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Atmosphere vs. Spectrum

Atmosphere:

• T ,P, ρ, v , . . .

• Navier Stokes equations

• heavily simplified:
hydrostatic stratification

• incl. energy conservation

Spectrum:

• Radiation through
atmosphere

• but energy transport?!

1D hydrostatic: e.g. ATLAS
3D hydrodynamic: e.g. FLASH

1D: e.g. SYNTHE
3D: e.g. Asplund et al.
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The Radiative Transfer Equation

The radiative transfer equation (RTE) in its general form:

1

c

∂Iν
∂t

+ ~n · ∇Iν = εν − χν Iν

= χν(Sν − Iν)

where

• εν : emission coefficient (account for the net rate of change of
photons)

• χν : extinction coefficient (account for the net rate of change
of photons)

• Sν = εν
χν

: source function, in (L)TE = Bν

• in general ε = ε(I ) → Scattering problem



RTE in different Geometries

Plane parallel:

µ
dIν
dz

= χν(Sν − Iν)

With dτν = −χν dz , the pp RTE becomes

µ
dIν
dτν

= Iν − Sν

Spherical symmetric:

µ
∂I

∂r
+

1− µ2

r

∂I

∂µ
= −χ (I − S)



Radiation Flux Fν

• net flux of radiation through a surface element dσ:

~Fν =

∮
4π

Iν~n dΩ

• in 1D the vector ~Fν reduces to

Fν =

∫
µIν dµdϕ

so that (Iν independent of ϕ!)

Fν = 2π

∫
µIν dµ

• old literature: ’astrophysical flux’

πF = Fν



RT for Synthetic Spectra

radiative transfer equation ∀λ
• absorption & scattering coefficients∑

σji n
j
i

• j : ionization stage
• i : energy level within each ionization stage
• σj

i : cross section [cm2] incl. line profile

• nj
i : population density [1/cm3]

•
∑

over all elements, processes, ionization stages, level

• σji from QM, measurements

• tables of data, fit formulae etc.

→ local quantities — depend all on T , Pgas, chemical abundances,
radiation field
→ how is scattering treated?
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RT for Model Atmospheres

Three possibilities:

• Actually do all the calculations and the RTE line by line
(PHOENIX)

• Use appropriate approximations for the frequency sampling
(typical atmosphere codes)

• Opacity Distribution Functions
• Opacity Sampling

• Use optically thick or grey approximations



Equation of state

• nj
i depend on
• temperature
• gas pressure
• abundances
• radiation field

→ in general: NLTE
rate equation for all population and de-population processes

• gives relation (T ,Pgas, ρ)

• gives all nj
i

How is NLTE implemented? (in 3D?)



Equation of state

• nj
i depend on
• temperature
• gas pressure
• abundances
• radiation field

→ in general: NLTE
rate equation for all population and de-population processes

• gives relation (T ,Pgas, ρ)

• gives all nj
i

How is NLTE implemented? (in 3D?)



The Saha Equation

With

• nk : number density of ionization stage k (summed over all
energy levels)

• ne: electron density

• Qk : partition function of state k

• χk→k+1: ionization energy (ground state to ground state)

nk = nk+1ne
Qk

Qk+12

(
h2

2πmekT

)3/2

exp
(χk→k+1

kT

)



The Saha Equation

The system is closed by

• particle conservation:

ni = εi (Pgas/kT − ne)

εi : normalized abundance (by number) of this element

• charge conservation:

ne =
∑
i

∑
j

qijnij

Ultimatively: root of high order polynomial in ne for (T ,Pgas)
With all nij

ρ = (neme +
∑
i

nijmij)



Boltzmann Formula

With

• ni : population density (particles /cm3)

• N =
∑

ni

• gi : statistical weights (number of degenerate quantum states)

• χi : excitation energy (χ1 ≡ 0)

• Q =
∑

gi exp
(
− χi

kT

)
: partition function

ni

N
=

gi
Q

exp
(
− χi

kT

)



Convection (in 1D)

• no real theory of convective energy transport!

• comparatively simplistic model for convection

• especially bad in optically thin media!

