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Abstract 

 

We analyze the use of alternative performance measures for ranking assets. Previous 

literature on performance evaluation is basically centered on studying the effects of non-

normality on rank correlations between measures. We introduce a new approach to compare 

the effective role of different measures for ranking. We analyze the portfolio composition and 

the posterior out-of-sample portfolio returns induced by the selection of assets according to 

each performance measure. The comparison among portfolio returns is performed by 

applying stochastic dominance tests. The overall empirical findings show that the particular 

performance measure may influence on both the portfolio composition and its return 

distribution. 

 

Highlights 

We analyze the role of a wide range of performance measures as screening rules. 

The asset ranking can be very different depending on the measure employed. 

The out-of-sample return on the best assets can also behave very differently. 

Return differences are verified by using stochastic dominance.    
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Don’t stand so close to Sharpe 
 

1 Introduction 

The securities selection is one important part of the investment process for which the so-

called screening rules are useful. These rules aim to restrict the investment universe to a 

reasonably limited set of assets so as to be analyzed in greater detail by analysts but without 

specifying assets allocations. Performance measures (PMs, hereafter) are examples of equity 

screening rules.  

Our study tries to analyze the behavior of portfolio returns based on, mainly, daily 

rebalancing portfolios by using different PMs each period as screening rules. Hence, this 

method may lead to a different portfolio composition each period depending on the PM we 

choose. It must be note that we do not implement any portfolio optimization with the selected 

stocks but we combine them by an equal or a value weighted strategy. This work also tries to 

summarize the information content of several PMs that belong to the same family by using the 

principal component analysis (PCA) method. In the same spirit, we can find several works that 

aim to get together several PMs such as Billio et al. (2012) who construct a performance 

index, or Hwang and Salmon (2003) who propose a PM combination by using copula 

functions. Using any of the above techniques as screening rules has the drawback they do not 

control for the multivariate dependence across asset returns. This problem is left to a future 

research in which the portfolio optimization framework will be incorporated.1  

Most PMs are ratios that inform about the risk-reward of the investment. This is a very 

important concern for risk managers and, thus, these ratios are used for ranking assets. The 

well-known Sharpe (1966) ratio, that relates the mean return with the standard deviation, has 

been used as a standard for this aim. It is based on the mean-variance paradigm which 

requires either elliptical2 (e.g. Gaussian distribution) returns or quadratic preferences. 

However, it is well documented that deviations of some financial asset return distributions 

from normality are statistically significant and then, in such cases, the standard deviation 

underestimates the total risk and generates biased investment rankings. Therefore, ratios that 

consider a more general framework such as, among others, one-sided reward and risk 

                                                           
1 See Bodnar et al. (2015), and the references therein, for the case of portfolio optimization under return 
predictability. 
2  See Owen et al. (1983). 
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measures have been proposed.3 Simultaneously, the debate about the significance in 

investment applications of these new PMs regarding the Sharpe ratio (SR) is still open.  

In particular, the usual way to compare alternative screening rules is based on the 

Spearman correlations between PM rankings. Although the information provided by each PM 

could be different, the correlation between two rankings might be large. Therefore, one of the 

two measures might be redundant as a screening rule. Results from papers that compare PM 

rank correlations induce controversial conclusions. On the one hand, Eling and Schuhmacher 

(2007) or Eling (2008), among others, conclude that the PM choice becomes irrelevant since 

they all produce very similar rankings. However, these papers relay on a small subset of all 

current available PMs for a sample of hedge funds such that the normality assumption is 

generally rejected. In the same way, Guo and Xiao (2015).reinforce the previous results. They 

show that if return distributions belong to the location-scale (LS) family, then the PMs 

generate identical rank ordering. On the other hand, more recent studies show that rankings 

can be very different depending on the selected measure. Farinelli et al. (2009) show that 

measures based on partial moments do a better fit by accommodating to the different 

investors’ risk profile than the Sharpe ratio. Zakamouline (2011) find that severe deviations of 

normality lead to significant shifts in the rankings for hedge funds. León and Moreno (2015), 

by assuming the Gram-Charlier distribution (which is not LS) for the stock returns, also agree 

that the selection of PMs becomes relevant. Caporin and Lisi (2011) find evidence of low rank 

correlations by using a huge set of different PMs. These authors argue that the results depend 

on both the sort of assets and the sample period. Additionally, they also show that the rank 

correlations are time varying and influenced by the sample size. Finally, Magron (2014) shows 

empirical evidence, with a sample of 24,766 individual investors from a French brokerage, 

that alternative PMs to the SR, and specifically, the Farinelli-Tibiletti family result in different 

rankings of investors.  

Our paper aims to provide complementary results about the role of different PMs in 

selecting stocks. Similarly to Caporin and Lisi (2011), we compare a large set of different 

measures and especially the ones that produce different rankings in previous papers. Our 

main contribution is just the way of comparison. Instead of analyzing the rank correlations, as 

in previous papers, we compare the portfolios containing the assets selected by each measure 

in terms of both the portfolio composition and the out-of-sample (OOS) portfolio returns.  

                                                           
3 See, for instance, Bacon (2011) and Caporin et al. (2014). 
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Specifically, we consider 32 PMs computed daily for all stocks in the Standard and 

Poor (S&P) 500 index by using a 264-days rolling window of past returns. The individual 

stocks are daily ranked on the basis of each PM and the 20 best stocks are selected to be 

included in each portfolio. Caporin and Lisi (2011) point out the need of working in a dynamic 

framework because of the instability of PMs over time. Therefore, the rolling window 

approach is an additional goal of our paper. Finally, we employ a sufficiently large window to 

avoid inconsistencies due to the sample size.  

Our first analysis consists on comparing the percentage of individual stocks that are 

simultaneously in two portfolios. It is shown that the portfolio composition is rather similar 

across portfolios based on measures from the same family. This fact allows for reducing the 

portfolio number by applying the PCA technique to all portfolios in each family and projecting 

the OOS returns. In contrast, we find a high distance between the portfolios compositions 

obtained through PMs from different families.  

Our second analysis compares the distribution characteristics of the OOS returns 

between different portfolios in several ways. First, we analyze the descriptive statistics for the 

whole OOS period. Second, we implement the dynamic conditional correlation (DCC) model of 

Engle (2002) between pairs of OOS portfolio returns. Third, we analyze the spread in 

cumulative returns between each portfolio (and, therefore, PM) and the benchmark (the 

portfolio based on the Sharpe ratio). Fourth, the empirical distributions of returns are 

compared by stochastic dominance. All the results indicate that the screening rule influences 

the subsequent portfolio returns that are, in some portfolios, quite different from the 

benchmark. 

The outline of the work is as follows. The PMs used in our analysis are briefly presented in 

Section 2. Section 3 contains both the data of individual stocks and the description of the 

portfolio creation. In Section 4, the empirical results from the comparison of portfolios 

composition and returns are provided. Section 5 contains two robustness checks. In 

particular, the effects of either the stock weights on portfolios or the period length for the 

portfolio rebalancing. Finally, Section 6 summarizes the main conclusions. 

2 Performance Measures  

In this study we consider different PMs into four groups. The first group contains the Sharpe 

ratio and its extensions. The second one refers to PMs based on partial moments containing 
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both the Kappa and Farinelli-Tibiletti ratios. The third group includes PMs based on quantiles 

such as the Value-at-Risk (VaR) ratio and the generalized Rachev ratio. Finally, some PMs that 

do not belong to any other family are considered in the fourth group. Next, we define all the 

PMs in each group. More details about the specific investment characteristics that these (and 

other) measures account for can be found in the survey by Caporin et al (2014).  

