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The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of 
late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German-
Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in 
the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. 
The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible 
of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high 
user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the 
instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the 
CARMENES operational design. A description of the ICS architecture and the application programming interfaces for 
low- and high-level communication is given. Internet Communications Engine is the technology selected to implement 
most of the interface protocols. 
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Engine, EPICS 

1. INTRODUCTION 

CARMENES**

The Instrument Control System (ICS) is the main software component of the system in charge of coordinating and 
managing the subsystems, providing completely automatic control and high level of reliability and performance. Its main 
purpose is to permit scientists to operate the instrument without having to interact directly with the low-level Application 
Programming Interfaces (APIs) that control each subsystem and to provide an integrated control of the entire instrument. 
Scientists should only define astronomical observations and the ICS will setup, manage and control all subsystems to 
perform the observations and to obtain scientific results. This approach is intended to maximize the system operation 

 will perform high-precision measurements of stellar radial velocities with long-term stability1, 2. To carry 
out its purpose, CARMENES is based on two spectroscopic channels, optimized in the near-infrared (NIR) and visible 
(VIS) windows, and multiple subsystems that have to work in a coordinated manner: the front-end, calibration units and 
exposure meters of each spectroscopic channel, acquisition and guiding module, interfaces with the telescope and the 
dome, and, finally, the software subsystems for task scheduling, data processing and data archiving. 

                                                           
* colome@ieec.cat, http://www.ice.cat/view_staff.php?MID=25 
** http://carmenes.caha.es/ 
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time and efficiency. These statements and the instrument operational design compose the high level requirements that 
drove the design of the ICS. 

2. OPERATIONAL DESIGN 

The strategy to complete the CARMENES survey translates into a list of targets and their observation patterns aimed at 
carrying out an intensive monitoring to achieve the envisioned scientific goals. The instrument will have to execute the 
tasks involved in the data acquisition process. Complementary tasks will also be necessary for the instrument 
commissioning and its routine calibration. All these tasks (science observations, calibration and commissioning) are 
supported and managed by the ICS, which handles the operation of the CARMENES instrument by taking into account 
several control, operation and scheduling modes. 

The routine operation will be configured to use simultaneously the two channels, with NIR being the master and VIS 
being the slave (see Section 2.2), under the automatic control mode. 

2.1. Control Modes 
Four different control modes are defined: 

• Interactive/Operator: This mode allows controlling all ICS functionalities while carrying out the acquisition 
of data. The system always starts in this control mode and then it can be changed to a different one. 

• Observer: This mode allows users to take observations using a basic ICS interface. 
• Engineering: This mode introduces some additional functionality for controlling any subsystem or configuring 

the ICS behavior. 
• Automatic: The system runs autonomously in this control mode, with the supervision of an operator. 

 
Figure 1. State transition diagram for the different control modes. 

2.2. Operation Modes 
Three different operation cases are considered to provide higher flexibility during the instrument commissioning and, 
also, maximum efficiency during the nominal operation: 

• Single channel: Just one channel (NIR or VIS) is used to perform any of the operational tasks under any of the 
control modes. 

• Multiple channels: Both NIR and VIS channels are used, but none of them takes the role of master. 
Observation and data processing execution workflow runs independently. This operation mode is used under the 
nominal control mode. 

• Multiple channels, one of them acting as master: Both NIR and VIS channels are used and one of them acts 
as a master regarding observation and data processing control.  

o CARMENES mode: The nominal operation mode (or CARMENES mode) for the instrument is 
defined using both channels with the NIR one working as master. The VIS channel operation is 
subordinated to the execution time and overheads of the NIR channel that leads the workflow. 

2.3. Scheduler 
The scheduler3 selects the most suitable task/s to be performed by the instrument according to predefined criteria and 
with the goal of maximizing the efficiency of science operations. The selection is done by executing a global rating of all 
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the active tasks (science operations and calibrations) and creating a ranked list according to their global merit. Long- and 
short-term plannings are considered to compute the task prioritization. In the automatic control mode, the ICS executes 
the task(s) with the highest priority. 

2.4. Nominal run workflow 
Nominal operations run under automatic mode to perform science operations or calibration tasks. The workflow for these 
operations is predefined and handled by the ICS with the design of suitable procedures. These procedures are based on a 
set of input and output data and on subsystem actions. Each action takes a series of preconditions for execution. The 
steps in a nominal science data acquisition workflow are grouped into those processes required for: task selection, 
performed by the scheduler application; change of the system configuration; acquisition of the spectra with both 
channels; and, finally, data processing. Operation idle time is minimized in the workflow design. 

3. INSTRUMENT CONTROL SYSTEM 

The ICS is the central software application in the CARMENES control layer. It is based on a modular architecture and a 
high level of abstraction design motivated by the heterogeneity of the different subsystems. 

A master/slave model architecture is used to build the control layer, where the ICS acts as a master and almost every 
other subsystem is a slave. The ICS acts as a slave only for the User Interface subsystem, which controls and monitors 
the ICS functionalities. 

