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Abstract

We derive closed-form expressions for the performance measures (PMs) based on
the lower partial moments (LPMs), such as the Farinelli-Tibiletti and Kappa measures,
with Gram-Charlier (GC) density for returns. It is verified that the LPMs can be
obtained as a linear function on both higher moments, skewness and excess kurtosis.
We also show that these PMs influence differently to the Sharpe ratio in ranking
portfolios due to the effects of the higher moments. We also obtain the efficient
frontiers (EFs) based on the mean-LPM framework. We find important differences
between portfolios from different EFs regarding their stock compositions, portfolio
skewness and excess kurtosis levels. Finally, we also obtain closed-form expressions
for PMs under a more flexible density like the SNP density which nests the GC density.
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1 Introduction

Whether the popular Sharpe ratio (SR), proposed by Sharpe (1966, 1994), is an ade-
quate performance measure (reward-to-variability index) for ranking financial products
still remains a controversial question among academics and practitioners. Although SR
is fully compatible with normally distributed returns, and more general with elliptical
distributions1 of returns, it may lead to incorrect evaluations when stock returns exhibit
asymmetry and / or heavy tails. Since the standard deviation as the two-sided variability
measure in SR seems to be dubious as a risk measure, several one-sided type measures of
risk have been proposed. Their corresponding performance measures (PMs) are known as
one-sided PMs depending on a portfolio return threshold, τ . Some of these PMs are also
characterized by one-sided type reward measures.

The one-sided PMs are mainly the following two groups: the Generalized Rachev ratio
(GRR) based on the conditional VaR (CVaR), see Biglova et al. (2004), and the Farinelli-
Tibiletti (FT) ratio based on the partial moments (upper and lower partial moments,
respectively, for the reward and risk measures), see Farinelli and Tibiletti (2008). Both
groups use one-sided measures to modeling the reward and risk measures. Finally, another
performance measure known as the Sortino and Satchell (SS) ratio (2001), or Kappa ratio,
verifies that only the risk measure is a one-sided measure (lower partial moment). Our
work aims, among others, at the behaviour of those PMs based on partial moments under
a static portfolio performance and assuming a certain portfolio return distribution so
as to get closed-form expressions. More alternative reward-to-variability ratios are well
documented in Caporin et al. (2013) and their references inside.

There is a stream of research concluding that the choice of the performance measure
does not affect the ranking in portfolios. Eling and Schuhmacher (2007) and Eling (2008)
find that rank correlations between SR and alternative PMs for hedge fund (HF) data are
highly positively correlated. These empirical results are also supported by some theoretical
studies such as Schuhmacher and Eling (2011, 2012). They show that under several
conditions, the PM is a strictly increasing function in SR. Nevertheless, we show that
rank correlations from FT measures and SR exhibit low rank correlations in most cases.
Our results agree, among others, with the empirical evidence in Eling et al. (2011).

There are also some recent studies, based on a dynamic portfolio performance setting,
concluding that the one-sided PMs outperform the benchmark SR. For instance, Biglova
et al. (2004) and Farinelli et al. (2008, 2009) show that the cumulative final wealth is
higher by implementing either GRR or FTR instead of SR. Another example is Caporin
and Lisi (2011), who analyze the dynamic properties of rank correlations between PMs
and SR based on a rolling window analysis. They find low rank correlations for some PMs
from the FT group and so on. In short, this empirical evidence suggests that the selection
of the performance measure matters.

We also study the rank correlation sensitivity when returns departure from the nor-
mality assumption (skewness, s, and / or excess kurtosis, ek, different from zero). We
can find some PMs from the SS group (or Kappa measures), which are highly correlated

1See, for more datails, Owen and Rabinovitch (1983).
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with SR when considering the whole sample. Nevertheless, if we divide the total sample
of funds between a group with lower SR and another with higher SR values, it is verified
that rank correlations tend to decrease for those funds from the higher SR group. These
results can be explained through the levels of s and ek implied in the distributions of these
portfolio returns. This evidence is also confirmed by Zakamouline (2011).

This paper has several goals. First, we try to understand the behaviour of PMs when
the portfolio returns departure from the normal distribution and so, how important the
selection of alternative PMs (against SR) can be in ranking portfolios. We obtain closed-
form expressions of PMs based on the lower partial moments (LPMs), proposed by Bawa
(1975) and Fishburn (1977),2 as downside risk measures. We mainly concentrate on those
one-sided PMs from the FT3 and SS groups. We assume that the probability density
function (pdf) for the portfolio returns is driven by the Gram-Charlier (GC) expansion.
We also get the closed-form expression for the GC shortfall probability to obtain some
PMs with downside risk measures based on the value at risk (VaR), such as both the
Reward-to-VaR and the Reward-to-CVaR.

The GC distribution has been implemented, among others, by Corrado and Su (1996),
Jondeau and Rockinger (2001) and Jurczenko and Maillet (2006). The advantage of the
GC distribution over alternative distributions is that the higher moments s and ek directly
appear as the pdf’s parameters. Jondeau and Rockinger (2001) obtain the constraints
that s and ek must hold in order to guarantee a well-defined pdf. We get easy closed-
form expressions for the LPMs, which can be expressed as simple linear functions on both
s and ek. Hence, we can easily understand the behaviour of these risk measures due
to changes of s and ek. For instance, Passow (2005) obtains closed-form expressions, in
particular, for the Sharpe-Omega ratio (or Kappa measure of order one) under the Johnson
distribution (JD) family. Contrary to the GC pdf, the unbounded Johnson distribution
from the JD family allows for higher levels for both s and ek. This result becomes an
important advantage with respect to the GC distribution but it has the drawback that
the Sharpe-Omega ratio under the JD family becomes more cumbersome and difficult to
interpret for changes of s and ek than in our case.

The restriction of the GC pdf to capture some levels of s and ek of portfolio returns
suggests other distributions trying to seize better these higher moments but getting more
complex or hard tractable expressions for either the FT or SS measures under different
distributions. Nevertheless, as a possible solution to the restricted higher moments under
GC, we suggest and obtain the LPM closed-form expresions under the SNP density, intro-
duced by Gallant and Nychka (1987), whose parametric properties have been studied by
León et al. (2009).4

Second, we obtain the efficient frontiers (EFs) based on the LPMs. We compare the
composition of the portfolios from the EFs under both the mean-LPM and the Markowitz

2Some other seminal references about LPMs are Bawa and Lindenberg (1977), Holthausen (1981),
Harlow and Rao (1989) and Harlow (1991).

3Note that the reward measures from the FT ratios are just the upper partial moments, which can be
expressed in terms of the LPMs.

4The SNP pdf allows a higher flexibility than GC in terms of s and ek. Its density is always positive
and it nests the GC distribution.
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(1959) mean-variance (MV) settings. For the minimization of the LPM of a portfolio
return, we use the symmetric co-lower partial moment matrix from Nawrocki (1991). For
the comparison between portfolio frontiers, we use the root mean squared dispersion index
(RMSDI), see Grootveld et al. (1999). A sensitivity analysis is implemented by changing
the return threshold, τ .

We also obtain the theoretical skewness and excess kurtosis levels implied in the port-
folios from these EFs. Note that it is necessary to get previously both (theoretical) co-
skewness and co-kurtosis matrices by assuming in this paper a Gaussian copula for the
dependence among the different stock returns and the GC distribution for their marginal
distributions. Our multivariate setting for stock returns agrees with the procedure to
compute EFs under the mean-LPM (MLPM) approach by Nawrocki (1991). We find dif-
ferences when obtaining both s and ek from a frontier portfolio under the MV approach
against another frontier portfolio based on the LPM measure.

The rest of the paper is organized as follows. In Section 2 we present some portfolio
performance measures based on the LPMs, that is, both FT and SS (or Kappa) measures.
In Section 3 we show the GC pdf, implemented by JR (2001), for the behaviour of returns
and some characteristics of this density. In Section 4 we obtain the closed-form expression
for the LPM measure of order 0, which is also known as the shortfall probability. We
also analyze here the behaviour of the shortfall probability under different values of τ . In
Section 5 we can easily obtain the closed-form expressions for LPM measures under the
GC distribution and hence, the corresponding FTR and Kappa measures. We show the
behaviour of the Kappa ratios regarding the level of s and ek. We also get the iso-curves,
mainly for the Kappa measures.

In Section 6 we conduct an intensive simulation study using the GC distribution for
the performance evaluation. In Section 7 we get the EFs by using the LPMs under the
GC density and compare with the traditional MV frontier. We also obtain both s and
ek from the MLPM efficient frontiers in order to study the behaviour of them. Section 8
shows the SNP distribution and the closed-form expressions of LPMs. Finally, Section 9
summarizes and provides the main conclusions. The description of our data series for our
simulation studies can be found in Appendix A. The proofs of propositions and corollaries
are deferred to Appendix B.

2 Performance measures based on partial moments

The lower partial moments (LPMs) measure risk by negative deviations of the stock re-
turns, r, in relation to a minimal acceptable return, or return threshold, τ . Fishburn
(1977), among others, defines the LPM of order m for a stock return as

LPMf (τ,m) = Ef [(τ − r)m+ ] =

∫ τ

−∞
(τ − r)mf(r) dr, (1)

where f (·) denotes the probability density function (pdf) of r and (y)+=max (y, 0). As
LPMs consider only negative deviations of returns from τ , they seem to be a more ap-
propriate measure of risk than the standard deviation, which considers both negative and
positive deviations from the expected return µ. Hence, returns below the threshold, τ ,
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are seen by investors as loss. This (loss) threshold level, τ , might be the rate of inflation,
the real interest rate, the return on a benchmark index, a risk-free rate, etc. About the
parameter m, LPM with the order 0 < m < 1 can express ’risk seeking’, for m = 1 ’risk
neutrality’, and m > 1 ’risk aversion’ behaviour for the investor. Thus, the higher m the
more risk averse an investor. The LPMs of order 0 and 1 are, respectively, the shortfall
probability and the expected shortfall. Finally, the upper partial moment (UPM) is defined
as

UPMf (τ, q) = Ef [(r − τ)q+] =

∫ −∞

τ
(r − τ)qf(r) dr. (2)

Note that we can express UPMf (τ, q) as a function of LPMf (τ, q) and hence, we can speak
about performance measures based on LPMs. Moreover, some performance measures
based on the basis of the Value at risk (VaR) can also be expressed in terms of the LPMs,
as shown at the end of this section.

Throughout this paper, we will obtain closed-form PM expressions by assuming the
Gram-Charlier (GC) pdf for the standardised portfolio returns, z, and setting m and q
from (1) and (2) to be integer numbers, i.e. m, q ∈ N+ ≡ {1, 2, 3, ...}.