2.1 The Sharpe ratio and its extensions 

A more generalized version for the original Sharpe ratio (Sharpe, 1966 and 1994) is defined 

as 

𝑆𝑅(𝜃) =
𝜇−𝜃

𝜎
, 

where 𝜇 and 𝜎 denote the expected return and volatility for the returns distribution, 

respectively. The parameter 𝜃 is the mean return threshold. In the standard case, 𝜃 is the risk-

free rate. An extension of the original SR is the adjusted Sharpe ratio (ASR) suggested by 

Pézier and White (2008), which explicitly adjusts for the skewness, 𝑠𝑘, and kurtosis, 𝑘𝑢, of the 

returns distribution. Hence, 

𝐴𝑆𝑅(𝜃) = 𝑆𝑅(𝜃) [1 +
𝑠𝑘

6
𝑆𝑅(𝜃) −

𝑘𝑢 − 3

24
𝑆𝑅2(𝜃)]. 

2.2 Performance measures based on partial moments 

Lower partial moments (LPM, hereafter) based measures define risk as the negative 

deviations of the stock returns, 𝑟, in relation to the mean return threshold, , or the minimal 

acceptable return. Fishburn (1977), among others, defines the LPM of order 𝑚 as 

𝐿𝑃𝑀(𝜃, 𝑚) = 𝔼[(𝜃 − 𝑟)+
𝑚] = ∫ (𝜃 − 𝑟)𝑚𝑓(𝑟)𝑑𝑟,

𝜃

−∞

  

where 𝑓(⋅) denotes the probability density function (pdf) and (𝑦)+ = 𝑚𝑎𝑥(𝑦, 0). In contrast to 

the standard deviation, LPM considers only the negative deviations of returns assuming that 

investors are especially worried about the losses. The order of the LPM can be interpreted as 

the investors’ risk attitude. Investors with risk seeking can be expressed as 0 < 𝑚 < 1, 𝑚 = 1 

indicates risk neutrality, and 𝑚 > 1 indicates risk aversion. Thus, for 𝑚 > 1, the higher 𝑚 the 

higher the emphasis on the extreme deviations from the threshold 𝜃, whereas the lower the 
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relevance of small deviations from 𝜃. Opposite effects come up with 𝑚 < 1. The LPM of order 

0 is the shortfall probability. The LPM of order 1 is related with the expected shortfall. 

Equivalently, the upper partial moment (UPM) of order 𝑞 is defined as 

𝑈𝑃𝑀(𝜃, 𝑞) = 𝔼[(𝑟 − 𝜃)+
𝑞

] = ∫ (𝑟 − 𝜃)𝑞𝑓(𝑟)𝑑𝑟
∞

θ
.  

So, for a given threshold 𝜃 an analogous reasoning applies to selecting the proper 

order q. We consider two families of PMs within this class: the Kappa and the Farinelli-

Tibiletti ratios. 

2.2.1 Kappa or Sortino-Satchell ratios 

Sortino and Satchell (2001) measure the mean excess return per unit of risk by using LPM. 

Henceforth, we denote this measure as SS. Then, 

𝑆𝑆(𝜃, 𝑚) =
𝜇−𝜃

√𝐿𝑃𝑀(𝜃,𝑚)𝑚 . (1) 

Some popular measures, which are nested in equation (1), are the Sharpe-Omega ratio 

(see Kaplan and Knowles, 2004) for 𝑚 = 1, the Sortino ratio (see Sortino and Van der Meer, 

1991) for 𝑚 = 2, and Kappa 3 (see Kaplan and Knowles, 2004) for 𝑚 = 3. It is verified that 

𝑆𝑆(𝜃, 1) = 𝛺(𝜃) − 1, where 𝛺(𝜃) denotes the Omega ratio (see Keating and Shadwick, 2002). 

Note that 𝛺(𝜃) = 1 for 𝜃 = 𝜇. Finally, the Bernardo and Ledoit (2000) ratio is the Omega ratio 

for 𝜃 = 0 and, hence, it represents the gain-to-loss ratio. 

We set the following values for the order of the LPM to consider different investors 

risk attitudes: 𝑚 = 10 (defensive investor), 𝑚 = 3 and 2 (conservative investors), 𝑚 = 1.5 

(moderate investor), 𝑚 = 0.8 and 0.5 (aggressive investors). 

2.2.2 Farinelli-Tibiletti ratios 

Farinelli and Tibiletti (2008) propose a ratio (henceforth, FT ratio) that exclusively looks at 

the upper and lower partial moments by comparing the favorable events and the unfavorable 

ones: 

𝐹𝑇(𝜃, 𝑞, 𝑚) =
√𝑈𝑃𝑀(𝜃,𝑞)

𝑞

√𝐿𝑃𝑀(𝜃,𝑚)𝑚  , (2) 
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with 𝑞,𝑚 > 0 which are called the right and left orders, respectively. The higher the value for 

𝑞, the higher the agent's preference for expected gains. The higher the value for 𝑚, the higher 

the investor’s dislike for expected losses. Note that equation (2) nests two popular measures: 

the Omega ratio 𝛺(𝜃) when 𝑞 = 𝑚 = 1, and the Upside Potential ratio (see Sortino et al., 

1999) when 𝑞 = 1 and 𝑚 = 2. 

So, how to choose the proper orders? If q > m the investment strategy aims at no 

worrying about losses, whereas having huge losses is not desirable when q < m. Caporin and 

Lisi (2011) calibrate the parameters 𝑞 and 𝑚 to match them with investors’ styles. We follow 

them and keep the same values for (𝑞, 𝑚). Thus, (0.5, 2) for defensive investors; (1.5, 2) for 

conservative investors; the Omega ratio (1, 1) for moderate investors; (2, 1.5) for investor 

that are seeking a potential growth in the final wealth; (3, 0.5) for aggressive investors; and 

the Upside Potential ratio (1, 2).  

2.3 Performance measures based on quantiles 

In this group of measures we present some ratios based on quantiles. The PMs are both the 

VaR ratios (VaRR) and Generalized Rachev (GR) ratios. To understand better these PMs, we 

need previously to introduce two downside risk-measures for the returns distribution.  

First, the VaR at the 𝛼 confidence level is the quantity such that the probability that 

the return will be lower or equal to this quantity is 𝛼:  

𝑉𝑎𝑅(𝛼) = −𝑖𝑛𝑓{𝑟|𝐹(𝑟) ≥ 𝛼}, 

where 𝐹(𝑟) represents the cumulative distribution of returns. Second, the expected shortfall 

(conditional VaR), which measures the expected value of all returns that are lower or equal to 

the VaR:  

𝐶𝑉𝑎𝑅(𝛼) = −𝔼[𝑟|𝑟 ≤ −𝑉𝑎𝑅(𝛼)]. 

 Note that in this work we take the more common approach of referring VaR (CVaR) as 

positive numbers. 

