator in this limit can be written as combinations of trigonometric
and hyperbolic functions, while the eigenvalues can be obtained numerically by solving rela-
tively simple algebraic equations, as first discussed by Dolph and Lewis [30]. One important
property is that in both cases the eigenfunctions possess a well-defined parity, and can be
naturally classified into odd eigenfunctions and even eigenfunctions. We note that this is
not true in the general case g, # 0. Hence, in the remainder of this paper we shall focus on
the vorticity fluctuations in the spanwise direction, and their effect on the nonequilibrium
energy amplification induced by the fluid flow.

6 Nonequilibrium Energy Amplification

We recall that in the derivation of the stochastic Orr-Sommerfeld and Squire equations we
have used the incompressibility assumption V - §v =0 [15, 16]. Hence, only two compo-
nents of the velocity fluctuate independently. Most investigators on the subject have been
interested in the so-called kinetic-energy amplification, that can be obtained from the sum
of the equal-time autocorrelation functions (v} (qy, z, 1) - 8v; (qi‘, 7/, t)). And indeed, as elu-
cidated in more detail in our previous analysis on the basis of a Galerkin approximation [16],
the spatial spectrum of the kinetic-energy amplification is proportional to the vertical aver-
age

1 ot
E/ f dZdZ’ Z(SU?((]”,Z, l) . (SU,' (qh’zl’ l))
1 /'t |
= 5/ / dzdz/{—z(c?w:(q”, Z,1) ‘5wz(q]‘, Z t))
- qj
+(8v;‘(q”,z,t).5U1(qi"z,’t)>}’ s
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where on the RHS of this equation we only need to consider the wall-normal velocity and
vorticity fluctuations because of the divergence-free condition V - §v = 0. In addition, the
fact that there is no cross-correlation between dw, and §v, and the boundary conditions for
8v, have also been employed.

The contribution in Eq. (34) arising from the wall-normal velocity fluctuations has been
studied extensively in paper I [18]. We focus here on the contribution from the vorticity
fluctuations which, in view of Egs. (28)-(29), will be proportional to the quantity

1 1 1
W..(q)) = 5/1/|dZdZ/ W..(qy.2.2). 35)

which is a function of the horizontal wave vector q of the fluctuations that we shall inves-
tigate in this section.

First of all, one notes that because of the structure of the mode-coupling coefficients,
the spectrum W (q;) can be expressed as the sum of an equilibrium and a nonequilibrium
contribution which we prefer to write in the form

W..(q) = WP @gp[1+ AW @], (36)

where AWX® (q)) represents the nonequilibrium energy enhancement. The equilibrium
contribution W¥(¢) in Eq. (34) is obtained by substituting Eq. (31) into Eq. (35)

WP (q)) = SReqf, 37

which is the same as in the absence of any flow.

The nonequilibrium enhancement A WNE(qy) in Eq. (36), resulting from the wall-normal
vorticity fluctuations, can be obtained by substituting Eq. (33) into Eq. (35). As already
mentioned before, in general, this procedure yields a complicated expression that can only
be evaluated numerically.

6.1 Enhancement of Streamwise-Constant Fluctuations (i.e., with Wave Vector in the
Spanwise Direction)

A particular simple case is that of fluctuations constant in the streamwise direction with
q in the spanwise direction, i.e., for which ¢, = 0 and g, = g = g. As mentioned above,
under this condition the working equations simplify greatly, and a more compact analytical
expression can be obtained for the nonequilibrium enhancement. Because of its obvious
simplicity, this particular case has been analyzed in detail by some previous investigators [35,
7, 8] but for externally imposed stochastic forcing, not thermal noise. Hence, their results
differ from the ones obtained here. For this reason, we present our explicit results for the
enhancement of vorticity fluctuations induced by thermal noise with the (horizontal) wave
vector in the spanwise direction, namely:

AWE(g)

Re? |:9 —tanh?¢  tanhg  9tanhg :|

w=0 = 84° 2q B cosh? ¢

2 aN+2q
0 (2a% + 3¢*) tanh, /a3 +2¢2 + coshZW

N= o(aN+q2)2(aN+2q2)2[ "‘a“h‘f — tanh /a3, +2¢°]

+Re?

