What every astronomer should know about atmosphere modeling and about PHOENIX in particular

Andreas Schweitzer

Oct. 15, 2013

What is a stellar atmosphere?

Atmosphere vs. Spectrum General physics The Radiative Transfer Equation Equation of State Convection in 1D Computation of 1D Model Atmospheres Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics Example applications Almost a tutorial PHOENIX/3D PHOENIX/1D

Summary

What is a stellar atmosphere?

Atmosphere vs. Spectrum

General physics The Radiative Transfer Equation Equation of State Convection in 1D Computation of 1D Model Atmospheres Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics Example applications Almost a tutorial PHOENIX/3D PHOENIX/1D

Summary

Atmosphere:

• *T*, *P*, *ρ*, *ν*, ...

Atmosphere:

- *T*, *P*, *ρ*, *ν*, ...
- Navier Stokes equations
- heavily simplified: hydrostatic stratification
- incl. energy conservation

Atmosphere:

- *T*, *P*, *ρ*, *ν*, ...
- Navier Stokes equations
- heavily simplified: hydrostatic stratification
- incl. energy conservation

- Radiation through atmosphere
- but energy transport?!

Atmosphere:

- T, P, ρ, v, \ldots
- Navier Stokes equations
- heavily simplified: hydrostatic stratification
- incl. energy conservation

1D hydrostatic: e.g. ATLAS 3D hydrodynamic: e.g. FLASH

- Radiation through atmosphere
- but energy transport?!

Atmosphere:

- *T*, *P*, *ρ*, *ν*, ...
- Navier Stokes equations
- heavily simplified: hydrostatic stratification
- incl. energy conservation

1D hydrostatic: e.g. ATLAS 3D hydrodynamic: e.g. FLASH

- Radiation through atmosphere
- but energy transport?!
- 1D: e.g. SYNTHE3D: e.g. Asplund et al.

What is a stellar atmosphere?

Atmosphere vs. Spectrum

General physics The Radiative Transfer Equation Equation of State Convection in 1D

Computation of 1D Model Atmospheres Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics Example applications Almost a tutorial PHOENIX/3D PHOENIX/1D

Summary

The Radiative Transfer Equation

The radiative transfer equation (RTE) in its general form:

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \vec{n} \cdot \nabla I_{\nu} = \epsilon_{\nu} - \chi_{\nu}I_{\nu}$$
$$= \chi_{\nu}(S_{\nu} - I_{\nu})$$

where

- ϵ_{ν} : emission coefficient (account for the net rate of change of photons)
- χ_{ν} : extinction coefficient (account for the net rate of change of photons)
- $S_{\nu} = \frac{\epsilon_{\nu}}{\chi_{\nu}}$: source function, in (L)TE = B_{ν}
- in general $\epsilon = \epsilon(I) \rightarrow \text{Scattering problem}$

RTE in different Geometries

Plane parallel:

$$\mu rac{dI_{
u}}{dz} = \chi_{
u}(S_{
u} - I_{
u})$$

With $d\tau_{
u} = -\chi_{
u} dz$, the pp RTE becomes
 $\mu rac{dI_{
u}}{d\tau_{
u}} = I_{
u} - S_{
u}$

Spherical symmetric:

$$\mu \frac{\partial I}{\partial r} + \frac{1 - \mu^2}{r} \frac{\partial I}{\partial \mu} = -\chi \left(I - S \right)$$

Radiation Flux F_{ν}

• net flux of radiation through a surface element $d\sigma$:

$$ec{F_{
u}}=\oint_{4\pi} I_{
u}ec{n}\,d\Omega$$

• in 1D the vector $\vec{F_{\nu}}$ reduces to

$$F_{
u} = \int \mu I_{
u} \, d\mu darphi$$

so that $(I_{\nu} \text{ independent of } \varphi!)$

$$F_{
u}=2\pi\int\mu I_{
u}\,d\mu$$

• old literature: 'astrophysical flux'

$$\pi \mathcal{F} = F_{\nu}$$

RT for Synthetic Spectra

radiative transfer equation $\forall \lambda$

absorption & scattering coefficients

- *j*: ionization stage
- *i*: energy level within each ionization stage
- σ_i^j : cross section [cm²] incl. line profile
- n_i^j : population density [1/cm³]
- \sum_{i} over all elements, processes, ionization stages, level
- σ_i^j from QM, measurements
- tables of data, fit formulae etc.