2.1 The Kappa measures

The corresponding risk-adjusted return PMs based on LPMs are the SS or Kappa ratios,
see Sortino and Satchell (2001), which are defined as

Kf (τ,m) =
µ− τ

m
√
LPMf (τ,m)

, (3)

where µ is the mean of the (portfolio) stock return r with f (r) as pdf, i.e. µ=Ef [r]. Note
that µ− τ is just an excess expected return.5 Some popular measures which are nested in
(3) are the Omega-Sharpe ratio (see Kaplan and Knowles, 2004) for m = 1, the Sortino
ratio (see Sortino and van der Meer, 1991) for m = 2 and Kappa 3 (see Kaplan and
Knowles, 2004) for m = 3.

2.2 The Farinelli-Tibiletti ratio (FTR)

Next, we show an alternative performance measure (see Farinelli and Tibiletti, 2008)
known as the Farinelli-Tibiletti ratio (FTR), which nests a family of PMs depending
on both the LPMs in (1) and the UPMs in (2). The FTR is defined as

FTRf (τ, q,m) =
q
√
UPMf (τ, q)

m
√
LPMf (τ,m)

, (4)

where q, m > 0. It is known that the higher q and m, the higher the agent’s preference
for (in the case of expected gains, parameter q) or dislike of (in the case of expected losses,
parameter m) extreme events. Note that (4) nests two popular PMs: (i) the Omega ratio6

(see Keating and Shadwick, 2002) when q = m = 1, (ii) the Upside Potential ratio (see

5This is a more general definition of excess expected return. If τ = rf , where rf denotes the risk-free
rate, we have the more usual expression of excess expected return.

6It is shown later that Kf (τ, 1) = FTRf (τ, 1, 1) − 1. Finally, the Bernardo and Ledoit (2000) ratio is
just the Omega ratio for τ = 0 and hence, it represents the gain-to-loss ratio.
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Sortino et al., 1999) when q = 1 and m = 2. Rewritting (2) as a function of (1), we have
an alternative expression of FTR in the following corollary.

Corollary 1 Let ψf (τ, q)=Ef [(r− τ)q] and f (·) be the pdf of the portfolio stock return r,
then (4) can be expressed as

FTRf (τ, q,m) =

q

√
ψf (τ, q) + (−1)q+1 LPMf (τ, q)

m
√
LPMf (τ,m)

. (5)

Proof. It is straightforward.

Finally, we can also rewrite (5) in terms of the Kappa measures (3). Thus,

FTRf (τ, q,m) =

q

√
ψf (τ, q) + (−1)q+1 (µ− τ)qKf (τ, q)−q

(µ− τ)Kf (τ,m)−1
. (6)

Note that for q = 1 in (6), we have ψf (τ, 1) = µ − τ and then, FTRf (τ, 1,m) =
Kf (τ,m)

[
1 +Kf (τ, 1)

−1
]
.

2.3 Performance measures on the basis of VaR

The Value at risk is just the α-quantile of the distribution of the portfolio return r with
f (·) as pdf and denoted as V aRα

f . Since LPMf (V aR
α
f , 0) = α, we can get V aRα

f by the
inversion method. Connecting with this risk measure, we have as performance measure
the Reward-to-VaR (see Dowd, 2000):

RV aRα
f (τ) =

µ− τ∣∣∣V aRα
f

∣∣∣
, (7)

where |·| denotes the absolute value function.

Another risk measure is the Expected Shortfall (ES), i.e. ESα
f = − 1

αEf

[
r
∣∣∣r ≤ V aRα

f

]
.

It is also known as the conditional value at risk, CV aRα
f . We can relate LPMf (τ, 1)

to ESα
f with τ = V aRα

f and so, we obtain7 LPMf (V aR
α
f , 1) = αESα

f + αV aRα
f . The

connected performance measure with CV aRα
f (or ESα

f ) is known as the Reward-to-CVaR
(see Agarwal and Naik, 2004):

RCV aRα
f (τ) =

µ− τ

CV aRα
f

=
µ− τ

(1/α)LPMf (V aR
α
f , 1)− V aRα

f

. (8)

3 GC density and properties

The stock return r is a random variable defined as

r = µ+ σz, z ∼ GC(0, 1, s, ek), (9)

7See Jarrow and Zhao (2006).
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such that the pdf of the random variable z is the Gram-Charlier expansion with zero mean,
unit variance, s and ek as the levels, respectively, of skewness and excess kurtosis. Hence,
the return in (9) is just an affine transformation of a random variable with GC expansion
as pdf. The GC pdf denoted as g (z), where z is a standardised random variable,8 is
defined as

g (z) = p (z)φ (z) ; p(z) = 1 +
s√
3!
H3(z) +

ek√
4!
H4(z), (10)

where φ (·) denotes the pdf of the standard normal variable and Hk (z) is the normalized
Hermite polynomial of order k. These polynomials can be defined recursively for k ≥ 2 as

Hk(z) =
zHk−1(z)−

√
k − 1Hk−2(z)√
k

, (11)

with initial conditions H0 (z) = 1 and H1 (z) = z. It holds that {Hk (z)}k∈N constitutes
an orthonormal basis with respect to the weighting function φ(z), that is,

Eφ[Hk(z)Hl(z)] = 1(k=l), (12)

where 1(·) is the usual indicator function and the operator Eφ[·] takes the expectation of
its argument regarding φ (·). Note that Eφ [Hk (z)] = 0 for k ≥ 1 and then, (12) is just
the covariance between Hk (z) and Hl (z).

3.1 Positivity of pdf

Note that g (z) in (10) allows for additional flexibility over a normal density since it in-
troduces both skewness and (excess) kurtosis of the distribution. It can lead to negative
values for certain values of both centered moments. JR (2001) obtain numerically a re-
stricted space Γ for possible values of (ek, s) to guarantee the positivity of g (z). The
constrained GC expansion restricted to Γ will be referred as the true GC density. Figure
1 exhibits Γ with a frontier (the envelope) delimiting the oval domain. Γ is a compact and
convex set. Note that ek ∈ [0, 4] while |s| ≤ 1.0493 verifying that the range of s depends
on the level of ek. For instance, if |s| = 0.6 then ek ranges from 0.6908 to 3.7590, while for
s = 0, ek ranges from 0 to 4. The maximum size for skewness is reached for ek = 2.4508.
Obviously, the case for the normal distribution corresponds to the origin.

[ INSERT FIGURE 1 AROUND HERE ]

Gallant and Tauchen (1989) suggest to square the polynomial p (·) in (10) to guarantee
a true pdf under the CG framework. In this case, we lose the interpretation of some
moments of the distribution. León et al. (2009) analyze the statistical properties of semi-
nonparametric (SNP) distributions, which were introduced by Gallant and Nychka (1987).
The SNP density (always positive by construction) can be expressed as a Gram-Charlier
series of Type A, which is the product of a standard normal density times an infinite series
of Hermite polynomials. So, the GC density in (10) is just a truncated GC expansion It
is shown that Γ is contained into a higher space under SNP distributions.9 Contrary to
the GC density, the parameters implied in the SNP pdf do not correspond directly to the

8The pdf of r in (9) is obtained as f (r) = g (z) /σ.
9See the skewness-kurtosis frontiers under the SNP distribution in Figure 1 from León et al. (2009).
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levels of skewness and kurtosis of the distribution. In Section 8 we get the closed-form
expressions for the LPMs under the SNP distribution.

Finally, we select some data consisting in monthly return series for ten hedge fund (HF)
index strategies. They are denoted as HFj , j = 1, . . . , 10. See Appendix A for more details
about these data. Table 3 in Appendix A exhibits the constrained maximum likelihood
(CML) estimation of the parameters implied in (9) and (10)for each monthly series. From
now on, these estimations will be used in this paper to implement simulations.

3.2 Moments of r and z

To show that z ∼ GC(0, 1, s, ek) with pdf g (·) in (10), we need to obtain the first four
(noncentral) moments of z. These moments can be obtained by using the relationship
between the powers of z and the Hermite polynomials in (11) and the condition in (12):

Eg [z ] = Eg [H1 (z)] = 0,

Eg

[
z2
]

=
√
2Eg [H2 (z)] + 1 = 1,

Eg

[
z3
]

=
√
3!Eg [H3 (z)] + 3Eg [H1 (z)] = s,

Eg

[
z4
]

=
√
4!Eg [H4 (z)] + 6

√
2Eg [H2 (z)] + 3 = ek + 3.

The following proposition aims to obtain a general expression for Eg

[
zk
]
where k ∈ N+.

Proposition 1 The general expression for Eg

[
zk
]
, where k ≥ 5 and pdf g (·) in (10), is

given as

Eg

[
zk
]
=

{
λk,0 + λk,1 ek, k is even,

λk,2 s, k is odd,
(13)

where λk,l ∈ R can be seen in Appendix B. Since r in (9) is an affine transformation of z,
the non-central moments of r are obtained as

Ef [r
k] =

k∑

n=0

(
k

n

)
µk−nσnEg[z

n], (14)

where
(k
n

)
= k!

n!(k−n)! .

Proof. See Appendix B.

Note that, if k is even (odd) Eg

[
zk
]
depends only on the excess kurtosis (skewness).

4 Shortfall probability: LPM(τ, 0)

The LPM equation in (1) for m = 0 is just the distribution function for the standardised
return z in (9). The expression LPMf (τ, 0) is also known as the ”shortfall probability”.

Proposition 2 The shortfall probability is given by

LPMf (τ, 0) = Φ (τ∗)− s

3
√
2!
H2 (τ

∗)φ (τ∗)− ek

4
√
3!
H3 (τ

∗)φ (τ∗) , (15)

where τ∗ = (τ − µ) /σ.
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Proof. See Appendix B.

Remember that getting some performance measures based on VaR, e.g. (7) and (8),
we need to compute V aRα

f . As LPMf (V aR
α
f , 0) = α, we get V aRα

f by the inversion

method. According to Proposition 2, V aRα
f = µ + σF−1

GC (α; s, ek).10 Note that, for a
normal distribution, we get V aRα

f = µ + σzα, where zα the α-quantile from a N(0, 1)
distribution.

The following Corollary shows the behaviour of LPMf (τ, 0) with respect to the pa-
rameters s, ek, τ , µ and σ.

Corollary 2 Let LPMf (τ, 0) in (15) and τ∗ = (τ − µ) /σ, it holds that

i) ∂LPMf (τ, 0)/∂s > 0 ⇔ |τ∗| < 1.

ii) ∂LPMf (τ, 0)/∂ek > 0 ⇔ τ∗ ∈
(
−∞,−

√
3
)
∪
(
0,
√
3
)
.

iii) For τ∗ ∈
(
−
√

3−
√
6, 0
)
∪
(√

3 +
√
6,+∞

)
, then ∂LPMf (τ, 0)/∂τ

∗ > 0 and so,

iii.1) ∂LPMf (τ, 0)/∂τ > 0.

iii.2) ∂LPMf (τ, 0)/∂µ < 0.

iii.3) ∂LPMf (τ, 0)/∂σ > 0 iff µ > τ .