The subsystems managed by the ICS are seen as a “black box” and there is no dependence with their internal architecture 
thanks to the high abstraction level used. A well-defined API, providing a connection bus and a protocol, is the basis to 
intercommunicate them. This approach ensures the separation in functionality and increases the modularity of the full 
system. The system topology is shown in Figure 2. 

 
Figure 2. CARMENES hardware architecture 

The instrument subsystems are abstracted into the ICS with a logic representation (see Figure 3). Each subsystem is 
divided into specific functionalities, such as data representation, actions and events. 

The subsystem data (e.g., temperatures, encoder positions) are reported periodically to the ICS using its communication 
protocol and are stored into a central database that conforms a pool of updated data for all the parameters of the system 
(like a snapshot). 

Events (or contingencies) can arise during a nominal subsystem execution. An event is something that happens to the 
subsystem that generates a notification to the user or the execution of actions. 
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The designed actions are encapsulated in a common API and the ICS can trigger them using a common interface and 
without any dependence with the communication protocol. Actions can be stored in an action manager and executed 
when necessary following a predefined sequence. The system status is checked previous to the action execution to 
prevent possible erroneous commands. 

The overall system operation is, finally, handled by events that trigger predefined actions. These actions change the 
status of one or more components to reach the required configuration or response. Actions can be also triggered by an 
operator using any of the interface options (graphical or simple scripting) when the system is not running in the 
automatic control mode. 

The heterogeneity of the CARMENES subsystems imposed different interaction methods and protocols. Therefore, the 
ICS supports the most common communication protocols used in astronomical observatories. 

 
Figure 3. CARMENES logic components architecture. 

4. MODULAR DESIGN 

The ICS is designed using the Layers design pattern, which separates application functionalities into distinct levels of 
abstractions by decomposing complex problems into smaller and more manageable ones. The architecture (see Figure 4) 
is split in the following layers: 

• Operating System Layer: This is the abstract layer that interacts with the operating system. It provides the 
necessary functionalities to manage threads, semaphores, mutex, file systems, etc. 

• Third-Party Libraries Layer: It contains the libraries used from third party developers.  
• Modules Layer: This layer does not process any data. Its aim is to manage a large amount of information by 

encapsulating it in data structures, which are grouped into modules. 
• Procedures Layer: This layer defines all processes necessary to manage data and actions. 
• Subsystems Layer: It contains the subsystems abstraction. 
• Communication Layer: It contains all the protocols to communicate with the subsystems. 
• Interface Layer: It defines all communication APIs to interact with the subsystems, modules and procedures. 

Most of these layers, except the Operating System and the Third Party Libraries, are specifically designed for the 
CARMENES instrument and are described in the following sections. 

 
Figure 4. Layer design for the ICS. 
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4.1. Modules Layer 
The modules defined in this layer represent the ICS core functionalities. Each module is designed to accomplish only one 
functionality and contains everything necessary to fulfill its purpose. This design reduces coupling and increases 
readability and maintainability. 

• System Data Pool (SDP): The SDP is a centralized database, where all information is stored in a standardized 
way. All services (other modules and subsystems) can access the data in a common, simple, fast and accurate 
manner in order to update it or to get updated values. Communication among subsystems is based on this 
module, which also provides synchronization capabilities. 

• On-Board Monitoring Function (OBMF): The OBMF contents a set of checks to be performed to SDP items. 
It defines which SDP item must be monitored and the kind of checks to be performed. It provides the conditions 
to create events as a function of the result obtained from every check. 

• Events: All services can generate events. Events are generated, for instance, by the OBMF service each time an 
SDP item is not correctly checked, by the NIR subsystem when an image is not correctly created, or by the 
Telescope subsystem when it is correctly pointed. This module centralizes the temporal storage of all events. 

• Actions: All subsystems are controlled using actions. An action encapsulates the command that will be sent to 
the subsystem, its custom data checks, and the method to save its responses. Actions can be blocked following 
different criteria: all responses must be received, some events must be received, etc. 

• Procedures: This module stores a set of actions for a sequential execution. Procedures can be modified by 
adding, removing or modifying actions. A procedure can be stopped when: an action does not terminate as 
expected, an event is received, etc. 

• Event-Action: The system is event-responsive: an event is generated when a predefined or anomalous situation 
arises, and it subsequently produces logs, triggers actions, etc. Links between events and actions are specified in 
this module. 

• Housekeeping: All system information is stored into the SDP and must be reported to the user interface in 
concordance with a set of reporting definitions previously defined. Structure identification (SID) is associated 
with each distinct reporting definition and associated housekeeping parameter report. The SID uniquely 
identifies the housekeeping parameter report and is used to interpret its contents. Each SID has a subset of SDP 
items that will be the ones reported in each call to Housekeeping. Each reporting configuration has an 
associated collection interval, which determines the data sampling. 

• Processes: This module defines an abstract class that provides access to all processes that are running in the 
ICS. A process running in the ICS is executed periodically at a predefined rate and with a soft deadline. This 
guarantees the service quality for each process running. The process module also provides continuous 
performance data describing its own execution. It is useful for starting, stopping, controlling, and monitoring 
processes inside the ICS. 