(38)
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Fig. 2 Nonequilibrium 4 |7 T T
enhancement A WZNE (g) of 10
wall-normal vorticity fluctuations

in the spanwise direction ]

(gx = 0) from Eq. (38). The two 107 3 .
straight lines represent the 3

asymptotic behaviors at small
and large wave numbers, 10° E 7

Eqgs. (40) and (41), respectively. i~
Data are for Re = 500 =
<10 4 =
S
<
10° 4 .
10" 4 .
10" H———rrrr———rrr————rrrr
0.1 1 10 100
q
with
T
ay = E(2N +1), 39

so that (a,z\, + ¢%)/Re are the eigenvalues of the Squire operator in the spanwise direction
with corresponding eigenfunctions of even parity. As already mentioned, in this particu-
lar case (spanwise direction) the hydrodynamic modes (eigenfunctions) have a well-defined
parity. Because of the z-integrations in Eq. (17b) for the mode-coupling coefficients, modes
with different parity do not couple. In addition, because of the integrations in Eq. (35), only
the even eigenfunctions or modes do finally contribute to the nonequilibrium enhancement.
To obtain Eq. (38) we have closely followed a procedure used by Bamieh and Dahleh [7];
in particular we used the auxiliary function g(z) introduced in their Lemma 4. However,
we obtain a different result because the thermal noise, considered here, has a special spatial
spectrum given by the fluctuation-dissipation theorem (4), that is different from the spec-
trum of the externally imposed stochastic forcing considered by Bamieh and Dahleh [7].
One power of the Reynolds number appears in the energy amplification because of dimen-
sionality reasons. Physically, the flow-induced amplification of thermal noise is proportional
to the square of the Reynolds number (shear rate), not to the cube of the Reynolds number
as stated by Bamieh and Dahleh [7] or Jovanovic and Bamieh [8].

In Fig. 2 we show a plot of the nonequilibrium enhancement AWXE(q) of the wall-
normal vorticity fluctuations with wave vector in the spanwise direction (g, = 0, or stream-
wise constant) as given by Eq. (38). The data in Fig. 2 are for Re = 500, but we note that the
Reynolds number appears in Eq. (38) only as a prefactor, so that the ratio AWZT\ZIE (q)/Re?
does not depend on the Reynolds number. We conclude from Fig. 2 that the spanwise energy
amplification can be very well visualized as a simple crossover between the two asymptotic
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behaviors, at large and small ¢, that can be easily obtained from Eq. (38), namely

-0 34 256 <~ 2-+cosh(2N + Dn
AW @), > Re%ﬂ[

315 £~ (2N +1)7sinh 2N + D7
~8.14 x 103 Re?q2, (40)

q—00 Rez

NE
AW @], o — 7 1)

We recover in Eq. (41) the g~* behavior that is typical of nonequilibrium fluctuations [2]
at large wave numbers corresponding to wavelengths smaller than the spacing between the
walls. For such wavelengths the fluctuations are not affected by the boundary conditions and
we recover, as an asymptotic limit for large g, results obtained by previous investigators for
nonequilibrium fluctuations in fluids under shear [10-14]. On the other hand, the vanishing
of the intensity of fluctuations with small ¢, as implied by Eq. (40), is to be expected in
the sense that the walls (boundary conditions) effectively suppress fluctuations of very long
wavelength, comparable with the separation distance between walls. From Fig. 2 we note
that the flow at Re = 500 causes an enhancement of the thermal energy about 1000 times
larger that the thermal energy that would be expected from a local equilibrium assump-
tion. Such a profound enhancement of the fluctuations is a general phenomenon in fluids in
nonequilibrium states [2].