Proof. See Appendix B.

As a result, for τ∗ ∈ (0, 1), we have ∂LPMf (τ, 0)/∂s > 0 and ∂LPMf (τ, 0)/∂ek > 0.
Next, we study the behaviour of the shortfall probability for different values of τ and
(ek, s) ∈ Γ.

4.1 Value at Risk as threshold level

If LPMf (τ, 0) = α, the threshold level τ is just the α-quantile of the distribution of the
stock return. Thus, τ = V aRα

f for very small values of α. To start with, take as an
example the HF8 monthly returns whose parameters from Table 3 in Appendix A are:
µ = 0.86%, σ = 2.61%, s = 0.4, and ek = 1.52. For these returns, the threshold levels
τ0.01 = −5.49% and τ0.05 = −2.97% correspond, respectively, to the 1% and 5% quantiles.
Under the GC distribution, the same α-quantiles for the standardised stock return z are
τ∗0.01 = −2.433 and τ∗0.05 = −1.467.

Figure 2 shows the shortfall probability in (15) for different values of (ek, s) ∈ Γ
subject to µ = 0.86%, σ = 2.61%. The different lines in this Figure illustrate the possible
combinations obtained from τ = τ0.01, τ0.05 and s = −0.7, 0, 0.4. Fixing the skewness level,
we can see that the lines for τ0.01 (τ0.05) exhibit a positive (negative) slope. This is due
to the result (ii) in Corollary 2. Note also that the length of each line is different because
the range of ek changes with the level of s for the GC pdf to be well defined.

10Let zGC,α ≡ F−1

GC (α; s, ek) where FGC (·) is another way to denote the LPM for m = 0 in (15). Then,
zGC,α is obtained through a numerical search based on the bisection method by using the Matlab function
’fzero’. For more details, see Brandimarte (2006).
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We can see that, for any τ , the upper (lower) line corresponds to s = −0.7 (s = 0.4).
This is a consequence of (i) from Corollary 2. That is, the shortfall probability increases
(decreases) independently of ek since the skewness level decreases (increases) with respect
to, for instance, the initial level of s = 0.11 Two points for HF8 can be seen in two
different lines: (1.52, 0.01) in line where s = 0.4, τ = −5.49% and (1.52, 0.05) in the line
with s = 0.4, τ = −2.97%. Any other point can be considered as a hypothetical portfolio
with the same µ and σ as HF8.

Finally, a point from a certain line, independently of s, shows that the higher its ek
level the higher its value of LPMf (τ0.01, 0) while the opposite happens for τ0.05. More
precisely, increasing ek and considering s = −0.7 (0.4), LPMf (τ0.01, 0) can increase from
2.49% (0.3%) to 4.17% (2.46%) while LPMf (τ0.05, 0) can decrease from 8.31% (5.81%) to
6.38% (3.32%) for s = −0.7 (s = 0.4). Now, the reason is (ii) from Corollary 2.

[ INSERT FIGURE 2 AROUND HERE ]

4.2 Non-negative threshold levels

Figure 3 shows the same analysis as Figure 2 for HF8 but now we take non-negative thresh-
olds such as τ = 0% and τ = 0.39%. The last one is the risk-free monthly interest rate
extracted from 10-year US Treasury bonds obtained as the sample mean from November
1998 to February 2008 (i.e., 4.72% per annum).12 We highlight three features from this
Figure. First, every line exhibits a negative slope meaning that the higher ek the lower
the shortfall probability. Second, contrary to Figure 2, for any τ , the lines with positive
skewness are above those for negative skewness.13 Third, there are two points associated
with HF8 in two different lines: (1.52, 0.37) in line with s = 0.4, τ = 0% and (1.52, 0.44) in
the line with s = 0.4, τ = 0.39%. Again, any other point is just a different (hypothetical)
portfolio with the same µ and σ as HF8.

[ INSERT FIGURE 3 AROUND HERE ]

5 LPMs and related PMs with GC distribution

This section starts providing the general closed-form expressions of LPMf (τ,m) and so
the related expressions for FTRf (τ, q,m) and Kf (τ,m) where the stock return is driven
by (9). We show how these LPMs are linear functions of both s and ek, and the behaviour
of the above PMs. We also obtain some Kappa (FT) iso-curves.

5.1 Closed-form expressions

Proposition 3 Let z be the standardised return of r in (9). The lower partial moment of
order m ∈ N+ for the security return r can be expressed as

LPMf (τ,m) = LPMn(τ,m) +
s√
3!
θ2,m +

ek√
4!
θ3,m, (16)

11Note that (i) from Corollary 2 holds, in our case, that ∂LPMf (τ, 0)/∂s < 0 since |τ∗
k | > 1 for

k = 0.01, 0.05.
12This period is the same as the HF database in Appendix A.
13Note that (i) from Corollary 2 holds now that ∂LPMf (τ, 0)/∂s > 0 since the values of τ∗ = (τ −

0.86%)/2.61% for τ = 0%, 0.39% verify that |τ∗| < 1.
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where LPMn(τ,m) is the LPM by assuming the normal distribution for r in (9), denoted
as n (·), with

LPMn(τ,m) =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkBk, (17)

and

θj,m =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkAkj , (18)

such that Bk = Bk (τ
∗) and Akj = Akj (τ

∗), with τ∗ = (τ − µ) /σ, can be seen in Appendix
B.

Proof. See Appendix B.

As can be seen, the behaviour of θj,m depends on the expected return, the volatility
and the return threshold, i.e. θj,m = θj,m (µ, σ, τ). Note that θ2,m and θ3,m measure,
respectively, the sensitivity of LPMf (τ,m) to changes in s and ek. Note that the Kappa
measures are easily obtained by using (3) and (16). The following Corollary shows the
general expression for the FT measures in (5) under the GC density for the standardised
return.

Corollary 3 Let z be the standardised return of r in (9). The performance measure
FTRf (τ, q,m) in (5) for q,m ∈ N+ can be expressed as

FTRf (τ, q,m) =

q

√
ψf (τ, q) + (−1)q+1 LPMf (τ, q)

m
√
LPMf (τ,m)

, (19)

where LPMf (τ, ·) is given in (16) and ψf (τ, q)=Ef [(r − τ)q] is obtained as

ψf (τ, q) =
∑q

k=0

(
q

k

)
(µ− τ)q−k σkEg

[
zk
]
, (20)

where Eg

[
zk
]
is given in (13).

Proof. It is straightforward.

As many studies about performance evaluation focus on some popular Kappa measures,
such as the Omega-Sharpe, Sortino and Kappa 3 ratios, and the Upside Potential ratio
from the FT measures, we are very interested in the expression of LPMf (τ,m) for m =
1, 2, 3 shown in the following Corollary.

Corollary 4 The expressions of θj,m for j = 2, 3 and LPMn(τ,m) for m = 1, 2, 3 in (16)
are:

θj,1 = (τ − µ)A0j − σA1j ,

θj,2 = (τ − µ)2A0j − 2(τ − µ)σA1j + σ2A2j , (21)

θj,3 = (τ − µ)3A0j − 3(τ − µ)2σA1j + 3(τ − µ)σ2A2j − σ3A3j ,
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and

LPMn(τ, 1) = (τ − µ)Φ (τ∗) + σφ (τ∗) ,

LPMn(τ, 2) = (τ − µ)2 Φ (τ∗) + (τ − µ) σφ (τ∗) + σ2Φ (τ∗) , (22)

LPMn(τ, 3) = (τ − µ)3 Φ (τ∗) + (τ − µ)2 σφ (τ∗) + 3 (τ − µ)σ2Φ (τ∗) + 2σ3φ (τ∗) .

where the values for Akj = Akj (τ
∗) with τ∗ = (τ − µ) /σ, can be seen in the Appendix

B.14

Proof. See Appendix B.

5.2 Behaviour of Kappa measures respecting s and ek

We analyze the effects of the higher moments on the performance ratios. We fix the
parameter vector (µ, σ, τ) at (µ0, σ0, τ0). Then, LPMf (τ0,m)=LPMm is a function, gm,
on both s and ek. Let ∆LPMm and dLPMm denote, respectively, the increment and the
total differential of LPMm with respect to its arguments.15 The next Corollary inmediately
arises.

Corollary 5 If we approximate ∆LPMm by dLPMm, we get

∆LPMm =
∂gm
∂s

∆s+
∂gm
∂ek

∆ek

holding that

∆LPMm > 0 ⇔ ∆s < ϕm∆ek, ϕm = − θ3,m
2θ2,m

. (23)

Proof. It is straightforward.

Table 1 exhibits the behaviour of the popular Kappa measures by changing either s
or ek, that is, we provide these measures for alternative portfolios with the same µ and
σ but different values for s and ek such that (ek, s) ∈ Γ. We consider again the values
related to HF8 (µ = 0.86%, σ = 2.61%), τ = rf (i.e., 0.39%), and three possible values of
skewness (s = −0.7, 0, 0.4). The Sharpe ratio, SR = (µ− rf ) /σ, is equal to 0.1796 and it
is constant across this Table. The SR is considered as the benchmark measure. Plugging
these parameters into the expression for ϕm in (23), we get ϕ1 = −1.3471, ϕ2 = 0.0499
and ϕ3 = 0.2289.

[ INSERT TABLE 1 AROUND HERE ]

The columns 2 to 10 show the three Kappa measures for the different point combina-
tions (ek, s) according to different levels of skewness. The main results can be summarized
as follows.

14Note that LPMn(τ,m) in (22) could also be denoted, to shorten, as θ1,m for the case of j = 1 in (21)
since both expressions coincide. Nevertheless, we have decided in this paper to use LPMn(τ,m) instead
of θ1,m. Thus, we denote the coefficients of s and ek in (16), respectively, as θ2,m and θ3,m.

15That is, ∆LPMm = gm (s+∆s, ek +∆ek)− gm (s, ek), where ∆x represents a small increment in x.

12



1. Let be the portfolio π1, with (ek, s) = (0.8996, 0), and build new portfolios by only
increasing ek. We can see that, if ek increases,Kf (rf , 1) increases but bothKf (rf , 2)
and Kf (rf , 3) decrease.

2. Take a new portfolio π2 with (ek, s) = (0.8996, 0.4). It holds that Kf (rf ,m) in-
creases if we only increase s by changing π1 for π2. The same behaviour holds for
alternative values of ek.