• Subsystem: It defines an abstract class to implement all the subsystems. This class provides an implementation 
of the Façade design pattern. The Façade design pattern simplifies the interface with a complex system. It also 
decouples the subsystem from its low-level implementation. 

• Statistics: This module computes statistic parameters for predefined SDP items that are necessary to monitor 
the system behavior. The obtained values are also stored in specific SDP items. 

4.2. Processes 
The ICS has several processes to carry out the internal actions. These processes take information from different modules. 

• Statistics: This process calculates statistics over some SDP items. 
• OBMF: This process performs a periodic check of the OBMF items. It compares them with the corresponding 

SDP items and generates events according to programmed conditions. 
• Action: It is in charge of executing actions when the system requires them and is ready to do so. The actions 

check the preconditions before the execution. 
• Housekeeping: This process is in charge of obtaining information from the SDP and generates the 

Housekeeping messages that are reported to the User Interface. 
• Event: This process is in charge of reporting the events generated (asynchronously) by different modules or 

procedures. It can execute actions associated to an event (following the configuration given in the Event-Action 
module), report events, etc. 
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4.3. Subsystems 
This layer contains a class for each CARMENES subsystem. Each subsystem inherits from the subsystem abstract class 
defined in the modules layer and implements the Façade design pattern. This pattern hides the details of each subsystem 
action and the subsystem communication protocol (see Figure 5). 

 
Figure 5. Use of the Façade design pattern to hide the details of the actions in each subsystem. 

The ICS is highly customizable: each command can be executed in an analogous manner for all the subsystems. A 
command pattern is used for this purpose. Commands can be stored and executed, providing the capability to customize 
procedures. Figure 6 illustrates how the command pattern encapsulates the action requests. It is implemented in the 
action module of the modules layer. 

 
Figure 6. Actions are encapsulated using the command pattern design. 

Each action checks some SDP items to confirm that the conditions for its execution are met. In case they are, the action 
is executed and sent to the corresponding subsystem. When the action is finished, some SDP items are updated and the 
command finishes. Figure 7 shows the flux diagram of an action. 

 
Figure 7. Action flux diagram. 
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4.4. Protocols 
The CARMENES control layer is composed by a heterogeneous set of subsystems at both physical and logical levels. 
Different physical implementations are used to run the low-level control software (i.e., microcontrollers, PCs) and some 
of them do not support using communication protocols that require high processing capability. This lack of homogeneity 
motivated the design of the ICS to support any communication protocol using a communication layer that hides the 
protocol implementation constrains.  

The ICS uses the Internet Communication Engine*

In addition to ICE, two more protocols are also implemented: Epics

 (ICE) middleware as the base communication framework. ICE 
provides a complete solution to communicate different distributed subsystems that span multiple operating systems and 
programming languages. 

**

 
Figure 8. Layers and main modules of the CARMENES ICS. 

 

 

 

 

 

, used to interface with the telescope and dome 
control software; and a TCP/IP-based custom protocol (called CARMENES protocol), used to interface with the NIR 
and VIS channels, the front-end, and the calibration units. 

                                                           
* http://www.zeroc.com 
** http://www.aps.anl.gov/epics/ 
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5. CONCLUSIONS 

CARMENES is a new generation instrument that will provide stellar radial velocities of unprecedented accuracy (1 m/s). 
It will be installed at the 3.5-m telescope in the CAHA Observatory and will start operations in 2014. It will be equipped 
with two channels for spectroscopic data collection in the NIR and VIS windows. The scientific requirements specified 
impose stringent conditions on stability and performance of the instrument so that the technology used in the 
development represents a challenge at all levels. The efficient and reliable operation is also specified as a requirement to 
maximize the scientific return. Such requirements on operation translate into strong constraints to define the control 
layer, at hardware and software levels, and all the subsystems that compose it. The operational design is the next step to 
start specifying the requirements for the ICS, the central software application responsible of managing the overall 
instrument operations. The routine operation, according to this operational design, is based on the simultaneous use of 
the two channels running under automatic control mode, in order to maximize the efficiency by minimizing the operation 
idle time. 

The main goal of the ICS and the CARMENES control layer is to fulfill the operation requirements, which impose 
constraints on the ICS design, but also on the design of the low level control of each subsystem. A modular architecture 
and a high level of abstraction were the basis to design this software application that has to handle a heterogeneous group 
of subsystems in a coordinated manner. Several layers and modules compose it (see Figure 8) and have been described. 
They implement the different functionalities in a highly customizable way.  

The control system presented here can be considered as a solution to control any complex instrument composed by a 
large variety of subsystems, connectivity (i.e., RS-232, CAN, USB, Bluetooth) and top-level communication protocols. 

The detailed design phase of this software is reaching its final stage to be ready for the Final Design Review of the 
project that will be held in November 2012. The development will end with the AIV process, and final delivery is 
expected in early 2014, just after the instrument commissioning. 
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