Figure 2 shows that the main effect of the flow on the thermal fluctuations is to select and
maximally amplify the wall-normal vorticity fluctuations with a particular value of the wave
vector q,. As already discussed, the wave vector maximally enhanced is in the spanwise
direction, and from Eq. (38) we find numerically its magnitude to be g, >~ 1.4103, which is
the location of the maximum in Fig. 2. Therefore, in real space, the thermal noise amplified
by the flow will manifest itself mainly as a set of vortices of size >~ (27/1.41)L ~4.5L dis-
tributed in the spanwise direction and that are constant (extremely elongated) in the stream-
wise direction.' The intensity of these fluctuating vortices will be proportional to kg7 and
to the square of the Reynolds number, see Eq. (38). But we note that close to the center of
the layer, where the base flow velocity is zero, the velocity fluctuations might be of the same
order as the mean (base) velocity. These fluctuating vortices deform the base flow, develop-
ing a series of streaks, i.e., narrow regions where the streamwise velocity is larger or smaller
than the average, as indicated in Fig. 3 where we have tried to illustrate schematically this
physical situation. These streaks will be typically separated by a distance of about 4.5 times
the half gap between the walls, as also shown in Fig. 3. This optimal spanwise wave number
is independent of the Reynolds number.

At this point it is interesting to note that several authors have identified the appearance
of a set of fluctuating streaks in sheared flows as a precursor of the instability [31, 32].
More quantitatively, extensive numerical simulations of the unstabilization of plane Couette
flow [22, 29, 33, 34] have revealed large-scale coherent streaks with typical spanwise wave-
length of ~ 3L — 4L. For instance, most recently Gayme et al. [29] performed an extensive
analysis of direct numerical simulation data by Tsukahara et al. [35], obtaining an optimal
spanwise wavelength of 1.8 times the distance between the plates, or 3.6 times the half dis-
tance, to be compared with our result of 4.5L. Of course, the scope of our present work is

I'This is by approximating the complicated spatial spectrum of the thermal velocity-fluctuations, as shown for
instance in Fig. 6 of Ref. [17], by just two delta functions located at the symmetric maxima (of the fluctuating
wall-normal vorticity) at gx =0, gy = 41.4103.
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Fig.3 When we add to the mean
Couette flow a set of wall-normal
vortices with spanwise
modulation of about 4.5L and
very elongated in the streamwise
direction, narrow regions where
the streamwise velocity is larger
or smaller than the average
develop, customarily referred to
as streaks. For clarity, we draw
these vortices only at a reference
height, although in general they
will present some vertical
(wall-normal) extension

. wall-
normal

A

restricted by the use of linear equations, so that its relevance to shear flow instability has to
be considered, at most, as tentative. It is well known and widely accepted that a complete
understanding of unstabilization of shear flows requires a fully nonlinear theory [31, 32].
In any case, the identification of the modes that are maximally enhanced in a linear the-
ory may provide useful insights for developing simplified nonlinear theories, like the single
mode model recently discussed by Gayme et al. [29]. Furthermore, it is intriguing to know
that a linear theory predicts that thermal (natural) noise develops into “streaks”, of intensity
o Re?, separated by a distance about 4.5L, in agreement with numerical simulations of the
nonlinear problem [22].

To conclude this section, we mention that the confluent algebraic o< g~*/3 dependence
found for the enhancement of bulk fluctuations vanishes in the spanwise direction [16]. That
is the reason why the “shoulder” at intermediate ¢ shown in the bottom panel of Fig. 2 of
Ref. [16] does not appear in our current results. Bulk nonequilibrium fluctuations in sheared
fluids have been first investigated by Tremblay et al. [10], who described the g—* behavior.
Subsequently, Dufty and Lutsko [11, 13] included the algebraic wave-number dependence
that, in general, appears at shorter wavelengths. Although these earlier papers [10, 11, 13]
refer specifically to wall-normal velocity fluctuations, we have found elsewhere [16] that
these features are also present for vorticity fluctuations in bulk.