3. Suppose now that ek increases and s decreases. Consider either portfolio π3, with
(ek, s) = (1.2048,−0.7), or π4, with (ek, s) = (2.1205,−0.7). It is verified that both
Kf (rf , 2) and Kf (rf , 3) decrease when going from π1 to either π3 or π4. Meanwhile,
there are opposite effects about the behaviour of LPMf (rf , 1). Note that Kf (rf , 1)
decreases for π3 while it increases for π4.

4. Finally, we can see that (23) holds under these examples and so, the behaviour of
their related Kappa measures is verified. Thus, changing π1 for π2 leads to ∆s = 0.4,
∆ek = 0. The case of changing π1 for π3 leads to ∆s = −0.7, ∆ek = 0.3052. Finally,
changing π1 for π4 leads ∆s = −0.7, ∆ek = 1.2209.

In short, we can suggest from the above results that ∂LPMf (rf ,m) /∂s < 0 for m =
1, 2, 3, ∂LPMf (rf , 1) /∂ek < 0 and ∂LPMf (rf ,m) /∂ek > 0 for m = 2, 3. These results
are also supported by studying the behaviour of θ2,m and θ3,m in (21) from many simulated
parameters of µ and σ. The simulation results confirm the previous conclusions.16 Thus,
it is held that θ2,m < 0, θ3,1 < 0, θ3,2 > 0 and θ3,3 > 0.

5.3 Iso-curves for performance measures

We obtain the points (ek, s) that provide the same value for the selected Kappa measure
given fixed levels of τ , µ and σ. To shorten, let Ψ denote the vector (µ, σ, τ) and let Ψ0 be
a fixed value for Ψ. Thus, the iso-curve associated for any Kappa measure, or iso-Kappa,
corresponds to the following set of points Π defined as

Π(m,Ψ0) =



(ek, s) ∈ Γ : Kf (τ0,m) =

µ0 − τ0

m

√
LPMn(τ0,m) + s√

3!
θ2,m + ek√

4!
θ3,m



 , (24)

where Kf (τ0,m) denotes a fixed value for the Kappa ratio given by equations (3) and
(16). These spaces are easily obtained according to the following Corollary.

Corollary 6 The iso-Kappa (24) implies a linear relation between s and ek. Thus, s =
am + ϕm ek such that the slope ϕm is defined in (23) and

am =

√
6

θ2,m
[ξ0,m − LPMn(τ0,m)] , ξ0,m =

[
µ0 − τ0

Kf (τ0,m)

]m
, (25)

with LPMn(τ0,m) given in (17).

16We obtain pairs (µi, σi), i ≤ 10, 000 where each parameter is obtained randomly (uniform distribution)
such that µi ∈ [0.49%, 0.96%] and σi ∈ [0.96%, 2.61%]. The minimum and maximum values for µ and σ
are selected from Table 3 in Appendix A. We also choose different values for τ . More details are available
upon request. Finally, see footnote 18.
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Proof. It is straightforward.

The iso-Kappa in (25) will be labeled as ’iso-Omega-Sharpe’, ’iso-Sortino’ and ’iso-
Kappa 3’ respectively for m = 1, 2, 3. Since ∂ξ0,m/∂Kf (τ0,m) < 0 for µ0 > τ0, then
∂am/∂Kf (τ0,m) > 0 iff θ2,m < 0. Let Ψ0 = (0.86%, 2.61%, 0.39%) be the parameter set
used to obtain Table 1, then the slopes ϕm for the different iso-Kappas (see the values of
ϕm in Subsection 5.2) verify that ϕ1 < 0, ϕ2 > 0, ϕ3 > 0. So, an increase in ek leads
to a decrease (increase) in s when moving along the iso-Omega-Sharpe (iso-Sortino or
iso-Kappa 3) curve.

By setting s = −0.7 and taking higher levels of ek, we can see in Table 1 that
Kf (0.39%, 1) increases (ξ0,1 decreases) but Kf (0.39%,m) decreases (ξ0,m increases) for
m = 2, 3. This means that the iso-Omega-Sharpe curves with negative slopes move in
paralell to the right with higher levels of Kf (0.39%, 1) since a1 in (25) increases because
θ2,1 < 0. Nevertheless, both the iso-Sortino and iso-Kappa3 curves with positive slopes
move in paralell to the right with lower levels of Kf (0.39%,m) since a1 decreases because
θ2,m < 0.17

Note that, on the one hand the iso-Kappas from Corollary 6 can be very restrictive
since we are fixing both the mean and volatility parameters for the portfolio returns, but
on the other hand we get linear equations which can contribute to a better understanding
the behaviour of the iso-Kappas.18

Finally, outside the Kappa measures, if we get the iso-curves under the FT measures
(except for q = m in (19) such as, for instance, the Omega measure for q = m = 1), they
do not hold a linear relation between s and ek. Nevertheless, we could obtain a linear
approximation. For instance, consider the ’iso-Upside potential ratio’ corresponding to
the following set of points Υ defined as:

Υ(Ψ0) =



(ek, s) ∈ Γ : FTRf (τ0, 1, 2) =

µ0 − τ0 + LPMn (τ0, 1) +
s√
3!
θ2,1 +

ek√
4!
θ3,1

√
LPMn (τ0, 2) +

s√
3!
θ2,2 +

ek√
4!
θ3,2



 ,

(26)
where Ψ0 is defined previously and FTRf (τ0, 1, 2) denotes a fixed value of the performance
measure in (19) from Corollary 3. Thus, using a multivariate Taylor expansion of first order
around the point (s, ek) = (0, 0) in the denominator of FTRf (τ0, 1, 2), we can get a linear
relation between s and ek.

6 Simulation analysis

We implement a simulation analysis based on the closed-form expressions for the perfor-
mance measures by assuming the GC distribution for the standardised stock returns in (9).

17The values for θ2,m are, respectively, θ2,1 = −7.53×10−4, θ2,2 = −2.18×10−4 and θ2,3 = −1.87×10−5.
The curves for the iso-Kappas are not exhibited here for the sake of brevity.

18Suppose that we do not fix µ in Corollary 6. Then, the iso-Kappas depend on µ, s and ek. By using
the implicit function Theorem, we can obtain the corresponding partial derivatives (evaluated at a certain
point) to analyze the behavior of µ with respect to s and ek. This extension is not shown here but it is
available upon request.
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The advantage of using the GC distribution is that the simulated value of any performance
measure exhibitd in Section 2 is obtained immediately. That is, once we obtain randomly
a parameter vector (µi, σi, si, eki) representing the return distribution in (9) of a hypothet-
ical portfolio i, we do not need to simulate paths of a certain length for monthly returns
to get the alternative performance measures since we have their closed-form expressions
in Section 5. We start our analysis by obtaining the Spearman’s rank correlation between
the Sharpe ratio and any alternative performance measure for different portfolios. The
higher this rank correlation, the lower difference in ranking between the Sharpe ratio and
the selected performance measure. We also study how skewness and excess kurtosis can
affect the evaluation of portfolios.

6.1 Simulation of parameters and performance ratios

We generate randomly the parameter vector (µi, σi, si, eki), i = 1, ..., NT .
19 The range of

these parameters is obtained from their CML estimations of these parameters for the hedge
funds,20 see Table 3 in Appendix A. Let xmin (xmax) denote the minimum (maximum) value
for the CML estimation of the parameter x = σ, s, SR. Then, we have σmin = 0.963%,
σmax = 2.163%, smin = −0.798, smax = 0.987, SRmin = 1% and SRmax = 22.3%.

We simulate four independent uniform random variables Uj , j = 1, ..., 4 on the interval
(0, 1), each with sample size, N , of 10, 000. The realizations of these variables will be
denoted as uji, i = 1, ..., N . We implement the following steps for i :

1. We compute σi = σmin+(σmax − σmin) u1i and SRi = SRmin+(SRmax − SRmin) u2i.
Then, the mean is obtained as µi = rf + σiSRi.

2. The skewness is obtained as si = smin + (smax − smin) u3i. The corresponding ex-
cess kurtosis is eki = eki,min + (eki,max − eki,min) u4i such that both (eki,min, si) and
(eki,max, si) belong to the restricted space Γ, that is, (eki, si) ∈ Γ.21

3. After simulating ϑi = (µi, σi, si, eki), we compute all the PMs described previously
by plugging ϑi into the corresponding formulas. To set a fair comparison among
these measures, we select τ = rf . Thus, given the portfolio i defined by ϑi, we
get SRi and any other performance measure, denoted as πi, that can be Ki(rf ,m),
FTRi (rf , q,m), RV aRα

i (rf ) or RCV aR
α
i (rf ).

6.2 Rank correlations

We obtain the average of the Spearman’s correlation over a sample size of one-hundred
rank correlations between πi and SRi, such that each correlation is obtained through
N vectors (πi, SRi) computed for portfolios characterised by the vector ϑi according to
Subsection 6.1. For instance, we obtain the correlation between FTR (rf , q,m) in (19), for
(positive) integer values of q,m ≤ 6, and SR. It is shown (not reported here but available
upon request) that the larger q and m, the lower the rank correlation. If q ≥ 2,m ≥ 3,

19NT = N ×T where as we will see later, N denotes the sample size per regression and T is the number
of regressions. We will set N = 10, 000 and T = 100.

20We rule out HF6 since its Sharpe ratio is negative, see Subsubsection 6.3.1.
21We use the notation eki,min and eki,max to emphasize that the range for the possible values of ek

depends on si.
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the correlation never exceeds 25%. Then, these PMs lead to different portfolio rankings
respecting the Sharpe ratio. Nevertheless, the Omega or Kappa of order one exhibits a
very high correlation (97.70%).22 This evidence suggests that there is no ranking difference
with regard to the Sharpe ratio. All the above results are also supported by Eling et al.
(2011) who analyze, among others, the FTRs for different values of q andm. The following
Subsection is about a more robust analysis by splitting the total sample N = 10, 000 in
two subsamples depending on the size of SR. It will be shown, for instance, that there
can be even more ranking difference between K (rf , 1) and SR the higher SR.

6.3 Effects of skewness and kurtosis on portfolio evaluation

Here, we will mainly concentrate on studying those PMs with higher rank correlations
according to our previous results in Subsection 6.2. The next analysis is rather similar to
the one by Zakamouline (2011).

6.3.1 The models

We consider the following two models:

1. The first model is defined as

πi = απSR
βπ

i , απ, βπ > 0, i = 1, · · · , N, (27)

where π is a specific performance measure (and the same PM for all portfolios i
in the above equation) such that πi > 0.23 The portfolio i is defined regarding the
parameter vector ϑi. As απ and βπ are positive, πi is equivalent to SRi in the sense
that both produce the same ranking. If testing with data the evidence of a high
equivalence between πi and SRi, in that case there would be a high goodness of fit
through the (adjusted) R2 statistic, denoted by R2

π,0, from estimating by ordinary
least squares (OLS) the equation (27) in logarithmics.