RT for Synthetic Spectra

radiative transfer equation $\forall \lambda$

absorption & scattering coefficients

$$\sum \sigma_i^j n_i^j$$

- *j*: ionization stage
- *i*: energy level within each ionization stage
- σ_i^j : cross section [cm²] incl. line profile
- n^j_i: population density [1/cm³]
- \sum over all elements, processes, ionization stages, level
- σ_i^j from QM, measurements
- tables of data, fit formulae etc.

 \rightarrow local quantities — depend all on $\, T, \, P_{\rm gas},$ chemical abundances, radiation field

RT for Synthetic Spectra

radiative transfer equation $\forall \lambda$

absorption & scattering coefficients

$$\sum \sigma_i^j n_i^j$$

- *j*: ionization stage
- *i*: energy level within each ionization stage
- σ_i^j : cross section [cm²] incl. line profile
- n^j_i: population density [1/cm³]
- \sum over all elements, processes, ionization stages, level
- σ_i^j from QM, measurements
- tables of data, fit formulae etc.

 \rightarrow local quantities — depend all on ${\it T}, {\it P}_{\rm gas},$ chemical abundances, radiation field

 \rightarrow how is scattering treated?

RT for Model Atmospheres

Three possibilities:

- Actually do all the calculations and the RTE line by line (PHOENIX)
- Use appropriate approximations for the frequency sampling (typical atmosphere codes)
 - Opacity Distribution Functions
 - Opacity Sampling
- Use optically thick or grey approximations

Equation of state

- n_i^j depend on
 - temperature
 - gas pressure
 - abundances
 - radiation field
- \rightarrow in general: NLTE

rate equation for all population and de-population processes

- gives relation (T, P_{gas}, ρ)
- gives all n_i^j

Equation of state

- n_i^j depend on
 - temperature
 - gas pressure
 - abundances
 - radiation field
- \rightarrow in general: NLTE

rate equation for all population and de-population processes

- gives relation $(T, P_{\text{gas}}, \rho)$
- gives all n_i^j

How is NLTE implemented? (in 3D?)

The Saha Equation

With

- n_k: number density of ionization stage k (summed over all energy levels)
- *n*_e: electron density
- Q_k : partition function of state k
- $\chi_{k \to k+1}$: ionization energy (ground state to ground state)

$$n_k = n_{k+1} n_{\rm e} \frac{Q_k}{Q_{k+1} 2} \left(\frac{h^2}{2\pi m_e kT}\right)^{3/2} \exp\left(\frac{\chi_{k \to k+1}}{kT}\right)$$

The Saha Equation

The system is closed by

particle conservation:

$$n_i = \epsilon_i \left(P_{\rm gas} / kT - n_{\rm e} \right)$$

 ϵ_i : normalized abundance (by number) of this element

charge conservation:

$$n_{
m e} = \sum_{i} \sum_{j} q_{ij} n_{ij}$$

Ultimatively: root of high order polynomial in $n_{\rm e}$ for $(T, P_{\rm gas})$ With all n_{ii}

$$\rho = (n_{\rm e}m_e + \sum_i n_{ij}m_{ij})$$

Boltzmann Formula

With

- *n_i*: population density (particles /cm³)
- $N = \sum n_i$
- g_i: statistical weights (number of degenerate quantum states)
- χ_i : excitation energy ($\chi_1 \equiv 0$)
- $Q = \sum g_i \exp\left(-\frac{\chi_i}{kT}\right)$: partition function

$$\frac{n_i}{N} = \frac{g_i}{Q} \exp\left(-\frac{\chi_i}{kT}\right)$$

Convection (in 1D)

- no real theory of convective energy transport!
- comparatively simplistic model for convection
- especially bad in optically thin media!

Basic picture:

- convection = buoyant bubbles
- bubbles are allowed to form in any environment
- if buoyancy increases \rightarrow convection occurs

Mixing Length Theory

Assumptions:

- bubbles rise an average distance $I_m = \alpha_m h_p$
 - h_p is the pressure scale height $h_p := -P \frac{dr}{dP} = \frac{P}{\rho g}$
- estimate convective flux

$$F_{conv} = \rho c_p \overline{v \Delta T}$$

- ... and all necessary quantities
 - T (and ρ) difference (ΔT) to surroundings increases linearly
 - work of buoyancy goes into kinetic energy (v)
 - energy loss due to radiation (e.g. diffusion approximation)
- system of equations
- ightarrow cubic equation for $rac{dT}{d au}$

What is a stellar atmosphere?