Basic picture:

• convection = buoyant bubbles

• bubbles are allowed to form in any environment

• if buoyancy increases → convection occurs



Mixing Length Theory

Assumptions:

• bubbles rise an average distance lm = αmhp

• hp is the pressure scale height hp := −P dr
dP = P

ρg

• estimate convective flux

Fconv = ρcpv∆T

• . . . and all necessary quantities
• T (and ρ) difference (∆T ) to surroundings increases linearly
• work of buoyancy goes into kinetic energy (v)
• energy loss due to radiation (e.g. diffusion approximation)

• system of equations

→ cubic equation for dT
dτ
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Computation of 1D Model Atmospheres

• minimum independent variables/parameters:
• effective temperature Teff

• gravity g = GM/R2 (or g(r) = GM/r2 if not constant)
• mass M or radius R or luminosity L = 4πR2σT 4

eff
• abundances of all elements

• additional parameters may exist (B-fields, irradiation etc)

• necessary prelims:
• discretize the radial coordinate



Computation of 1D Model Atmospheres

step 1:

• select a grid of τstd points

• guess (approximate or scale) a temperature structure T (τstd)

• integrate hydrostatic equation
dPgas

dτstd
=

gρ

χstd

(ignoring Prad and setting g = const. for simplicity)



Computation of 1D Model Atmospheres

• need initial value for Pgas(τstd = 0)!

• need ρ(T ,Pgas)→ equation of state, e.g.,

ρ =
µ

R
Pgas

T

• R = k/mH

• µ: mean molecular weight

• ρ and µ from Saha-Boltzmann



Computation of 1D Model Atmospheres

step 2a:

• compute convective dT
dτ via MLT

step 2b:

• compute total radiative flux

Frad(τstd) =

∫ ∞

0
Fλ(λ, τstd) dλ

for each layer!

• → need to know Fλ(λ) . . .

• → need to solve radiative transfer problem ∀λ
• → must know all σji (T ,Pgas, λ)

• and must know all nj
i (τstd)

• alternatively invoke ODF or opacity sampling formalism



Computation of 1D Model Atmospheres

step 3:

• in general we will find that

Frad(τstd) 6= σT 4
eff

for radiative layers

• → need to correct T (τstd)

repeat until converged . . .
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Computation of 3D Model Atmospheres

Solve (time dependent!)

• Continuity equation

∂ρ

∂t
= −∇ · (ρ~v)

• Navier Stokes equation. E.g. (without viscosity)

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P + ~g

• energy equattion

→ radiative energy transport?
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Important Physics

PHOENIX v16 is being used to model

• nova and supernova atmospheres

• main sequence stars, very low mass stars, brown dwarfs &
Exoplanet atmospheres

• (red) giants, white dwarfs

• disks (proto-planetary, AGN)



Important Physics

integrated /1D and /3D versions (e.g. same micro physics)

• detailed and stable EOS for huge range of temperatures

• NLTE model atoms with huge number of levels

• dust formation/destruction DRIFT (Helling & Woitke)

• direct opacity sampling of line blanketing
• atomic line blanketing: ≈ 5− 30× 106 lines dynamically

selected from a list of 83× 106 lines
• molecular line blanketing: ≈ 15− 900× 106 lines dynamically

selected from a list of 2.3× 109 lines
• depth dependent line profiles

⇒ no ODF or opacity sampling tables (NLTE!).



Important Physics

• radiation transport solved for large optical depths & strong
scattering

• static (stars) or allow velocity fields (novae, winds, SNe,
turbulence)

• allow irradiation
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Example applications
models work well for G2V’s



Example applications
models work well for dM’s and dL’s



Example applications
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Example applications

3D visualization: GCM Model
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PHOENIX/3D

Current ”limitations”:

• no internal hydrodynamics (yet)

• ”one shot” radiation, no energy feedback

• atmosphere provided externally (FLASH, PlaSim, . . . )

Advantages:

• detailed radiation transport (scattering, large τ)

• detailed microphysics (EOS, opacities, NLTE)
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PHOENIX/1D

Calculation of atmosphere and spectrum

• same code

• same implementation of physics

Atmosphere:

• hydrostatic stratification (or analytical expansions)

• energy transport by radiation transport for ”low” resolution
spectrum

• energy conservation by temperature correction (iteration)

Spectrum:

• different resolution and wavelength range

⇒ Consistent atmosphere and spectrum
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Spherical symmetric vs. plane parallel and the role of the
Radius

g =
GM

R2
L = 4πR2σTeff

4

3rd parameter:

µ
∂I

∂r
+

1− µ2

r

∂I

∂µ
= −χ (I − S)

⇒ for plane parallel objects: R (or M or L) is a scaling factor
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Abundance determinations with PHOENIX

Abundances can be changed individually

But recall:

• designed for consistent atmosphere

• full equation of state

• full opacity

⇒ no quick line profiles
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1.5D with PHOENIX/1D

e.g. inhomogenous surfaces:

• specific intensity for each surface area element

• integrate obserable flux yourself

But: non standard output



Irradiation with PHOENIX/1D

• slab for one angle between direction to object center and
illumination source

• redistribute energy

• 1.5D



Summary

• 1D: modelling atmosphere and spectrum consistently is
possible (and PHOENIX does it)

• 3D: Atmosphere structure and spectrum from it require two
calculations (for all codes)
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