2. The second model is given as

πi = απSR
βπ

i exp
(
βsπsi + βekπ eki + επ,i

)
, i = 1, ..., N, (28)

where επ,i is the error term according to π and ϑi. Note that βsπ and βekπ are,
respectively, the (relative) sensitivity of π to the skewness and excess kurtosis from
the portfolio return distribution. That is, βsπ = (∂π/∂s) /π and βekπ = (∂π/∂ek) /π.
We estimate by OLS the following expression, obtained after taking logarithms in
(28), given by

log (πi) = log (απ) + βπ log (SRi) + βsπsi + βekπ eki + επ,i. (29)

Let R2
π,1 denote the (adjusted) R2 statistics of (29). If the estimates of βsπ and βekπ

were statistically significant, then both s and ek can affect π and hence, π could

22The same happens to K (rf , 2) and K (rf , 3) with correlations of, respectively, 94.29% and 91.18% but
lower than that of K (rf , 1). For the upside potential ratio, FTR (rf , 1, 2), the rank correlation is 63.23%.
Finally, for α = 1%, 5%, the rank correlations for RV aR (RCV aR) are, respectively, 79.11% and 74.35%
(87.88% and 79.82%)

23We just concentrate on those portfolios having positive PMs as the relevant ones in our study.
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produce a different ranking among different portfolios than SR. It also means that
R2

π,1 − R2
π,0 would become large and the (Spearman’s) rank correlation coefficient

between π and SR, denoted as RS (π, SR), would be small. Otherwise, if the esti-
mates of both parameters were not significant, then R2

π,0 and R2
π,1 would be rather

the same value and the above rank correlation would be larger.

6.3.2 Estimation results

Table 2 provides the OLS estimates of βπ, β
s
π and βekπ , the rank correlation RS (π, SR)

and the statistics R2
π,0 and R2

π,1 obtained from a total of nine regressions from (29). Za-

kamouline (2011) shows24 that a larger SR implies a lower RS (π, SR). A possible rea-
son might be the larger the Sharpe ratio the larger the adjustment for non-normality of
the portfolio return distribution by the selected PM. So, our simulation analysis aims
to test this behaviour by using two non-overlapping ranges for SR for each PM. Specif-
ically, we take SRmin and SRmax from Subsection 6.1 and then, consider the intervals
J1 ≡ [1%, 16.14%] and J2 ≡ (16.14%, 22.3%].25 We split each sample size N in two parts,
N1 and N2, and run two regressions with πi as dependent variable. In the first regression,
the independent variables are the vectors (1, SRi, si, eki) such that both si and eki come
from ϑi and SRi = (µi − rf ) /σi ∈ J1 where µi and σi also belong to ϑi. The second
regression is based on the remaining N2 points such that each SRi ∈ J2. The last column
of this Table displays the Chow test (and its p-value).That is, testing the null hypothesis
of no structural break (one regression) against the alternative one of structural break (two
regressions). In short, this experiment is repeated 100 times and Table 2 exhibits the
mean values of the above parameter estimates, rank correlations, etc. The main results
from this Table are as follows:

• R2 statistics, rank correlation and Chow test

In most cases, it is better running two regressions than one regression since the p-values
for the Chow test are zero for all PMs except RV aR and RCV aR with α = 1%. In other
words, the larger SR the larger the sensitivity of any π to the higher moments. For any
π, the rank correlation RS (π, SR) becomes lower under J2. R

2
π,1 − R2

π,0 becomes pretty
higher under J2. In short, these results and (most of) the next ones agree with those of
Zakamouline (2011).

• Behaviour of OLS beta estimates

- For all performance measures, the OLS estimates for the three betas, β̂, are
statistically significant at the 1% level and so, both skewness and excess kurtosis
play significant roles in these measures.

- For any π, β̂π is always positive and becomes larger for the regression under
J2, although there is no much difference between both regressions. So, we can
conclude that a higher SR leads to a higher π.

24She implements a simulation analysis by assuming the Normal-Inverse-Gaussian for the return distri-
bution.

25The number 16.14% is the mean of the Sharpe ratios from nine hedge funds (except HF6).
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- β̂sπ is larger in the regression under J2 and always positive suggesting that all
measures appreciate positive skewness.

- β̂ekπ is negative in most cases except the Omega-Sharpe ratio and RV aR with
α = 5%. It suggests that most PMs penalize positive excess kurtosis.

-
∣∣∣β̂sπ
∣∣∣ is much greater than

∣∣∣β̂ekπ
∣∣∣ in most PMs except the Omega-Sharpe ratio.

[INSERT TABLE 2 AROUND HERE ]

7 Efficient frontiers under LPMs

Each portfolio from the efficient frontier (EF) shows either the highest level of expected
return at a given level of risk, measured through the LPM or variance, or the lowest risk
for a given expected return.26 The portfolios include n securities where the marginal
distribution for the standardised stock returns in (9) follow the GC distribution in (10).
This Section is structured as follows. First, we present the optimization problem under
this new framework. For simplicity, we assume a multivariate Gaussian copula to capture
the dependence among the stock returns. Second, we compare the portfolios in the EF
under the LPMs with those from the traditional mean-variance (MV) approach. This
comparison is interesting since it allows to understand which sort of portfolios, in terms
of skewness and excess kurtosis, are selected in the EF frontier according to the LPM risk
measure in (16).

7.1 Optimization method

The optimization program, OPm, is as follows:

min
w
LPMp (τ,m) = w′ · CLPM · w, (30)

subject to

w′ · µ = µp, (31)

w′ · l = 1, (32)

w ≥ 0, (33)

where LPMp (τ,m) is the LPM measure of a return portfolio p, w = (w1, . . . , wn)
′ and

µ = (µ1, · · · , µn)′ denote, respectively, the weight and expected stock return vectors, and
l is the n × 1 vector of ones. Note that we only allow for long positions in the stocks.
Finally, CLPM ≡ CLPM (τ,m) in (30) is the co-lower partial moment matrix of order
n × n. To simplify the computations, in a similar way to Nawrocki (1991) and Huang et
al. (2001), we assume symmetry in CLPM.27 The elements of the CLPM are defined as

CLPMjj = LPMj (τ,m)2/m , j = 1, · · · , n (34)

CLPMjk = ρjkLPMj (τ,m)1/m LPMk (τ,m)1/m , j 6= k (35)

26We do not obtain EFs under the UPM-LPM framework. This issue is left for future research. See
Cumova and Nawrocki (2014) for more details.

27The asymmetric CLPM matrix is implemented, among others, in Cumova and Nawrocki (2011).
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where LPMj (τ,m) denotes the LPM in (16) for the stock return j and ρjk represents the
correlation coefficient between the stock returns j and k. Since CLPM (τ,m) is symmetric,
OPm turns to be a quadratic (convex) optimization problem such that each local minimum
is a global one. Finally, the traditional variance-covariance Markowitz algorithm, OP0, is
the same as the above OPm but now the objective function (30) is the variance of the
portfolio stock return, σ2p. That is, σ

2
p = w′M2w where M2 is the covariance matrix.

7.2 MV versus MLPM comparison

Consider again as true parameters the CML estimations of (µ, σ, s, ek) for each hedge
fund (see Table 3 in Appendix A). We will implement both OPm and OP0 algorithms to
compare the mean-LPM (MLPM) and the traditional Markowitz efficient frontiers. Let
wMV and wMLPM denote the weigth vector of the portfolio included, respectively, in a
mean-variance (MV) and a MLPM efficient portfolio. As Grootveld and Hallerbach (1999),
we measure the difference in the portfolio compositions in both EFs by using the root mean
squared dispersion index:

RMSDI (τ,m) =

√√√√ 1

Np × n

Np∑

i=1

n∑

j=1

(
wMLPM
ij − wMV

ij

)2
, (36)

where Np is the total number of selected efficient portfolios, n is the number of assets
included in a portfolio, and wMV

ij and wMLPM
ij denote the investment fractions of, respec-

tively, the MV and MLPM efficient portfolio i for the security j. We select the portfolio
i such that the expected portfolio returns under the two different risk measures coincide,
that is,

∑n
j=1w

MV
ij µj =

∑n
j=1w

MLPM
ij µj .

[ INSERT FIGURE 4 AROUND HERE ]

Figure 4 includes the dispersion index in (36) for the EF portfolios by solving the OPm

algorithm under different values of m and τ , and comparing each with the EF portfolios
provided by the OP0 algorithm.28 The right-hand graph exhibits, for one hundred EF
portfolios (Np = 100) obtained by using the OPm algorithm,29 the values of RMSDI (τ,m)
as a function of τ ∈ [0%, 0.39%]. We see large differences between the portfolio composition
under the selected LPM (τ,m) and MV across the different values of τ . Note that the
higher τ , the lower RMSDI (τ,m) verifying that MLPM portfolios under m = 3 tend to
approach more to the EF portfolio composition under the MV framework. For example,
for τ = 0.39%, we have RMSDI (0.39%, 1) = 3.66%, RMSDI (0.39%, 2) = 3.18%, and
RMSDI (0.39%, 3) = 2.65%. Our results agree, for example, with those from Marmer
and Ng (1993) and Jarrow and Ng (2006) who showed that, for non-Gaussian return
distributions, the mean-semivariance optimal portfolios are significantly different from
mean-variance optimal portfolios.

The left-hand graph shows for each m the values of RMSDI (τ,m) as a function of
the mean of the monthly portfolio return such that the selected return threshold is the

28The correlation matrix is the sample one obtained from the ten HF monthly return series (n = 10)
introduced in Appendix A.

29The expected portfolio returns range from µ1 = 0.5182% to µ100 = 0.9553% since Np = 100. This
interval is obtained from the intersection of the different ranges for the mean of the portfolio returns from
the four EFs (m = 1, 2, 3 and MV).
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monthly risk-free rate, τ = 0.39%. For instance, each point in the Omega-Sharpe line
(m = 1) is the root of the mean of the squared errors (wMLPM

ij − wMV
ij )2, j ≤ 10 of the

portfolio i (where i ≤ 100) in the EF with mean µi (see footnote 7.2). In short, we get
the RMSDI (0.39%, 1) for each portfolio i with mean µi by using (36) with Np = 1. For
any m, we can see significant differences between the portfolio composition under both
LPM (0.39%,m) and MV for different values of µi.