Atmosphere vs. Spectrum General physics The Radiative Transfer Equation Equation of State Convection in 1D

Computation of 1D Model Atmospheres

Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics Example applications Almost a tutorial PHOENIX/3D PHOENIX/1D

Summary

- minimum independent variables/parameters:
 - effective temperature $T_{\rm eff}$
 - gravity $g = GM/R^2$ (or $g(r) = GM/r^2$ if not constant)
 - mass *M* or radius *R* or luminosity $L = 4\pi R^2 \sigma T_{eff}^4$
 - abundances of all elements
- additional parameters may exist (B-fields, irradiation etc)
- necessary prelims:
 - discretize the radial coordinate

step 1:

- select a grid of au_{std} points
- guess (approximate or scale) a temperature structure ${\cal T}(au_{
 m std})$
- integrate hydrostatic equation

$$rac{dP_{ ext{gas}}}{d au_{ ext{std}}} = rac{g
ho}{\chi_{ ext{std}}}$$

(ignoring P_{rad} and setting $g=\mathrm{const.}$ for simplicity)

- need initial value for $P_{
 m gas}(au_{
 m std}=0)!$
- need $ho(T, P_{
 m gas})
 ightarrow$ equation of state, e.g.,

$$\rho = \frac{\mu}{\mathcal{R}} \frac{P_{\text{gas}}}{T}$$

- $\mathcal{R} = k/m_{\mathrm{H}}$
- μ: mean molecular weight
- ρ and μ from Saha-Boltzmann

step 2a:

• compute convective $\frac{dT}{d\tau}$ via MLT

step 2b:

compute total radiative flux

$$F_{
m rad}(au_{
m std}) = \int_0^\infty F_\lambda(\lambda, au_{
m std}) \, d\lambda$$

for each layer!

- ightarrow need to know $F_\lambda(\lambda)$...
- ightarrow need to solve radiative transfer problem $orall \lambda$
- ightarrow must know all $\sigma_i^j(T, P_{
 m gas}, \lambda)$
- and must know all $n_i^j(au_{
 m std})$
- alternatively invoke ODF or opacity sampling formalism

step 3:

• in general we will find that

 $F_{\rm rad}(\tau_{\rm std}) \neq \sigma T_{\rm eff}^4$

for radiative layers

• \rightarrow need to *correct* $T(au_{
m std})$

repeat until converged

What is a stellar atmosphere?

Atmosphere vs. Spectrum General physics The Radiative Transfer Equation Equation of State Convection in 1D Computation of 1D Model Atmospheres Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics Example applications Almost a tutorial PHOENIX/3D PHOENIX/1D

Summary

Solve (time dependent!)

Continuity equation

$$rac{\partial
ho}{\partial t} = -
abla \cdot (
ho ec{m{v}})$$

Navier Stokes equation. E.g. (without viscosity)

$$rac{\partial ec{v}}{\partial t} + (ec{v} \cdot
abla) ec{v} = -rac{1}{
ho}
abla P + ec{g}$$

energy equattion

Solve (time dependent!)

Continuity equation

$$rac{\partial
ho}{\partial t} = -
abla \cdot (
ho ec{m{v}})$$

• Navier Stokes equation. E.g. (without viscosity)

$$rac{\partial ec{v}}{\partial t} + (ec{v}\cdot
abla)ec{v} = -rac{1}{
ho}
abla P + ec{g}$$

- energy equattion
- \rightarrow radiative energy transport?

What is a stellar atmosphere?

Atmosphere vs. Spectrum General physics The Radiative Transfer Equation Equation of State Convection in 1D Computation of 1D Model Atmospheres Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics

Example application Almost a tutorial PHOENIX/3D PHOENIX/1D

Summary

Important Physics

PHOENIX v16 is being used to model

- nova and supernova atmospheres
- main sequence stars, very low mass stars, brown dwarfs & Exoplanet atmospheres
- (red) giants, white dwarfs
- disks (proto-planetary, AGN)

Important Physics

integrated /1D and /3D versions (e.g. same micro physics)

- detailed and stable EOS for huge range of temperatures
- NLTE model atoms with huge number of levels
- dust formation/destruction DRIFT (Helling & Woitke)
- direct opacity sampling of line blanketing
 - atomic line blanketing: $\approx 5-30\times 10^6$ lines dynamically selected from a list of 83×10^6 lines
 - molecular line blanketing: $\approx 15-900\times 10^6$ lines dynamically selected from a list of 2.3×10^9 lines
 - depth dependent line profiles
 - \Rightarrow no ODF or opacity sampling tables (NLTE!).