2.3.1 Generalized Rachev ratio 
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The Generalized Rachev ratio (Biglova et al., 2004) relates the CVaR to the power 𝛿 applied to 

the returns lower than the threshold, and the CVaR to the power 𝛾 applied to the returns 

higher than the threshold in the symmetric negative VaR. That is, 

𝐺𝑅(𝛼, 𝜃, 𝛾, 𝛿) =
𝔼[(𝑟 − 𝜃)+

𝛾
| 𝑟 ≥ 𝑉𝑎𝑅(−𝑟; 𝛼)]

1
𝛾

 

𝔼[(𝜃 − 𝑟)+
𝛿 | 𝑟 ≤ −𝑉𝑎𝑅(𝑟; 𝛼)]

1
𝛿

 , 

where  𝛾, 𝛿 > 0. As in the VaRR case, we consider 1 and 5 percent confidence levels and 

denote GR1 and GR5 the corresponding GR ratios. The values for the power parameters (𝛾, 𝛿) 

are: (0.8, 0.001), (0.5, 0.8), (0.8, 0.8), (0.5, 1), (0.01, 0.8), and (1, 1). The last case corresponds 

with the simple Rachev ratio (Biglova et al., 2004).  

2.3.2 VaR ratio 

The VaR ratio is introduced in Caporin and Lisi (2011). With similar foundations than the FT 

ratio, it relates the positive quantile and the symmetric negative quantile of the distribution: 

𝑉𝑎𝑅𝑅(𝛼) =
|𝑉𝑎𝑅(−𝑟; 𝛼)|

|𝑉𝑎𝑅(𝑟; 𝛼)|
 , 

where | ⋅ | denotes the absolute value function. We consider two confidence levels: 1 and 5 

percent. Hence, we denote VaRR1 and VaRR5 for the 1 and 5 percent confidence levels, 

respectively. 

2.4 Other performance measures 

The last group of measures includes four ratios representing mean excess return (𝜇 − 𝜃) per 

unit of risk in which the risk in the denominator is approximated by different dispersion 

measures. The mean absolute deviation (henceforth MAD) ratio proposed by Konno and 

Yamazaki (1991) uses the mean of |𝑟 − 𝜇| as risk measure. The Minimax (hereafter MM) ratio 

uses the risk measure proposed by Young (1998): 𝑚𝑎𝑥(𝑟(𝑛), −𝑟₍₁₎), where 𝑟(𝑛) and 𝑟₍₁₎ 

denote the ordered statistics corresponding to the maximum and the minimum of the return 

sample with size n, respectively. Last but not least, the Range ratio (hereafter Range) uses 

|𝑟(𝑛)  − 𝑟₍₁₎|. Finally, we also consider as the risk measure the Gini's mean difference (Shalit 

and Yitzhaki, 1984) that is defined as 
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𝛤 =
1

2
∫ ∫ |𝑥 − 𝑦|𝑓(𝑥)𝑓(𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

, 

where 𝑥 and y are a pair of values in realized returns.  

 Last of all, in our study we implement the corresponding sample estimations for all the 

PMs exhibited above.  

3 Data and Portfolios Construction 

We get from Bloomberg the end-of-day quotes of the S&P 500 components as well as their 

market capitalization for the period January 2005-September 2014. For each stock, we 

compute daily logarithmic returns and set, for instance, a zero mean return as threshold (𝜃 =

0). As expected, these individual returns series are characterized by large deviations from 

normality. It holds that the Jarque-Bera test rejects the assumption of normally distributed 

stock returns for all stocks. Therefore, it seems to be an appropriate dataset to compare 

measures accounting for higher order moments. It is well known that stock indexes 

composition changes over time. These changes can produce effects on the quantity or quality 

of the information, or on the demand of an asset because of either its inclusion or exclusion 

from the index (Pruitt and Wei, 1989; Jain, 1987). In order to avoid potential consequences of 

delisting on individual stock returns, we finally restrict our sample to the 424 assets that are 

continuously belonging to the S&P along our sample period.  

Our sample period contains 2,453 working days. We employ a window of 264 days 

(approximately one year) to obtain the estimations of the PMs in Section 2 to the series of 

individual returns. Specifically, we compute 32 PMs to each individual stock: SR, ASR, six 

measures in the SS family for different values of order m, the FT measures for six alternative 

combinations of orders m and q, the VaRR for both 1 and 5 percent levels, the GR1 and GR5 

(also for 1 and 5 percent levels) for six combinations of the power parameters 𝛾 and 𝛿, 

respectively, and the MAD, MM, Range and Gini measures. Then, we sort the 424 stocks by 

each PM and select the best 20 ones to be included in the corresponding PM portfolio. This 

amount means selecting approximately the best 5% of the whole set of individual assets.  

Lastly, we compute the first out-of-sample (OOS) return for each portfolio just the day 

after the window as the equally-weighted return of the individual stocks in the portfolio. We 

set this procedure in order to avoid any arbitrary decision about the optimal allocation. Any 

other asset allocation criterion may be controversial with the PM in which the asset selection 
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is based on. Additionally, De Miguel et al. (2009) find statistical equivalence between the 

performance of an equally-weighted portfolio and a Markowitz-optimized portfolio. In any 

case, Section 5 analyzes the robustness of the results for the value-weighted case. By rolling 

the window each day, we generate series of 2,189 OOS returns.  

4 Results 

We study whether the use of different selecting criteria have consequences in the 

performance of the resulting portfolios. Therefore, now we compare the 32 portfolios in 

several ways. First, we analyze the portfolio compositions. Second, we look at the OOS 

portfolio returns in both static and dynamic frameworks. Third, we also compare the different 

portfolio returns by testing both first and second stochastic dominance. 

4.1 Portfolio Composition 

For each of the 2,189 days in which 32 portfolios are constructed with the best 20 individual 

assets selected, we compare the number of assets that are selected in the same day by using 

two different measures. Table 1 displays the median value of the percentage of the coincident 

assets when comparing two alternative measures along the 2,189 days. 

Comparing the Sharpe ratio with each one of the other measures, we can observe that 

the median percentage of coincidences is 100 percent for the adjusted Sharpe ratio, it is 

relatively high (more than 70 percent) for the SS ratios, MAD, Range and Gini, whereas it is 

high for the MM (around 60 percent). In contrast, the selected assets are in general different 

by using other measures. That is, the percentage of coincidences goes from 15 and 25 percent 

when comparing the Sharpe ratio with all the generalized Rachev ratios and the two VaR 

ratios. The extreme case is the family of FT measures for which the coincident assets are zero 

on median, indicating a clear different selection criterion from Sharpe ratio. Moreover, the 

assets selected by FT measures are also different than the assets selected by any other PM, 

especially the SS ratios for which the number of coincident assets is again zero in all days. 

Comparing pairs of measures within the same family, as expected, the number of coincident 

assets tends to be high. However, this is not the case for the FT family. The percentage of 

coincidences can be as small as 15 percent for different parameter values, suggesting the 

importance on the investment style. Therefore, we conclude that assets selected by 

alternative measures can be quite different. 
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4.2 Portfolio Returns: Static Analysis 

According to Table 1 the PM selection can produce different portfolio compositions. In this 

section we aim to study harder the above result by looking at the OOS returns each portfolio 

generates. In order to reduce the quantity of information, we apply the PCA technique to 

summarize the information content of all portfolio returns coming from the same 

performance measure. As a result, we compare returns among 12 instead of 32 portfolios. 