7.3 Skewness and kurtosis of portfolio stock returns

According to the previous assumptions, we will compute the theoretical skewness and
excess kurtosis, denoted as sp and ekp, for the portfolio returns in the different MLPM
efficient frontiers. These portfolios include n stocks with GC as the marginal distribution
for each standardised stock return and a multivariate Gaussian copula for the dependence
among the stock returns.30 Note that we first have to obtain the co-skewness and co-
kurtosis matrices, denoted as M3 and M4 respectively.

7.3.1 Co-skewness and co-kurtosis matrices

The co-skewness and co-kurtosis among asset returns are defined31 as

sijk = E [(ri − µi) (rj − µj) (rk − µk)] , i, j, k = 1, . . . , n (37)

and
kijkl = E [(ri − µi) (rj − µj) (rk − µk) (rl − µl)] , i, j, k, l = 1, . . . , n. (38)

Hence, the co-skewness matrix of order
(
n, n2

)
is

M3 = [S1jk · · ·Snjk] ,

where Sijk, i = 1, · · · , n denotes the short notation for the (n, n) submatrix (sijk)j,k=1,...,n

with elements in (37).

The co-kurtosis matrix of order
(
n, n3

)
is

M4 = [K11klK12kl . . . K1nkl · · · Kn1klKn2kl . . . Knnkl] ,

where Kijkl, i, j = 1, · · · , n is the short notation for the (n, n) submatrix (kijkl)k,l=1,··· ,n
with elements in (38). Because of certain symmetries, not all the elements of these ma-
trices need to be computed. Thus, M3 and M4 involve only

(
n+2
3

)
and

(
n+3
4

)
elements,

respectively. Since we assume a Gaussian copula, these matrices are easily computed as
shown in the next Lemma.

Lemma 1 Let (r1, . . . , rn) denote the random vector of n stock returns such that ri =
µi + σizi where zi ∼ GC (0, 1, si, eki) with pdf in (10). The dependence among these
returns is captured by a Gaussian copula with elements ρij . Then, the elements of M3 in
(37) are given by

sijk =

{
σ3i si, i = j = k,

0, otherwise,
(39)

30See Cherubini et al. (2004) for more details.
31We adopt the notation by Jondeau and Rockinger (2006).
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where σi and si are, respectively, the standard deviation and skewness of the return ri.
The elements of M4 in (38) are given as

kijkl =

{
σ4i (3 + eki) , i = j = k = l,

σijσkl + σikσjl + σilσjk, otherwise,
(40)

where eki is the excess kurtosis of the return ri and σij = σiσjρij denotes the covariance
between ri and rj.

Proof. See, among others, Isserlis (1918) or Holmsquit (1988) for the higher-order mo-
ments of the multivariate normal distribution.

Note that the GC marginal distribution is easily imposed in the above equations (39)
and (40) verifying that siii = σ3i s

3
i and kiiii = σ4i (3 + eki). Finally, the skewness and

kurtosis of the portfolio stock return are obtained as

sp =
w′M3 (w ⊗ w)

σ3p
, (41)

and

kp =
w′M4 (w ⊗ w ⊗ w)

σ4p
, (42)

where ⊗ denotes the “Kronecker product”. Finally, ekp = kp − 3 is the portfolio excess
kurtosis.

7.3.2 Getting sp and ekp from MLPM efficient frontiers

Figure 5 exhibits sp and ekp for the one hundred EF portfolios and return thresholds
τ = 0%, 0.39% as a function of the monthly expected return µj ∈ [0.5182%, 0.9553%].32

The left-hand graphics include the values of sp under τ = 0% (upper graph) and τ = 0.39%
(lower graph) while the values of ekp are shown on the right side.33 Several results arise.
First, for any τ and m, there are differences beween MV and MLPM. These differences
become more important for m = 1. Second, there are no significant differences between
LPM (τ, 2) and LPM (τ, 3). Third, there are significant differences between LPM (0%, 1)
and LPM (0%,m) where m = 2, 3 for lower expected portfolio returns.

[ INSERT FIGURE 5 AROUND HERE ]

8 The SNP density and LPMs

We show here the SNP density already introduced in Subsection 3.1 to model stock returns.
The main advantages of this density are the following. First, it nests the GC distribution
in (10), and so, it allows a higher flexibility in terms of skewness and excess kurtosis.
Second, it is always positive and no restrictions on its parameters are needed to guarantee
the positivity of the pdf. Third, it provides easily closed-form expressions for the LPMs

32This interval is the same as that used to obtain the dispersion index in Figure 4.
33Note that, in the MV setup, both sp and ekp in the upper graphs are the same as in the lower ones

since OP0 does not depend on τ .
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since we can apply some properties already obtained under the GC density. A possible
drawback respecting the GC density is that both skewness and excess kurtosis are not
directly the SNP parameters but a function of them. In short, the SNP density of a
random variable x is defined as

h (x) =
φ (x)

v′v

(
p∑

i=0

viHi (x)

)2

, (43)

where v = (v0, v1, ..., vp)
′ ∈ R

p+1, φ (·) denotes the pdf of a standard normal variable and
Hi (x) are the normalized Hermite polynomials in (11). Since h (·) is homogeneous of
degree zero in v, we can either impose v′v = 1 or v0 = 1 to solve the scale indeterminacy.
By expanding the squared expression in (43), we arrive at Proposition 1 in León et al.
(2009). For p = 2, we get

h (x) = φ (x)

4∑

k=0

γk (v)Hk (x) , (44)

where

γ0 (v) = 1, γ1 (v) =
2v1(v0+

√
2v2)

v′v , γ2 (v) =
√
2(v21+2v2

2
+
√
2v0v2)

v′v ,

γ3 (v) =
2
√
3v1v2
v′v , γ4 (v) =

√
6v2

2

v′v .
(45)

We are interested in an affine transformation z∗ = a (v) + b (v) x with g (·) as the
density of z∗ verifying that Eg [z

∗] = 0, Eg

[
z∗2
]
= 1. Hence, the location parameter a (v)

and the scale one b (v) are obtained as

a (v) = − Eh [x]√
Vh [x]

, b (v) =
1√
Vh [x]

, (46)

where Eh [x] and Vh [x] denote, respectively, the mean and variance of x with h (·) in (44)
as pdf. Finally, we can express the stock return r as

r = µ+ σz∗ = µ+ aσ + bσx, (47)

such that f (r) = h (x) / (bσ) is the pdf of r. The mean and variance of r are, respectively,
Ef [r] = µ and Vf [r] = σ2. The next Proposition shows the general LPM expression of r
with the SNP density.

Proposition 4 Let r be the stock return in (47) with pdf defined as f (r) = h (x) / (bσ)
such that h (x) is the SNP density in (44). The lower partial moment LPMf (τ,m) of r
can be expressed as

LPMf (τ,m) =
m∑

j=0

(−1)j
(
m

j

)
κm−j
0 κj1Cj, (48)

where κ0 = τ − µ− aσ, κ1 = bσ, the parameters a and b are defined in (46) and

Cj =
4∑

i=0

ξi (v)Bj+i, (49)
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such that Bl =
∫ τ+
−∞ xlφ(x)dx, with general solution in (64) from Appendix B, where τ+ =

κ0/κ1 and ξi (v) is given by the following expressions:

ξ0 (v) = 1− γ2 (v) /
√
2 + 3γ4 (v) /

√
4!,

ξ1 (v) = γ1 (v)− 3γ3 (v) /
√
3!,

ξ2 (v) = γ2 (v) /
√
2− 6γ4 (v) /

√
4!, (50)

ξ3 (v) = γ3 (v) /
√
3!,

ξ4 (v) = γ4 (v) /
√
4!,

where the coefficients γk (v) are defined in (45).

Proof. See Appendix B.

Finally, we could also obtain the efficient frontiers by assuming now a different SNP
pdf as marginal distribution for each stock return. Thus, a different parameter vector v
in (44) for each stock return.

9 Conclusions

We have obtained the closed-form formulas for the partial moments, that is, both upper
(UPMs) and lower partial moments (LPMs) when the implied distribution for the stock
returns is driven by the Gram-Charlier (GC) density with restrictions on the skewness,
s, and excess of kurtosis, ek, parameters to guarantee the probability density function
(pdf) is well-defined, see Jondeau and Rockinger (2001). We can express the UPMs as
functions of the LPMs. It is verified that the LPMs under GC become linear functions
on both s and ek. Because of this, we can easily understand the behaviour of this kind
of downside-risk measures with respect to changes in s and ek and hence, the behaviour
of the related performance measures (PMs). These PMs are mainly the Farinelli-Tibiletti
ratios (FTRs) and the Kappa measures. We also study the PMs based on the Value at
Risk and Expected Shortfall (or CVaR) under the GC density.

Our simulation study concludes that the choice of the performance measure (PM)
can affect the evaluation of portfolios differently to the Sharpe ratio (SR) because of the
sensitivity of the selected PM to the levels of s and ek implied in the portfolio returns. Our
results agree with those from Zakamouline (2011). Thus, the selection of PMs becomes
relevant in ranking portfolios.

We have also obtained the efficient frontiers (EFs) based on the LPMs as an alternative
risk measure taking the standard deviation as benchmark. We have compared the portfolio
composition from the EFs under both the mean-LPM and mean-variance settings. We have
shown large differences in both compositions through a sensitivity analysis by changing
the return threshold. As a result, we can conclude that the choice of the risk measure
affects the portfolio composition from the EF. Finally, we have also found some differences
among the skewness and excess kurtosis levels implied in the portfolios from these EFs.

Several issues are left for further research. First, we can study the portfolio optimiza-
tion but using LPMs under alternative dependence structure between financial returns
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using alternative copula functions with marginal stock return distributions capturing the
autocorrelation and GARCH structure. Boubaker and Sghaier (2013) show this kind
of analysis but restricted to the mean-variance EFs setup under the presence of long-
memory for daily hedge fund returns. Harris and Mazibas (2013) consider alternative
optimization frameworks such as the Mean-CVaR, Omega optimization model under both
AR(1)-GARCH family and copula modeling for monthly hedge fund returns. Finally, it
would be interesting to study the optimal combination of performance measures, see Billio
et al. (2012).
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Appendix A. Data and ML estimation

The ten hedge fund (HF) indices used here are available from www.hedgefundresearch.com.
The same dataset has been used in Mausser et al. (2006) to optimise a portfolio’s omega
ratio based on a linear programming method. We collect monthly index HF returns for
the period from November 1999 to February 2008 with a total of 100 observations. Table
3 reports the constrained maximum likelihood (CML) parameter estimates and the ML
standard errors for these monthly return series by assuming that the data come from (9).
Thus, rj,t = µj + σjzt where zt ∼ iid GC(0, 1, sj , ekj), j = 1, . . . , 10 represents the hedge
fund HFj and t = 1, ..., 100. The names implied by the index symbols (starting with
”HFRX”) in the first row of the Table are the following: HFRXGL (Global Hedge Fund),
HFRXEW (Equal Weighted Strategies), HFRXCA (Convertible Arbitrage), HFRXDS
(Distressed Securities), HFRXEH (Equity Hedge), HFRXEMN (Equity Market Neutral),
HFRXED (Event-Driven), HFRXM (Macro Index), HFRXMA (Merger Arbitrage) and
HFRXRVA (Relative Value Arbitrage). The sample correlation matrix for the ten monthly
return series of HFs for the above period is not exhibitd for the sake of brevity. It is shown
that all sample correlations are positive. The maximum correlation is between HF1 and
HF5 (0.887) and the minimum one is between HF6 and HF8 (0.019).