Important Physics

- radiation transport solved for large optical depths & strong scattering
- static (stars) or allow velocity fields (novae, winds, SNe, turbulence)
- allow irradiation

What is a stellar atmosphere?

Atmosphere vs. Spectrum General physics The Radiative Transfer Equation Equation of State Convection in 1D Computation of 1D Model Atmospheres Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics Example applications

Almost a tutoria PHOENIX/3D PHOENIX/1D

Summary

models work well for G2V's

models work well for dM's and dL's

models work well for dM's and dL's

3D visualization: GCM Model

What is a stellar atmosphere?

Atmosphere vs. Spectrum General physics The Radiative Transfer Equation Equation of State Convection in 1D Computation of 1D Model Atmospheres Computation of 3D Model Atmospheres

What is PHOENIX?

Important Physics Example application Almost a tutorial PHOENIX/3D PHOENIX/1D

Summary

PHOENIX/3D

Current "limitations":

- no internal hydrodynamics (yet)
- "one shot" radiation, no energy feedback
- atmosphere provided externally (FLASH, PlaSim, ...)

PHOENIX/3D

Current "limitations":

- no internal hydrodynamics (yet)
- "one shot" radiation, no energy feedback
- atmosphere provided externally (FLASH, PlaSim, ...)

Advantages:

- detailed radiation transport (scattering, large au)
- detailed microphysics (EOS, opacities, NLTE)

PHOENIX/1D

Calculation of atmosphere and spectrum

- same code
- same implementation of physics

PHOENIX/1D

Calculation of atmosphere and spectrum

- same code
- same implementation of physics

Atmosphere:

- hydrostatic stratification (or analytical expansions)
- energy transport by radiation transport for "low" resolution spectrum
- energy conservation by temperature correction (iteration)

PHOENIX/1D

Calculation of atmosphere and spectrum

- same code
- same implementation of physics

Atmosphere:

- hydrostatic stratification (or analytical expansions)
- energy transport by radiation transport for "low" resolution spectrum
- energy conservation by temperature correction (iteration)

- different resolution and wavelength range
- \Rightarrow Consistent atmosphere and spectrum

$$g = \frac{GM}{R^2}$$
 $L = 4\pi R^2 \sigma T_{\rm eff}^4$

$$\mathbf{g} = \frac{GM}{R^2} \qquad L = 4\pi R^2 \sigma T_{\text{eff}}^4$$

$$g = \frac{GM}{R^2} \qquad L = 4\pi R^2 \sigma T_{\text{eff}}^4$$

3rd parameter:

$$\mu \frac{\partial I}{\partial r} + \frac{1 - \mu^2}{r} \frac{\partial I}{\partial \mu} = -\chi \left(I - S \right)$$

$$g = \frac{GM}{R^2} \qquad L = 4\pi R^2 \sigma T_{\text{eff}}^4$$

3rd parameter:

$$\mu \frac{\partial I}{\partial r} + \frac{1 - \mu^2}{r} \frac{\partial I}{\partial \mu} = -\chi \left(I - S \right)$$

 \Rightarrow for plane parallel objects: R (or M or L) is a scaling factor

Abundance determinations with PHOENIX

Abundances can be changed individually

Abundance determinations with PHOENIX

Abundances can be changed individually

But recall:

- designed for consistent atmosphere
- full equation of state
- full opacity

 \Rightarrow no quick line profiles

1.5D with PHOENIX/1D

- e.g. inhomogenous surfaces:
 - specific intensity for each surface area element
 - integrate obserable flux yourself

But: non standard output

Irradiation with PHOENIX/1D

- slab for one angle between direction to object center and illumination source
- redistribute energy
- 1.5D

Summary

- 1D: modelling atmosphere and spectrum consistently is possible (and PHOENIX does it)
- 3D: Atmosphere structure and spectrum from it require two calculations (for all codes)