Standard descriptive statistics on the portfolio returns computed using the whole OOS 

period (January 2006 to September 2014) are displayed in Table 2. First panel of Table 2 

provides the mean, maximum, minimum, standard deviation, beta, skewness, and excess 

kurtosis.4 The mean, maximum, minimum, and standard deviation are in percent numbers. 

Complementary information about risk is provided by the VaR and CVaR at 1 and 5 percent 

levels, and the maximum drawdown (MDD). The relative drawdown at time 𝑡 represents the 

percentage loss that the investor has suffered from the previous peak of price until time t. 

That is,  

𝐷𝐷𝑡 =  
𝑀𝑡 − 𝑃𝑡

𝑀𝑡
≥ 0, 

where 𝑃𝑡 is the price at time 𝑡 and 𝑀𝑡 is the running maximum price in the time interval [0, 𝑡]. 

Hence, 𝑀𝑡 = 𝑚𝑎𝑥
𝜏∈[0,𝑡]

𝑃𝜏. Then, the relative maximum drawdown is defined as the largest 

drawdown for the entire sample:  

𝑀𝐷𝐷 = 𝑚𝑎𝑥
𝑡∈[0,𝑇]

𝐷𝐷𝑡. 

The FT portfolio exhibits the largest mean return followed by the portfolios based on 

VaRR5, GR1, and MAD. The FT portfolio return also shows the largest range (distance between 

the maximum and the minimum in Table 2), standard deviation and beta. However, the 

minimum values are similar among portfolios, while the maximum values are much larger for 

the FT portfolio. All portfolio returns are negatively skewed (except for FT with practically 

zero skewness) and show high values for excess kurtosis (highlighting FT). Important 

differences between portfolios in terms of VaR(5%), CVaR(5%) or MDD are not observed. 

Only for 1% level, both VaR and CVaR values are larger for the FT portfolio than the rest. Note 

                                                           
4 Market betas have been computed by employing the S&P 500 index as a proxy for the market portfolio and using 
monthly frequency. 



12 

also, for instance, how the OOS portfolio return with the lowest VaR (1%) is not VaRR1 but 

GR1. 

In order to visualize whether the largest mean return for FT portfolio is compensated 

by its largest risk, Figure 1 represents mean-risk ratios based on the risk measures provided 

in Table 2. As shown, FT portfolio exhibits the largest mean-risk compensation. The difference 

between FT portfolio and the remaining ones is remarkably high. All reward-to-variability 

ratios obtained from FT portfolio are more than 2.5 times the respective ratios for the 

VaRR(5%) portfolio, the second best portfolio in terms of risk compensation.  

The second panel of Table 2 displays the correlation between the different portfolio 

returns. Comparing to SR portfolio, the lowest correlation corresponds to FT (65.9 percent). 

Note also that FT portfolio shows the lowest levels of return correlation with the other 

portfolios. GR1, GR5, VaRR1 and VaRR5 OOS returns show around 80 percent of correlation 

with SR. On the contrary, the remaining measures lead to OOS portfolio returns which are 

highly correlated with SR returns.  

4.3 Portfolio Returns: Dynamic Analysis 

We study here the behavior of PMs in a dynamic framework. First, we start estimating 

Dynamic Conditional Correlations (DCC) by Engle (2002) between SR portfolio returns and 

each of the other portfolio returns. Both graphs of Figure 2 display these DCC for two subsets 

of six (top graph) and five alternative measures (bottom graph). The daily conditional 

correlation series between SR and ASR, MAD, Gini, SS, or MM returns show high levels and are 

relatively stable along time. For the remaining PMs, the conditional correlation series are 

lower and highly time varying. In general, the correlations are positive but decrease 

considerably during the crisis period for some pairs. In particular, the cases of FT, GR1, GR5, 

VaRR1 and VaRR5. Therefore, summing up all the results upon this point, we can conclude 

that very different patterns in the portfolio return distribution are possible for different PMs. 

Next, we analyze more deeply these differences. 

Second, Figure 3 represents the spread between cumulative returns on each portfolio 

and SR portfolio along the OOS period. The top graph displays the portfolio cumulative 

returns with the highest spreads regarding SR while the bottom graph shows the spreads for 

the portfolios with the most similar cumulative returns to SR. This visual analysis indicates 

that the VaRR5, GR1, MM, and specifically the FT cumulative returns are systematically over 
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the SR ones. Moreover, the FT cumulative return is also substantially larger than the other 

returns ending with a cumulative value two times larger than the rest. However, this portfolio 

also shows a sharp drop during the recession. VaRR1 and GR5 portfolios produce returns 

higher than SR in the pre-crisis period but lower after the crisis. The bottom graph displays 

spreads of size considerably lower (see scale in vertical axis) and also showing both positive 

and negative values. In this case, only the MAD portfolio produces higher cumulative returns 

than SR for almost the whole sample period. 

Third, Figure 4 compares the time series of drawdowns for the different portfolios. 

Remember that the drawdown represents the maximum loss and thus, the higher the 

drawdown the worse performance. Consistently with Figure 3, the top graph shows that the 

drawdown is considerably lower for FT than for the remaining portfolios, and mainly, just 

after the crisis period. It seems that the drawdown is higher for SR than for the others before 

2008 but it becomes lower after 2009.  

4.4 Stochastic Dominance Analysis 

In order to compare more rigorously the cumulative portfolio return distributions generated 

by the different PMs, we employ the stochastic dominance tool. Taking into account the weak 

assumptions of non-satiation and risk aversion for investor preferences, we can compare 

sample cumulative distribution functions (CDFs) for each pair of portfolios cumulative 

returns in terms of first-order and second-order stochastic dominances. We use the Davidson 

and Duclos (DD) (2000) test. Suppose a random sample of N independent drawings of 

observations (yi,A, yi,B), i=1,…,N, from two populations A and B, the statistic for testing the null 

that neither A nor B dominates at s-order each other has the following form: 

𝑇𝑆(𝑥) =
𝐷̂𝐴

𝑠 (𝑥)−𝐷̂𝐵
𝑠 (𝑥)

√𝑉̂𝑠(𝑥)
, 

such that 

𝐷̂𝑗
𝑠(𝑥) =

1

𝑁(𝑠 − 1)!
∑(𝑥 − 𝑦𝑖,𝑗)

𝑠−1
𝑁

𝑖=1

𝐼(𝑦𝑖,𝑗 ≤ 𝑥) =
1

𝑁(𝑠 − 1)!
∑(𝑥 − 𝑦𝑖,𝑗)

+

𝑠−1
𝑁

𝑖=1

,   𝑗 = 𝐴, 𝐵 

where I(.) is an indicator function equal to 1 when the argument is true and 0 otherwise. Note 

that for s=1, 𝐷̂ is simply the empirical distribution function that estimates the population CDF. 
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And for s>1, 𝐷̂ is simply a sum of iid variables. Finally, 𝑉̂ is an estimate for the variance of the 

numerator of the T-statistic: 

𝑉̂𝑠 = 𝑉̂𝐴
𝑠 + 𝑉̂𝐵

𝑠 − 2𝑉̂𝐴𝐵
𝑠 , 

with 

𝑉̂𝑗
𝑠(𝑥) =

1

𝑁
[(

1

𝑁((𝑠 − 1)!)
2 ∑(𝑥 − 𝑦𝑖,𝑗)

+

2(𝑠−1)
𝑁

𝑖=1

) − 𝐷̂𝑗
𝑠(𝑥)2] ,   𝑗 = 𝐴, 𝐵 

𝑉̂𝐴𝐵
𝑠 (𝑥) =

1

𝑁
[(

1

𝑁((𝑠−1)!)
2 ∑ (𝑥 − 𝑦𝑖,𝐴)

+

2(𝑠−1)
(𝑥 − 𝑦𝑖,𝐵)

+

2(𝑠−1)𝑁
𝑖=1 ) − 𝐷̂𝐴

𝑠(𝑥)𝐷̂𝐵
𝑠(𝑥)]. 