[INSERT TABLE 3 AROUND HERE ]
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Appendix B. Proofs

Proof of Proposition 1

Kendall and Stuart (1977) shows that

Hk (z) =

[k/2]∑

n=0

ak,n z
k−2n, (51)

where [·] rounds its argument to the nearest (smaller) integer and

ak,n =

(
−1

2

)n √
k!

(k − 2n)!n!
.

Taking expectations in (51) with pdf g (·), see equation (10), we obtain

Eg [Hk (z)] =

[k/2]∑

n=0

ak,nEg

[
zk−2n

]
. (52)

Given (10) and (12), we get Eg [Hk (z)] = 0 for k ≥ 5 and so, we obtain recursively
the expression for Eg

[
zk
]
in (13). For instance, setting k = 5 and plugging Eg [z] = 0

andEg

[
z3
]
= s into (52), we get Eg

[
z5
]
= 10s. For k = 6, we have Eg

[
z6
]
= 15 + 15ek,

etc. Finally, regarding the moments of r in (9), with pdf f (r) = g (z) /σ, we obtain (14)
by using the binomial expansion.

Proof of Proposition 2

Let z be the standardised return of r in (9) with pdf g (z) in (10). Its distribution
function is

FGC (z; s, ek) =

∫ z

−∞
g (x) dx =

∫ z

−∞
p(x)φ (x) dx

= Φ(z) +
s√
3!

∫ z

−∞
H3 (x)φ (x) dx+

ek√
4!

∫ z

−∞
H4 (x)φ (x) dx

= Φ(τ∗)− s

3
√
2!
H2 (τ

∗)φ (τ∗)− ek

4
√
3!
H3 (τ

∗)φ (τ∗) . (53)

where the last equality arises from the following relationship (see León et al. (2009) for
details): ∫ a

−∞
Hk(x)φ(x)dx = − 1√

k
Hk−1(a)φ(a), k ≥ 1. (54)

Let f (r) = g (z) /σ be the pdf of r. Noting that LPMf (τ, 0) = FGC (τ∗; s, ek) where
τ∗ = (τ − µ) /σ completes the proof.

Proof of Corollary 2

We can rewrite (15) as

LPMf (τ, 0) = B0 +
s√
3!
A02 +

ek√
4!
A03 (55)
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where

B0 = Φ(τ∗), A02 = − 1√
3
H2(τ

∗)φ(τ∗), A03 = − 1√
4
H3(τ

∗)φ(τ∗), (56)

It holds that B0 > 0 ∀τ∗, A02 > 0 iff |τ∗| < 1 and A03 > 0 iff τ∗ ∈
(
−∞,−

√
3
)
∪(

0,
√
3
)
. Moreover, using the relations (a) dφ (x) /dx = −xφ (x) and (b) dHk (x) /dx =√

kHk−1 (x), we get

∂A02

∂τ∗
> 0 ⇔ τ∗ ∈

(
−
√
3, 0
)
∪
(√

3,+∞
)
,

∂A03

∂τ∗
> 0 ⇔ τ∗ ∈ (−∞,−τ∗1 ) ∪ (−τ∗2 , τ∗2 ) ∪ (τ∗1 ,+∞) ,

where τ∗1 =
√

3 +
√
6 and τ∗2 =

√
3−

√
6. Hence,

∂LPMf (τ, 0)

∂s
> 0 ⇔ |τ∗| < 1,

∂LPMf (τ, 0)

∂ek
> 0 ⇔ τ∗ ∈

(
−∞,−

√
3
)
∪
(
0,
√
3
)
,

and ∂LPMf (τ, 0)/∂τ
∗ > 0 if τ∗ ∈ (−τ∗2 , 0) ∪ (τ∗1 ,+∞). Finally, the signs of the partial

derivatives of LPMf (τ, 0) with respect to τ , µ and σ are obtained by applying the chain
rule and using that ∂τ∗/∂τ > 0, ∂τ∗/∂µ < 0 and ∂τ∗/∂σ > 0 iff µ > τ .

Proof of Proposition 3

Let f and g denote, respectively, the pdfs for r and z in (9). So, it is verified that
f (r) = g (z) /σ where g (·) denotes the GC pdf and z = (r − µ) /σ. Then, we can rewrite
(1) as

LPMf (τ,m) =

∫ τ

−∞
(τ − r)mf(r) dr =

∫ τ∗

−∞
(τ − µ− σz)mg(z) dz (57)

where τ∗ = (τ − µ) /σ. If we apply the binomial expansion on (τ −µ− σz)m in (57), then

LPMf (τ,m) =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkIk, (58)

where Ik=Eg

[
zk |z < τ∗

]
denotes the conditional expected value. Thus, for k ≥ 1 we

obtain

Ik =

∫ τ∗

−∞
zkg(z) dz = Bk +

s√
3!
Ak2 +

ek√
4!
Ak3, (59)

where

Bk =

∫ τ∗

−∞
zkφ(z)dz, Ak2 =

∫ τ∗

−∞
zkH3(z)φ(z)dz, Ak3 =

∫ τ∗

−∞
zkH4(z)φ(z)dz. (60)

Both Ak2 and Ak3 can be expressed, by using (54), as

Ak2 =
1√
3!
(Bk+3 − 3Bk+1), Ak3 =

1√
4!
(Bk+4 − 6Bk+2 + 3Bk). (61)
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Note that I0 is just the equation of LPMf (τ, 0) in (55) with B0, A02, and A03 given in
(56). By plugging (59) into (58), we get

LPMf (τ,m) = LPMn(τ,m) +
s√
3!
θ2,m +

ek√
4!
θ3,m,

where

θj,m =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkAkj ,

where LPMn(τ,m)=En[(τ −r)m+ ] such that n (·) is the pdf of the normal distribution with
µ and σ, respectively, as the mean and standard deviation. Thus,

LPMn(τ,m) =

∫ τ∗

−∞
(τ − µ− σz)m φ (z) dz =

∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkBk. (62)

Finally, to get the expression for Bk in (60), we need previously the following result:

zk =

[k/2]∑

n=0

ck,nHk−2n (z) , (63)

where ck,n ∈ R and Hi (·) is a Hermite polynomial. Note that (63), that is available upon
request, is just the inversion formula of (51). If we take (54) and (63), then

Bk =

∫ τ∗

−∞
zkφ(z)dz =

[k/2]∑

n=0

ck,n

∫ τ∗

−∞
Hk−2n (z)φ(z)dz

=

[k/2]∑

n=0

ck,n

{
Φ(τ∗)1(k−2n=0) +

1√
k − 2n

Hk−2n−1 (τ
∗)φ (τ∗) 1(k−2n≥1)

}
, (64)

where 1(·) is the usual indicator function.

Proof of Corollary 4

The expressions of θj,m in (21) and LPMn(τ,m) in (22) are easily obtained for m ≤ 3
by using, respectively, the equations (18) and (17) from Proposition 3. Since we need to
obtain Ak2 and Ak3 in (61) for k = 0, 1, 2, 3, 4, then we must previously get Bj in (60) for
j = 1, ..., 7. By applying the condition (54),

B1 = −φ (τ∗) ,
B2 = −H1 (τ

∗)φ (τ∗) + Φ (τ∗) ,

B3 = −
√
2H2 (τ

∗)φ (τ∗)− 3φ (τ∗) ,

B4 = −
√
3!H3 (τ

∗)φ (τ∗)− 6H1 (τ
∗)φ (τ∗) + 3Φ (τ∗) ,

B5 = −
√
4!H4 (τ

∗)φ (τ∗)− 10
√
2H2 (τ

∗)φ (τ∗)− 15φ (τ∗) ,

B6 = −
√
5!H5 (τ

∗)φ (τ∗)− 15
√
3!H3 (τ

∗)φ (τ∗)− 45H1 (τ
∗)φ (τ∗) + 15Φ (τ∗) ,

B7 = −
√
6!H6 (τ

∗)φ (τ∗)− 21
√
4!H4 (τ

∗)φ (τ∗)− 105
√
2H2 (τ

∗)φ (τ∗)− 105φ (τ∗) .

Note that the above expressions agree with the general formula for Bj in (64).

Proof of Proposition 4
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Let h and f denote, respectively, the pdfs for x and r in (44) and (47). So, it is verified
that f (r) = h (x) /bσ. Then, we can rewrite (1) as

LPMf (τ,m) =

∫ τ

−∞
(τ − r)mf(r) dr =

∫ τ+

−∞
(κ0 − κ1x)

mh(x) dx, (65)

where κ0 = τ−µ−aσ, κ1 = bσ > 0 and τ+ = κ0/κ1. The expressions of a and b in (46) can
be obtained from the first two unconditional moments of x, denoted as µ′x (1) and µ

′
x (2),

from Lemma 1 in León et al. (2009). Thus, Eh [x] = µ′x (1) is just γ1 (v) in equation (45)
and

µ′x (2) =
2
(
v21 + 2v22 +

√
2v2v0

)

v′v
+ 1,

then Vh [x] = µ′x (2)− µ′x (1)
2. If we apply the binomial expansion on (κ0 − κ1x)

m in (65)
and consider (44), we have

LPMf (τ,m) =

∫ τ+

−∞

[∑m

j=0
(−1)j

(
m

j

)
κm−j
0 κj1x

j

]
h(x) dx

=
∑m

j=0
(−1)j

(
m

j

)
κm−j
0 κj1

[
Bj +

∑4

k=1
γk (v)Gjk

]
(66)

where Bj =
∫ τ+
−∞ xjφ(x)dx, with general solution in (64), and Gjk =

∫ τ+
−∞ xjHk(x)φ (x) dx.

If we consider (51), then the expressions of Gjk, for 0 ≤ j ≤ m and 1 ≤ k ≤ 4, are:

Gj1 = Bj+1, Gj2 =
1√
2
(Bj+2 −Bj) ,

Gj3 =
1√
3!
(Bj+3 − 3Bj+1), Gj4 =

1√
4!
(Bj+4 − 6Bj+2 + 3Bj).

