carmenes:

V: M dwarfs in multiple systems

M. Cortés-Contreras ${ }^{6}$, J. A. Caballero ${ }^{10}$, F. J. Alonso-Floriano ${ }^{6}$, A. Klutsch ${ }^{6}$, J. López-Santiago ${ }^{6}$, D. Montes ${ }^{6}$,
R. Dorda ${ }^{6}$, J. Alonso-Santiago ${ }^{6}$, J. C. Morales ${ }^{4}$, V. J. S. Béjar ${ }^{8}$, A. Quirrenbach ${ }^{3}$, P. J. Amado², R. Mundt ${ }^{1}$, I. Ribas ${ }^{4}$, A. Reiners ${ }^{5}$ and the CARMENES Consortium ${ }^{1,2,3,4,5,5,6,7,9,9,10,11}$

'Max-Planck-Institut für Astronomie • ${ }^{2}$ Instituto de Astrofísica de Andalucía • ${ }^{3}$ Landessternwarte Königstuhl • ${ }^{4}$ Institut de Ciències de l'Espai •5Institut für Astrophysik Göttingen $\cdot{ }^{6}$ Universidad Complutense de Madrid $\cdot{ }^{7}$ Thüringer Landessternwarte Tautenburg $\cdot{ }^{8}$ Instituto de Astrofísica de Canarias $\cdot{ }^{9}$ Hamburger Sternwarte $\cdot{ }^{10}$ Centro de Astrobiología $\cdot{ }^{11}$ Centro Astronómico Hispano-Alemán - Calar Alto Observatory

Our URL: http://carmenes.caha.es

Abstract

With the help of CARMENCITA, the CARMENES Cool dwarf Information and daTa Archive (see SEA poster by Caballero et al.), we investigate the membership in double, triple or higher-order multiplicity systems of more than 1300 of the brightest, latest M dwarfs in the solar neighbourhood observable from Calar Alto. We use data compiled from the literature and measured by us. Angular separations range from a few tenths of arcseconds to several arcminutes, which translate into a very wide interval of projected physical separations. Studying M dwarfs in multiple systems provides information on a wealth of topics, e.g. from dynamical masses, through distance and metallicity, to the formation and evolution of weakly bound systems.

We have identified 282 M-dwarf multiple systems, some of which are companions to bright F, G, K stars and white dwarfs or lie in close binaries resolved only with adaptive optics or lucky imaging.

Angular separations (ρ) were measured for systems separated by over 5 arcsec. Closer angular separations were taken from the Washington Double Star catalogue or other sources. For those stars without parallax determination, we estimated spectro-photometric distances (d) from our own M_{j}-spectral type relation.

Projected physical separations (s) in the range from 0.5 to 55000 AU were computed with the equation $s=\rho d$. Only 55 systems have $s<10$ AU and just seven have $s>$ 10000 AU (Fig. 1).

Masses (M_{1}, M_{2}) of the components were estimated with the NextGen models from Baraffe et al. (1998, A\&A 337, 403) assuming a typical age interval of $\tau \sim 1-5 \mathrm{Gyr}$ (Fig. 2).

Finally, gravitational potential energies $\left(U_{g}^{*}=\right.$ $\left.-G M_{1} M_{2} / s\right)$ and periods (P) were estimated from the total mass $M_{1}+M_{2}$ (Fig. 3).

Fig. 2. Masses M_{2} vs. M_{1} in logarithmic scale. Colour bar indicates projected physical separations.

Name	$\boldsymbol{d}(p)$	$s(A U)$	$\boldsymbol{M}_{1}\left(M_{\odot}\right)$	$\boldsymbol{M}_{2}\left(M_{\odot}\right)$	$\boldsymbol{P}(\mathrm{yr})$
GJ 190	9.30	0.48	0.50	0.50	0.33
$B D+271348$	12.04	1.20	0.44	0.29	0.83
BC) ${ }^{\text {KX }}$ Lib BC (GJ 570	5.84	0.88	0.59	0.39	0.85
LP 823-4	12.50	0.84	0.21	0.20	1.20
HU Del	8.86	0.96	0.29	0.13	1.47
BD+68 946	4.53	1.28	0.40	0.40	1.62
BB Cap	8.30	1.66	0.29	0.16	1.93
Ross 28	13.90	1.10	0.25	0.10	2.02
Wolf 1062	10.20	1.51	0.38	0.19	2.47
G 67-53 AB	11.94	1.70	0.30	0.25	3.00
GJ 802 AabB	15.75	1.46	0.28	0.06	3.02
DG CVn	10.50	1.83	0.34	0.30	3.08
LP 122-59	9.22	1.50	0.21	0.21	3.19
Ross 54	16.02	1.76	0.45	0.40	3.60
GJ 623	8.01	1.70	0.31	0.04	3.74
G 78-28	18.38	2.19	0.37	0.20	4.18
GJ 1005	6.00	1.82	0.18	0.11	4.57
NLTT 33370	16.39	2.13	0.21	0.15	5.17
$\begin{aligned} & \text { BF CVn+GJ } 490 \text { B } \\ & \text { 2FP-4 } \end{aligned}$	19.26	14700	0.91	0.08	1.8×10^{6}
V368 Cep NLTT 56725	19.20	18500	0.78	0.18	2.6×10^{6}
$\begin{aligned} & \text { Ross } 370 \mathrm{~A} \\ & \text { G 246-30 } \end{aligned}$	14.40	16800	0.47	0.10	2.9×10^{6}
V869 Mon GJ 282 C	14.21	55300	0.78	0.55	11.3×10^{6}

Table 1. Basic parameters of the 18 systems with the shortest periods (in orange: our estimations) and the four systems with the lowest binding energies (in blue).

Results • A list of the close binary systems with the shortest orbital periods, useful for determining dynamical masses; six systems with periods $P \lesssim 5$ yr proposed here for follow-up (Table 1) - The most fragile systems containing M dwarfs, useful for study low-mass star formation and evolution of wide pairs in the Galactic field - A comprehensive catalogue of M dwarfs with solar-like primaries, useful for metallicity and kinematic analyses (see SEA poster by Alonso-Floriano et al.) - A study of triple, quadruple and even quintuple systems • Application of the Öpik law in pieces (i.e., in narrow s intervals)