Under the null, T is asymptotically distributed as a standard normal variable. We 

implement the DD test for first and second-order dominances. We set 100 different values for 

x, which are obtained by dividing the whole possible range (max(yi,j)-min(yi,j), for j= A, B) into 

100 grids. To control for the joint test size, inference is based on the Studentized Maximum 

Modulus distribution with a 5 percent critical value of 3.254.5 Therefore, we compute the 

number of significant positive statistics (T>3.254) and the number of significant negative 

statistics (T<-3.254). We denote the numbers of the total of significant positive and negative 

statistics as DD+ and DD-, respectively. We reject the null and conclude that B (A) dominates A 

(B) when the number of significant positive (negative) statistics DD+ is equal or higher than 

50. 

Stochastic dominance results for first-order (FSD) and second-order (SSD) are in 

Tables 3.a and 3.b, respectively. Since we are comparing the distribution of cumulative 

returns, then DD+ (DD-) higher than 50 implies that the portfolio indicated in the first row 

(column) dominates the portfolio shown in the first column (row). Confirming the visual 

conclusion from Figure 3, we find that FT, VaRR5, MAD, MM and additionally ASR are better 

than SR in terms of both marginal utility (FSD) and risk (SSD). The maximum number of 

significant DD+ is for MAD (96 out of 100), indicating than the CDF for SR cumulative returns 

is practically on the left of CDF for MAD returns. This fact can be observed on the top graph of 

Figure 5. The percentage of significant DD+ is lower in the FT case (74 or 70, for FSD or SSD). 

As the middle graph of Figure 5 displays, there is a higher range of values for which Sharpe 

                                                           
5 The Studentized maximum modulus is the maximum absolute value of a set of independent unit normal variables 
which is studentized by the standard deviation. Critical values for infinite degrees of freedom are tabulated by 
Stoline and Ury (1979).  
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CDF is on the right of FT one. However, the distance between both CDFs is considerably larger 

than the distance between MAD and SR. This is supported by the average DD statistic value of 

9.23 for the SR-MAD comparison, whereas 33.01 for the SR-FT comparison. Tables 3.a and 3.b 

also show that the SR cumulative return distribution dominates SS, GR1, GR5, and Range 

distributions. As an example, the bottom graph of Figure 5 represents the empirical CDFs for 

SR and SS, now the average DD statistic value is equal to -12.15. 

Other comparisons show, in general, that SS and GR5 are worse than the other PMs, 

while FT is the best. In addition, VaRR5, MAD and MM are better than the other measures but 

worse than FT.  

5 Robustness Checks 

Note that some decisions to obtain the OOS portfolio returns in the previous empirical 

analysis have been taken arbitrarily. The aim of this section is to check whether the results in 

Section 4 may be invariant to some changes in the way of computing the OOS portfolio 

returns. Specifically, we analyze the effects of the individual weights on the portfolio and the 

period for the portfolio rebalancing. 

5.1 Value Weighted Portfolios 

In this case, the composition of the 32 initial portfolios is the same as in Section 4 but the 

weight on each individual asset is given by its market capitalization. This is a more realistic 

case since the maintenance costs are much lower than in the equally-weighted case.  

Comparing Figures 3 and 6, we can see that the value-weighted strategy produces 

portfolio returns closer each other; the large distance between the spread for FT portfolio and 

any other exhibited in Figure 3 does not hold now. However, the FT portfolio shows again the 

highest cumulative spread regarding SR during almost the entire sample period. In contrast to 

the equally-weighted case, there are no many strategies showing higher returns than SR. Only 

MM (top graph) and Range (bottom graph) produce higher cumulative returns than SR during 

the whole sample period.  

Tables 4.a and 4.b compare cumulative returns in terms of FSD and SSD, respectively. 

Now, most portfolios are worse than SR. Only FT, MM, and Range dominate SR in both first 

and second orders. Consistently with Tables 3.a and 3.b, FT strategy is the best one. Now SS is 
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worse than some portfolios but better than others. However, VaRR1 and VaRR5 become the 

worst strategies.  

5.2 Period of Portfolio Rebalancing 

Daily rebalancing of portfolios can produce important transaction costs. We repeat the same 

analysis but now carrying out the asset selection only one time per month and so, keeping a 

buy-and-hold portfolio strategy every day within a month. In this case, the portfolio return is 

computed equally weighting the individual stock returns.  

The graphs in Figure 7 show that spreads regarding SR are lower than in the case of 

daily rebalancing but the portfolio ordering is similar to the case of equally-weighted and 

daily rebalancing. As in the previous sections, the performance of the FT portfolio still stands 

out except for the financial crisis period, which drops sharply reaching large negative values. 

Now many selecting criteria seem to do better than SR. This evidence is provided for 

Tables 5.a and 5.b. The distributions of cumulative returns on SS, FT, GR1, GR5, VaRR1, 

VaRR5, MAD, MM, Range and Gini portfolios dominate SR. Generally speaking, FT joint to GR1 

and GR5 are the best portfolios while SS and Gini are the worst. 

6 Conclusions 

This paper goes on the use of performance measures (PMs) for selecting assets. The 

comparison between different performance measures as screening rules has previously 

addressed according to rank correlations. Our contribution is to compare the role of different 

measures by not looking at the individual asset rankings but the composition and the 

subsequent out-of-sample return of the portfolio that contains the selected assets. Therefore, 

our method of comparison complements some previous empirical evidence, already 

mentioned in the Introduction, since we analyze the consequences of different rankings on the 

investment results.  

We work with 32 different PMs, sort individual assets by each PM, and select the best 

20 ones to be included in a portfolio. The first comparison is in terms of portfolio composition. 

We find a very low percentage of coincident assets when comparing portfolios based on 

Sharpe ratio (SR) and Generalized Rachev (GR) ratios or VaR ratios (VaRR). The extreme case 

is the family of Farinelli-Tibiletti (FT) measures that clearly select assets which are not 

selected by other PMs.  



17 

 The second comparison analyses the out-of-sample (OOS) portfolio returns. The 

return correlation between portfolios confirms that not only the composition but also the 

portfolio resulting returns are different especially between SR and FT, GR or VaRR. 

Descriptive statistics for the whole OOS period indicate that the mean return is considerably 

larger for the FT portfolio, followed by the portfolios based on VaRR5, GR1, and mean 

absolute deviation (MAD). In general, the FT portfolio return also shows the largest total risk 

(standard deviation, VaR and CVaR at 1%) and systematic risk. However, its reward-risk ratio 

is the best in terms of Sharpe and Treynor ratios. It is also remarkable the case of VaRR5 with 

the second largest values for the mean return, Sharpe and Treynor ratios.  