6.2 Comparison with Galerkin Approximation

In our previous publications [16, 17] the same problem considered here was investigated
on the basis of a simple Galerkin approximation. In these previous publications we did not
present explicit analytical expressions for the intensity of the vorticity fluctuations (on the
basis of a Galerkin approximation), but only displayed the results graphically. However, as
in the case of the exact solution, also in case of the Galerkin approximation the solution
simplifies greatly for vorticity fluctuations in the spanwise direction. Specifically, for the
fluctuations in the spanwise direction the expression in terms of the Galerkin approximation
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Fig.4 Comparison of the exact 10*
nonequilibrium enhancement

AWZNE(q) of wall-normal

vorticity fluctuations in the 3
spanwise direction (g, = 0) from
Eq. (38) (solid curve), with a
Galerkin approximation
developed in previous 10
publications [16, 17], see

Eq. (42) (dashed curve). Data are

for Re =500. The agreement is 3§ |
good z ., 10 3
A ]
< ]
100 _
10" E
10°
0.1 1 10
q

in Refs. [16, 17] reduces to

(42)

50, 27Re’q?
W (q) = SgReq 1+ .

7(2q% +5)(49* +23¢> +78)

Equation (42) contains an equilibrium contribution that is about 17 % percent lower than
the exact result, Eq. (37). This is a shortcoming of the Galerkin-approximation scheme, as
discussed elsewhere [16]. But our purpose here is to compare the nonequilibrium enhance-
ment, given by the second term inside the square brackets in Eq. (42), with the exact result
given by Eq. (38). For this purpose we show in Fig. 4 the exact AWNE(q) in the spanwise
direction from Eq. (38) as a solid curve, together with the Galerkin approximation (42) of
this quantity as a dashed curve. The agreement is rather good qualitatively. Quantitatively,
the Galerkin approximation (42) for large ¢ underpredicts the exact asymptotic limit (41) by
4 % (indistinguishable on the scale of Fig. 4), whereas in the small g limit Galerkin approx-
imation overpredicts the exact asymptotic limit (42) by about 60 %. The prediction, on the
basis of the Galerkin approximation (42), of the wave number of maximum enhancement
gm 1s quite good, differing by about 1 % from the true value.

Although we have here compared explicitly the exact solution with the Galerkin approx-
imation only in the spanwise direction, from the good results obtained we may infer that
the Galerkin approximation developed in Ref. [16] will also yield a good representation of
the nonequilibrium enhancement of the wall-normal vorticity fluctuations in any direction.
This expectation has been confirmed by some preliminary calculations for arbitrary q; on
the basis of Eq. (33).

7 Concluding Remarks

‘We have shown that even in the absence of any external perturbations, already the thermally
excited fluctuations, which are always present, cause a substantial energy amplification in
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laminar fluid flow with the main contribution to the energy amplification arising from wall-
normal vorticity fluctuations as a result of a coupling of these wall-normal vorticity fluc-
tuations with the wall-normal velocity fluctuations. On the other hand, in computational
fluid dynamics, to destabilize shear flows and to investigate the transition to turbulence,
some externally imposed random initial conditions are customarily introduced [34]. We have
demonstrated that such externally imposed initial conditions are not needed physically. In-
deed, thermal noise causes already the base flow to spontaneously develop streaks, which are
currently expected to be the first step in the transition to turbulence, even in a linear approx-
imation. We have evaluated the typical spanwise distance between these thermally excited
streaks, finding excellent agreement with what is observed in simulations. Of course, the
problem of the nonlinear evolution of these streaks needs to be further investigated. For this
purpose direct numerical simulations of fluctuating hydrodynamics may be of interest.

In the last few decades there has been considerable interest in the fluid dynamics com-
munity in these and similar problems, like optimal disturbances, transient growth of pertur-
bations, and energy amplification. At the same time, and somewhat independently, in the
statistical physics community there has been an interest in the nonequilibrium enhancement
of thermal fluctuations. The purpose of this paper, as well of the previous paper [18], has
been to make a connection between the approaches used in statistical physics and fluid dy-
namics.
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