

An innovative and challenging cooling system for an ultra-stable NIR spectrograph

Santiago Becerril-Jarque and the **CARMENES** consortium

Instituto de Astrofísica de Andalucía-CSIC

Jean-Louis Lizon (ESO, Garching) Eduard Mirabet M.A. Sánchez

J. Herranz

(ESO, Garching)

(IAA, Granada)

(ProActive Reasearch & Development)

Outline

- 1. Introduction
- 2. Requirements
- 3. Description and main guidelines
 - Preparation Unit
- 4. Thermal analyses implemented
 - Stability Analysis
 - Steady-state FEA Analysis
- 5. Future tasks and conclusions

Introduction

CARMENES main purpose: RV search for planets around M dwarfs.

- For all details on science.
 - Quirrenbach, Amado & the CARMENES Consortium, 2010, SPIE, 7735E, 37
 - Quirrenbach, Amado & the CARMENES Consortium, 2012, SPIE, 8446-25
- Two separate spectrographs (VIS and NIR)
- To be installed in Calar Alto— Observatory in 2014.
- PDR successfully passed in July 2011.
- Final design phase: FDR foreseen by the end of 2012.
- Fruitful collaboration with ESO.

Thermal requirements (NIR spectrograph)

Requirement	Value
Working temperature	140 K
Temperature stability	±0.05 K (±0.01 K goal) in the timescale of 1 day
Pre-cooling time	48h (goal)
Cooldown and warm-up rate for the optics	< 10 K/h
Liquid nitrogen consumption	< 90 l/day
Environment temperature	285±0.5 K
Vacuum level	~10-6mbar

Description and main guidelines

➢In-vacuum optical bench thermally stabilized by radiation.

➢ Radiation shield kept at working temperature by Continuous Flow Cooling system (developed by Jean-Louis Lizon at ESO).

Radiation transfer provides damping effect on:

- Temperature instability
- Temperature gradients
- Coolant conditioning by an external system (Preparation Unit).

Description and main guidelines

- > Two cooling circuits (pre-cooling and operation)
- Cooling sequence:
 - 1. Pre-cooling.
 - 2. Temperature gradients distribution.
 - 3. Steady-state operation conditions.
- CFC system allows for pre-cooling and for warming up to room temperature.
- ➤ Temperature-controlled rooms (±0.5 K).

Preparation Unit

- Composed by three systems:
 - Evaporator Unit :
 - LN2 phase change and heating up.
 - Rough stabilization stage.
 Intermediate Heat Exchanger:
 - Further stabilization and heating up.
 - •Final Heat Exchanger .
 - Slight heating and fine stability stage.
- Hardware prone to maintenance (heaters,...) inside the Preparation Unit (not in the main vacuum vessel).

Thermal Analysis

heat exchangers

Thermal Analysis - Stability

Sinusoidal temperature signal (Radiation Shield)

$$T_{RadSh}(t) = 140 + 0.5 \cdot \cos\left(\frac{2\pi}{7200} \cdot t\right)$$

Analysis routine

➢ Results

Optical bench temperature oscillation: ≈ ±0.01K

Model I: Vacuum vessel + radiation shield.

> Model II: Radiation shield + optical bench + mechanical links.

Thermal Analyses – Steady-state

Net radiative load to the radiation shield: 13.4 W.
 Gradient across the radiation shield: 4.6 K.

➢ Gradient across the optical bench less than 0.1 K.

Future tasks and conclusions

> The cooling system here presented:

- Provides the required thermal stability for the instrument.
- Avoids undesirable large gradient across the bench.
- Preparation Unit being manufactured.
- Testing phase of Preparation Unit:
 - Characterization of the system parameters.
 - Preliminary stability tests.
 - Cross-check and feedback to the FEA models.

Thanks for your attention