 The third comparison is about a dynamic analysis of OOS returns. We start looking at 

DCC correlations, and continue comparing the distributions of cumulative returns by a 

drawdown analysis and testing the stochastic dominance. In general, FT dominates the rest of 

portfolios when comparing both cumulative returns and drawdowns. Our dynamic analysis 

also concludes that the good differential performance of the FT portfolio is observed after the 

negative shock associated to the recent crisis. Precisely, during the recession period the 

correlation between SR and FT portfolio returns becomes much lower. 

 The final analysis deals with the effects of changing the weights on the portfolios 

(keeping the composition) and the period length for portfolio rebalancing. Results are similar 

in the second case but we find important differences in portfolio returns when individual 

stocks are value weighted. However, and generally speaking, the dominance of the FT 

portfolio is still verified for cumulative returns. 
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Table 1. Percentage of coincident assets comparing pairs of portfolios based on different measures. Median values. 
  Kappa  Farinelli-Tibiletti Generalized Rachev 1% Generalized Rachev 5%       
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

1 1 0.75 0.85 0.9 0.9 0.9 0.85 0 0 0 0 0 0 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.25 0.2 0.25 0.25 0.2 0.15 0.25 0.9 0.6 0.7 0.95 
2  0.75 0.9 0.9 0.9 0.9 0.85 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.7 0.15 0.25 0.9 0.6 0.7 
3   0.85 0.8 0.75 0.7 0.65 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.35 0.35 0.3 0.2 0.2 0.75 0.55 0.7 0.7 
4    0.95 0.9 0.85 0.8 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.35 0.3 0.35 0.35 0.3 0.2 0.25 0.8 0.55 0.65 0.85 
5     0.95 0.9 0.85 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.35 0.3 0.3 0.2 0.25 0.8 0.55 0.65 0.9 
6      0.95 0.9 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.25 0.8 0.5 0.6 0.95 
7       0.95 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.3 0.25 0.3 0.3 0.25 0.2 0.25 0.8 0.5 0.6 0.95 
8        0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.2 0.25 0.75 0.5 0.6 0.9 
9         0.65 0.4 0.6 0.2 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10          0.65 0.65 0.4 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11           0.55 0.7 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12            0.425 0.35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13             0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14              0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15               0.95 0.95 0.95 0.9 0.95 0.65 0.6 0.65 0.6 0.5 0.7 0.45 0.1 0.1 0 0.05 0.2 
16                0.95 1 0.95 0.95 0.6 0.6 0.65 0.6 0.55 0.7 0.45 0.1 0.1 0 0.05 0.2 
17                 0.95 0.9 1 0.6 0.6 0.65 0.6 0.5 0.7 0.45 0.1 0.1 0 0.05 0.2 
18                  0.95 0.95 0.6 0.6 0.65 0.6 0.55 0.7 0.45 0.1 0.1 0 0.05 0.2 
19                   0.9 0.6 0.6 0.65 0.6 0.55 0.7 0.5 0.1 0.1 0 0.05 0.2 
20                    0.6 0.6 0.65 0.6 0.5 0.7 0.45 0.1 0.1 0 0.05 0.2 
21                     0.85 0.9 0.85 0.75 0.9 0.55 0.3 0.15 0.05 0.1 0.25 
22                      0.95 1 0.9 0.9 0.5 0.3 0.2 0.1 0.15 0.25 
23                       0.9 0.85 0.95 0.5 0.25 0.2 0.05 0.1 0.25 
24                        0.9 0.9 0.5 0.3 0.2 0.1 0.15 0.25 
25                         0.8 0.5 0.3 0.2 0.1 0.15 0.25 
26                          0.5 0.25 0.15 0.05 0.1 0.25 
27                           0.15 0.1 0.05 0.05 0.2 
28                            0.2 0.15 0.2 0.25 
29                             0.7 0.75 0.85 
30                              0.85 0.55 
31                               0.65 

Measures 1 and 2 are the Sharpe and Adjusted Sharpe ratio, respectively. Measures from 3 to 8 are Kappa ratios with the following values for the 

parameter: 10, 3, 2, 1.5, 0.8, and 0.5. Measures from 9 to 14 are Farinelli-Tibilitti ratios with the following pair of values for the parameters: (0.5, 

2), (1.5, 2), (1, 1), (2, 1.5), (3, 0.5), and (1, 2). Measures from 15 to 20 and from 21 to 26 are Generalized Rachev ratios evaluated at 1% and 5% 

levels respectively. In both cases the values for each pair of parameters are: (0.8, 0.001), (0.5, 0.8), (0.8, 0.8), (0.5, 1), (0.01, 0.8), and (1, 1). 27 and 

28 are VaR ratios at 1% and 5% level respectively; 29 is the mean absolute deviation; 30 is the distance between the maximum and the minimum; 

31 is the Range ratio which is the absolute value of the distance between the maximum and the minimum; and 32 is the Mean-Gini ratio.   
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Table 2. Descriptive statistics of out-of-sample portfolio returns.  

 
SR ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 

Mean 0.0039 0.0064 0.0061 0.0446 0.0083 0.0023 0.0035 0.0129 0.0080 0.0069 0.0025 0.0069 

Max 7.756 7.756 7.756 17.526 9.776 9.800 10.298 10.302 7.802 7.756 7.761 7.756 

Min -9.934 -9.934 -9.983 -12.495 -9.709 -11.735 -9.801 -11.706 -9.934 -9.758 -9.758 -9.934 

StD 1.426 1.427 1.413 1.961 1.407 1.439 1.392 1.525 1.442 1.462 1.463 1.414 

Beta 0.951 0.949 0.968 1.584 1.098 1.097 1.146 1.173 0.961 0.994 1.015 0.929 

MDD 0.591 0.595 0.609 0.680 0.635 0.653 0.694 0.675 0.605 0.624 0.630 0.599 

Skewness -0.561 -0.565 -0.576 0.069 -0.491 -0.802 -0.592 -0.655 -0.577 -0.740 -0.739 -0.564 

Exc.Kurtosis 4.533 4.541 4.839 13.789 6.439 8.078 7.059 7.303 4.480 5.186 5.124 4.665 

VaR(1%) 0.042 0.043 0.042 0.075 0.039 0.043 0.041 0.049 0.044 0.045 0.045 0.043 

VaR(5%) 0.024 0.024 0.024 0.027 0.023 0.023 0.022 0.025 0.025 0.025 0.025 0.024 

CVaR(1%) 0.057 0.057 0.057 0.094 0.059 0.064 0.060 0.068 0.057 0.061 0.061 0.057 

CVaR(5%) 0.037 0.037 0.036 0.049 0.035 0.036 0.035 0.039 0.037 0.038 0.038 0.036 

Correlations  ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 

SR  0.999 0.993 0.659 0.813 0.830 0.801 0.833 0.993 0.969 0.976 0.994 

ASR   0.993 0,658 0.815 0.832 0.803 0.835 0.992 0.968 0.975 0.995 

SS    0.669 0.829 0.846 0.815 0.844 0.986 0.964 0.971 0.994 

FT     0.815 0.811 0.815 0.834 0.650 0.651 0.650 0.663 

GR1      0.965 0.949 0.896 0.798 0.781 0.787 0.820 

GR5       0.953 0.928 0.816 0.799 0.805 0.838 

VaRR1        0.895 0.788 0.775 0.780 0.808 

VaRR5         0.824 0.814 0.815 0.838 

MAD          0.977 0.983 0.987 

MM           0.992 0.963 

Range            0.970 

Descriptive statistics on the portfolio returns for the whole out-of-sample period: daily returns between January 2006 and 
September 2014. The portfolios are constructing equally weighting the best 20 stocks based on a pre-ranking that uses different 
performance measures: SR and ASR are the standard and the adjusted Sharpe ratios; SS represents Sortino-Satchell ratios; FT 
represents Farinelli-Tibiletti ratios; GR1 and GR5 are generalized Rachev ratios with 1 and 5 confidence levels; VaRR1 and VaRR5 
are value-at-risk ratios at 1 and 5 confidence levels; MAD, MM, Range and Gini are risk-reward ratios that employ the mean 
absolute deviation, the distance between the maximum and minimum, the absolute distance between the maximum and minimum 
and the Shalit-Yitzhaki difference, respectively, as the risk measure. First panel provides standard return statistics: mean, 
maximum, minimum, standard deviation, market beta (Beta), the maximum drawdown (MDD), skewness, excess kurtosis, and 
value-at-risk (VaR) and conditional value-at-risk (CVaR) at 1 and 5 percent levels. Second panel displays the sample correlation 
between pairs of portfolio returns. 
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Table 3.a. First-order stochastic dominance. Equally-weighted portfolios.  

  ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 
SR DD+ 60 18 74 37 14 24 92 96 94 4 52 

 
DD- 2 77 14 50 74 39 0 0 0 75 29 

ASR DD+  17 74 35 14 15 87 79 69 0 11 

 
DD-  78 14 51 75 56 0 0 10 85 35 

SS DD+  
 

98 96 46 80 87 80 82 76 77 

 
DD-  

 
0 0 18 13 7 14 12 17 17 

FT DD+  
  

0 0 13 16 15 17 14 14 

 
DD-  

  
91 95 74 72 73 71 74 74 

GR1 DD+  
   

0 49 53 51 52 46 50 

 
DD-  

   
92 37 29 33 36 41 35 

GR5 DD+  
    

78 88 77 77 73 75 

 
DD-  

    
11 1 11 9 15 14 

VaRR1 DD+  
     

93 74 78 11 48 

 
DD-  

     
0 2 0 68 19 

VaRR5 DD+  
      

0 15 0 0 

 
DD-  

      
80 61 94 87 

MAD DD+  
       

49 0 0 

 
DD-  

       
24 96 80 

MM DD+  
        

0 9 

 
DD-  

        
94 65 

Range DD+  
         

70 

 
DD-  

         
0 

This table displays the results from the first-order stochastic dominance comparison between 
cumulative returns on pairs of equally-weighted portfolios. The stocks included in each portfolio have 
been selected using a specific performance measure indicated in the first row. See notes in Table 2 for 
the definitions. Returns are daily and for the period between January 2006 and September 2014. DD+ 
(DD-) refers to the percentage of the Davidson and Duclos (2000) significant positive (negative) test 
statistics. See Section 4.4 for details.  
 

Table 3.b. Second-order stochastic dominance.  Equally-weighted portfolios. 

 
 ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 

SR DD+ 52 0 70 18 0 13 91 96 96 0 37 

 
DD- 39 95 14 65 89 72 0 0 0 96 51 

ASR DD+  0 70 15 0 0 92 95 96 0 0 

 
DD-  95 14 67 89 90 0 0 0 97 96 

SS DD+  
 

98 96 84 95 95 95 95 95 95 

 
DD-  

 
0 0 0 0 0 0 0 0 0 

FT DD+  
  

0 0 13 17 15 17 13 13 

 
DD-  

  
92 95 71 67 69 67 71 71 

GR1 DD+  
   

0 67 87 71 72 61 67 

 
DD-  

   
90 17 0 11 7 22 16 

GR5 DD+  
    

89 89 89 89 89 89 

 
DD-  

    
0 0 0 0 0 0 

VaRR1 DD+  
     

91 90 91 14 59 

 
DD-  

     
0 0 0 54 0 

VaRR5 DD+  
      

4 26 0 0 

 
DD-  

      
82 44 94 94 

MAD DD+  
       

96 0 0 

 
DD-  

       
0 96 95 

MM DD+  
        

0 0 

 
DD-  

        
96 96 

Range DD+  
         

83 

 
DD-  

         
4 

This table displays the results from the second-order stochastic dominance comparison between 
cumulative returns on pairs of equally-weighted portfolios. The stocks included in each portfolio have 
been selected using a specific performance measure indicated in the first row. See notes in Table 2 for 
the definitions. Returns are daily and for the period between January 2006 and September 2014. DD+ 
(DD-) refers to the percentage of the Davidson and Duclos (2000) significant positive (negative) test 
statistics. See Section 4.4 for details.  
 
 



23 

 

Table 4.a. First-order stochastic dominance. Value-weighted portfolios.  

  ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 
SR DD+ 0 1 92 29 0 0 11 44 96 95 17 

 
DD- 82 74 0 42 81 81 69 43 0 0 64 

ASR DD+  13 95 39 0 5 14 63 96 95 35 

 
DD-  49 0 36 79 81 65 6 0 0 21 

SS DD+  
 

96 40 0 5 13 77 96 95 63 

 
DD-  

 
0 40 78 79 56 0 0 0 0 

FT DD+  
  

0 0 0 0 0 6 0 0 

 
DD-  

  
91 94 94 91 94 78 83 96 

GR1 DD+  
   

0 0 13 46 91 89 43 

 
DD-  

   
91 88 71 19 0 0 36 

GR5 DD+  
    

20 86 89 93 93 80 

 
DD-  

    
55 0 0 0 0 0 

VaRR1 DD+  
     

91 86 93 93 81 

 
DD-  

     
0 0 0 0 4 

VaRR5 DD+  
      

76 91 84 64 

 
DD-  

      
6 0 0 11 

MAD DD+  
       

96 81 12 

 
DD-  

       
0 11 60 

MM DD+  
        

0 0 

 
DD-  

        
95 96 

Range DD+  
         

0 

 
DD-  

         
96 

This table displays the results from the first-order stochastic dominance comparison between 
cumulative returns on pairs of value-weighted portfolios. The stocks included in each portfolio have 
been selected using a specific performance measure indicated in the first row. See notes in Table 2 for 
the definitions. Returns are daily and for the period between January 2006 and September 2014. DD+ 
(DD-) refers to the percentage of the Davidson and Duclos (2000) significant positive (negative) test 
statistics. See Section 4.4 for details.  
 

Table 4.b. Second-order stochastic dominance.Value-weighted portfolios.  

  ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 
SR DD+ 0 0 91 20 0 0 0 13 96 95 0 

 
DD- 96 95 0 58 91 91 88 73 0 0 95 

ASR DD+  0 95 34 0 0 0 96 96 95 37 

 
DD-  96 0 38 91 91 88 0 0 0 42 

SS DD+  
 

96 39 0 0 0 96 96 95 96 

 
DD-  

 
0 32 91 91 88 0 0 0 0 

FT DD+  
  

0 0 0 0 0 5 0 0 

 
DD-  

  
92 93 93 90 93 74 81 96 

GR1 DD+  
   

0 0 0 55 91 90 53 

 
DD-  

   
91 91 88 29 0 0 35 

GR5 DD+  
    

0 90 91 92 91 91 

 
DD-  

    
91 0 0 0 0 0 

VaRR1 DD+  
     

91 91 92 91 91 

 
DD-  

     
0 0 0 0 0 

VaRR5 DD+  
      

89 89 88 88 

 
DD-  

      
0 0 0 0 

MAD DD+  
       

96 95 0 

 
DD-  

       
0 0 87 

MM DD+  
        

0 0 

 
DD-  

        
96 96 

Range DD+  
         

0 

 
DD-  

         
95 

This table displays the results from the second-order stochastic dominance comparison between 
cumulative returns on pairs of value-weighted portfolios. The stocks included in each portfolio have 
been selected using a specific performance measure indicated in the first row. See notes in Table 2 for 
the definitions. Returns are daily and for the period between January 2006 and September 2014. DD+ 
(DD-) refers to the percentage of the Davidson and Duclos (2000) significant positive (negative) test 
statistics. See Section 4.4 for details.  
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Table 5.a. First-order stochastic dominance. Monthly portfolio rebalancing.  

  ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 
SR DD+ 27 93 75 96 95 95 92 95 94 94 60 

 
DD- 0 0 10 0 0 0 0 0 0 0 16 

ASR DD+  93 75 95 95 95 91 95 93 92 48 

 
DD-  0 11 0 0 0 0 0 0 0 23 

SS DD+  
 

72 94 95 84 86 71 68 54 9 

 
DD-  

 
14 0 0 3 0 9 10 10 59 

FT DD+  
  

25 27 24 18 16 20 17 15 

 
DD-  

  
59 57 59 64 70 66 69 71 

GR1 DD+  
   

11 0 5 0 0 0 0 

 
DD-  

   
55 75 78 94 89 93 94 

GR5 DD+  
    

0 28 0 0 0 0 

 
DD-  

    
83 56 95 92 95 95 

VaRR1 DD+  
     

51 0 11 2 0 

 
DD-  

     
26 81 63 76 93 

VaRR5 DD+  
      

2 11 4 0 

 
DD-  

      
83 69 82 85 

MAD DD+  
       

51 27 0 

 
DD-  

       
33 45 85 

MM DD+  
        

15 0 

 
DD-  

        
65 94 

Range DD+  
         

0 

 
DD-  

         
92 

This table displays the results from the first-order stochastic dominance comparison between 
cumulative returns on pairs of equally-weighted portfolios. The stocks included in each portfolio have 
been selected using a specific performance measure indicated in the first row and the portfolios are 
rebalanced monthly. See notes in Table 2 for the definitions. Returns are daily and for the period 
between January 2006 and September 2014. DD+ (DD-) refers to the percentage of the Davidson and 
Duclos (2000) significant positive (negative) test statistics. See Section 4.4 for details.  
 

Table 5.b. Second-orders stochastic dominance. Monthly portfolio rebalancing.  

  ASR SS FT GR1 GR5 VaRR1 VaRR5 MAD MM Range Gini 
SR DD+ 95 94 70 95 94 94 92 94 94 94 94 

 
DD- 0 0 11 0 0 0 0 0 0 0 0 

ASR DD+  94 69 95 94 94 91 94 94 94 94 

 
DD-  0 12 0 0 0 0 0 0 0 0 

SS DD+  
 

64 94 94 93 84 95 94 94 44 

 
DD-  

 
16 0 0 0 2 0 0 0 48 

FT DD+  
  

34 36 30 23 18 24 20 17 

 
DD-  

  
45 45 52 54 62 57 60 63 

GR1 DD+  
   

40 0 0 0 0 0 0 

 
DD-  

   
44 91 90 94 88 93 94 

GR5 DD+  
    

0 0 0 0 0 0 

 
DD-  

    
89 90 94 94 94 94 

VaRR1 DD+  
     

37 0 0 0 0 

 
DD-  

     
49 92 82 89 93 

VaRR5 DD+  
      

5 21 8 4 

 
DD-  

      
81 63 76 82 

MAD DD+  
       

53 45 0 

 
DD-  

       
27 43 95 

MM DD+  
        

0 0 

 
DD-  

        
94 94 

Range DD+  
         

0 

 
DD-  

         
94 

This table displays the results from the second-order stochastic dominance comparison between 
cumulative returns on pairs of equally-weighted portfolios. The stocks included in each portfolio have 
been selected using a specific performance measure indicated in the first row and the portfolios are 
rebalanced monthly. See notes in Table 2 for the definitions. Returns are daily and for the period 
between January 2006 and September 2014. DD+ (DD-) refers to the percentage of the Davidson and 
Duclos (2000) significant positive (negative) test statistics. See Section 4.4 for details.  
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Figure 1. Mean Return-Risk Ratios 

 
This figure displays the value of some mean return-risk ratios computed from daily return on 12 
portfolios during the period between January 2006 and September 2014. The risk measure differs for 
each ratio and is indicated at the top: market beta (Beta), standard deviation (StD), value-at-risk (VaR), 
conditional value-at-risk (CVaR), and maximum Drowdawn (MDD). Numbers in parenthesis indicate 
the confidence level. The portfolios are constructing equally weighting the best 20 stocks based on a 
pre-ranking that uses different performance measures: SR and ASR are the standard and the adjusted 
Sharpe ratios; SS represents Sortino-Satchell ratios; FT represents Farinelli-Tibiletti ratios; GR1 and 
GR5 are generalized Rachev ratios with 1 and 5 confidence levels; VaRR1 and VaRR5 are value-at-risk 
ratios at 1 and 5 confidence levels; MAD, MM, Range and Gini are risk-reward ratios that employ the 
mean absolute deviation, the distance between the maximum and minimum, the absolute distance 
between the maximum and minimum and the Shalit-Yitzhaki difference, respectively, as the risk 
measure.  
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Figure 2. Dynamic Conditional Correlations  

 

 
These figures display the dynamic conditional correlations between the returns on the Sharpe portfolio 
and each of the other portfolios indicated on the top.  See notes in Figure 1 for the definitions. Returns 
are daily and refer to the period between January 2006 and September 2014. 
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Figure 3. Spreads between Cumulative Returns regarding Sharpe 

 

 
These figures display the difference between the cumulative return on each of the portfolios indicated 
at the top and on the Sharpe portfolio. See notes in Figure 1 for the definitions. Returns are daily and 
refer to the period between January 2006 and September 2014. 
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Figure 4. Drawdowns 

 

 
These figures display the time series of drowdawns for each of the portfolios indicated at the top. See 
notes in Figure 1 for the definitions. Returns are daily and refer to the period between January 2006 
and September 2014. 
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Figure 5. Empirical CDFs for cumulative returns 

 

 

 
These figures compare the cumulative distribution function for returns on the 
Sharpe portfolio and MAD (up), FT (middle), and SS (down) portfolios. See 
Figure 1 for the definitions.   
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Figure 6. Spreads in Cumulative Returns regarding Sharpe. Value-weighted portfolios 

 

 
These figures display the difference between the cumulative return on each of the portfolios indicated 
at the top and on the Sharpe portfolio. See notes in Figure 1 for the definitions. In this case, the 
portfolios are constructed value-weighting the individual stocks. Returns are daily and refer to the 
period between January 2006 and September 2014. 
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Figure 7. Spreads in Cumulative Returns regarding Sharpe. Monthly portfolio rebalancing 

 

 
These figures display the difference between the cumulative return on each of the portfolios indicated 
at the top and on the Sharpe portfolio. See notes in Figure 1 for the definitions. The portfolios are 
rebalanced monthly. Returns are daily and refer to the period between January 2006 and September 
2014. 
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