(67)

Note that Bl in the above expressions are evaluated at point τ+. By plugging (67) into
(66), we finally arrive at the expressions (48)− (50) in Proposition 4.
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Appendix of Tables

Table 1: Sensitivity analysis for the Kappa measures under GC distribution. The effects
of skewness (s) and excess kurtosis (ek)

Panel A: Omega Panel B: Sortino Panel C: Kappa 3

ek s = −0.7 s = 0 s = 0.4 s = −0.7 s = 0 s = 0.4 s = −0.7 s = 0 s = 0.4

0.8996 0.5801 0.5959 0.6054 0.2622 0.2923 0.3150 0.1825 0.2070 0.2292

1.2048 0.5893 0.6057 0.6154 0.2617 0.2916 0.3141 0.1806 0.2040 0.2246

1.5100 0.5988 0.6157 0.6258 0.2612 0.2909 0.3133 0.1788 0.2011 0.2204

1.8153 0.6086 0.6261 0.6365 0.2607 0.2903 0.3124 0.1771 0.1983 0.2165

2.1205 0.6187 0.6368 0.6476 0.2602 0.2896 0.3116 0.1754 0.1957 0.2128

2.4257 0.6292 0.6479 0.6591 0.2598 0.2889 0.3107 0.1738 0.1932 0.2094

2.7309 0.6400 0.6594 0.6710 0.2593 0.2882 0.3099 0.1723 0.1909 0.2062

3.0361 0.6513 0.6713 0.6833 0.2588 0.2876 0.3091 0.1708 0.1887 0.2031

3.3414 0.6629 0.6836 0.6961 0.2583 0.2869 0.3083 0.1693 0.1865 0.2003

3.6466 0.6749 0.6964 0.7094 0.2578 0.2863 0.3074 0.1680 0.1845 0.1976

This table exhibits the values of the closed-form formulas for the Kappa measures (Omega-Sharpe, Sortino and Kappa
3) by using the LPM expressions from Corollary 4 for monthly returns. All portfolios in the table have µ = 0.86% and
σ = 2.61% but different values for s and ek such that (ek, s) ∈ Γ. The return threshold is rf = 0.39%. The Sharpe
ratio is constant over this table, SR=0.1796.
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Table 2: Some results from regression analyses by using simulated monthly returns from GC distribution

log (Perf. Measure) Sharpe ratio interval beta log(Sharpe) beta Sk beta Ek Rank corre R2 R20 Chow Test (p-value)

Omega-Sharpe [1%, 16.14%] 1.1888 0.0286 0.0536 0.9509 0.9996 0.9000 10484.4060

(16.14%, 22.3%] 1.2855 0.0458 0.0570 0.8965 0.9993 0.7941 (0.0000)

Sortino [1%, 16.14%] 1.0993 0.1672 -0.0046 0.8728 0.9984 0.7541 1012.2615

(16.14%, 22.3%] 1.1480 0.1820 -0.0077 0.7489 0.9966 0.5626 (0.0000)

Kappa 3 [1%, 16.14%] 1.0685 0.1974 -0.0417 0.8059 0.9916 0.6439 95.2884

(16.14%, 22.3%] 1.1017 0.2060 -0.0457 0.6583 0.9853 0.4430 (0.0000)

Upside Potential [1%, 16.14%] 0.2665 0.1473 -0.0421 0.3738 0.9938 0.1559 2166.0951

(16.14%, 22.3%] 0.3895 0.1552 -0.0413 0.3588 0.9925 0.1443 (0.0000)

RVaR (1%) [1%, 16.14%] 1.0561 0.2766 -0.1025 0.6272 0.8639 0.3630 4.0309

(16.14%, 22.3%] 1.0844 0.2849 -0.1058 0.5013 0.8291 0.2058 (0.0752)

RVaR (5%) [1%, 16, 14%] 1.1098 0.3826 0.0382 0.5453 0.8648 0.3142 11.1504

(16.14%, 22.3%] 1.1736 0.4028 0.0412 0.4018 0.8373 0.1751 (0.0000)

RCVaR (1%) [1%, 16, 14%] 1.0458 0.1643 -0.0883 0.7544 0.8883 0.5311 3.5877

(16.14%, 22.3%] 1.0692 0.1684 -0.0906 0.6305 0.8418 0.3396 (0.1050)

RCVaR (5%) [1%, 16, 14%] 1.0693 0.3272 -0.0645 0.6125 0.9599 0.3902 16.3899

(16.14%, 22.3%] 1.1062 0.3387 -0.0668 0.4590 0.9488 0.2269 (0.0000)

This table exhibits the results of running by OLS the model given by (29). All regressions contain the same explanatory variables: the constant,
the skewness (s), the excess of kurtosis (ek) and the log of the Sharpe ratio (log(SR)). The beta estimates corresponding to s, ek and log(SR) are
shown, respectively, in columns 3, 4, and 5. Consider a certain dependent variable (performance measure) in column 1, then the regression is run
twice. The total sample size, N=10,000, is divided in two parts having one regression per subsample. The criterion followed to split N depends on
the size of the Sharpe ratio (SR) of portfolio i ∈ {1, · · · , N}, denoted as SRi. The column 2 is labeled as the SR interval, with elements J1 and J2.
If SRi ∈ J1 ≡ [1%, 16.14%], then portfolio i belongs to subsample 1, otherwise it belongs to subsample 2 such that SRi ∈ J2 ≡ (16.14%, 22.3%].
This table shows a total of 20 different regressions. The column 6 represents the Spearman’s rank correlation between any performance measure
from column 1 and the SR for each subsample. Columns 7 and 8, labeled as R2 and R20, correspond, respectively, to the R2 statistic of (29) and
the log of (27). The last column represents both the value and the p-value (in parenthesis) for the Chow test with null hypothesis of no structural
break (one regression) against the alternative one of structural break (two regressions). All portfolios, each defined by the vector (µi, σi, si, eki)
where i = 1, · · · , N , are simulated according to the procedure in Subsection 6.1. Note that we repeat the above process a total of 100 times, so
any value or estimation of the table (from columns 3 to 9) is really the mean over 100 estimates. The beta estimates (columns 3 to 5) are all
statistically significant at the 1% level for all the alternative performance measures.
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Table 3: CML estimation of monthly return series from HFRX Tradeable Indices

HFRXGL HFRXEW HFRXCA HFRXDS HFRXEH HFRXEMN HFRXED HFRXM HFRXMA HFRXRVA

Mean (%) 0.702 0.605 0.533 0.671 0.955 0.229 0.699 0.859 0.491 0.554

SE 0.162 0.095 0.138 0.149 0.236 0.098 0.145 0.266 0.100 0.098

Std. Dev. (%) 1.656 0.963 1.199 1.445 2.575 0.972 1.518 2.613 1.011 0.998

SE 0.154 0.080 0.123 0.126 0.391 0.082 0.121 0.227 0.085 0.092

Skewness 0.360 -0.275 -0.798 0.408 0.987 -0.280 -0.571 0.401 -0.594 -0.233

SE 0.462 0.278 0.533 0.272 0.416 0.274 0.249 0.316 0.261 0.351

Exc. Kurt. 2.526 0.954 1.121 1.510 3.038 1.219 1.254 1.519 1.508 1.700

SE 0.662 0.689 1.096 0.689 1.320 0.660 0.628 0.599 0.646 0.708

This table shows the constrained maximum likelihood (CML) estimates for the different monthly hedge fund (HF) return series according to (9), that
is, the standardised stock returns are driven by the Gram-Charlier (GC) density. The period goes from November 1999 to February 2008, i.e. a total
sample size of 100 observations per each data series. The CML estimates for the mean and standard deviation parameters are given in percentages.
The standard errors (SE) are calculated by using the Quasi-Maximum likelihood (QML) method.36



Appendix of Figures
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Figure 1: Space containing for stock returns the points (ek, s) with the “excess kurtosis” level,

ek, in the x-axis and the “skewness” level, s, in the y-axis. This space is limited by a frontier

(envelope) verifying that the Gram-Charlier (GC) density is well defined for the points on and

inside the envelope. Thus, the GC density will be restricted to this space for (ek, s). Note that

ek ∈ [0, 4] while s ∈ [−1.0493, 1.0493]. The range of s depends on the level of ek. See Jondeau and

Rockinger (2001) for more details about how to obtain this frontier.
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Figure 2: Each line contains the points (ek, LPM(τ, 0)) where ek is the “excess kurtosis” level

of the monthly stock return r and LPM(τ, 0) is the “shortfall probability” in (15). Thus, r is

given in (9) with the standardised stock return, z, distributed under the GC density in (10). Note

that across each line the skewness level, s, is fixed and also the return threshold, τ . Specifically,

τ is just the 5% (1%)-quantile under the GC density. Thus, τ is the VaR and the skewness levels

are s = −0.7, 0, 0.4. Note that the length of each line is different since each point must belong to

the set exhibited in Figure 1. The mean and standard deviation for any monthly stock return are

µ = 0.86% and σ = 2.61%. For the behaviour of these lines, see Corollary 2.
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Figure 3: This figure is the same as Figure 2 but here the return thresholds are non-negative.

These values are τ = 0% and τ = 0.39%, where the last one is just the monthly risk-free interest

rate on 10-year US Treasury bonds (i.e., the sample mean from November 1998 to December 2008).

Each line contains the points (ek, LPM(τ, 0)) where ek is the “excess kurtosis” level of the monthly

stock return r, and LPM(τ, 0) is the “shortfall probability” in (15). Thus, r is given in (9) with

the standardised stock return, z, distributed under the GC density in (10). By setting a level for τ ,

we show three lines corresponding to the skewness levels are s = −0.7, 0, 0.4. Note again that the

length of each line is different since each point (ek, s) must belong to the set exhibited in Figure

1. The mean and standard deviation for any monthly stock return are µ = 0.86% and σ = 2.61%.

For the behaviour of these lines, see Corollary 2.
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Figure 4: This figure contains two graphs. The left-hand graph shows one hundred efficient frontier

(EF) portfolios by solving the optimization program driven by (30) to (33) for each m = 1, 2, 3

and also, the case under the MV approach with sample covariance matrix obtained from the hedge

fund (HF) data in Appendix A. Other parameters such as (µj , σj , sj , ekj) for each HF return series

(j = 1, · · · , 10) are exhibited in Table 3 in the same Appendix. The return threshold is τ = 0.39%

(monthly risk-free interest rate). The x-axis shows a grid for the mean of monthly portfolio returns

going from 0.5182% to 0.9553%, see Subsection 7.2 for more details. The y-axis displays one

graph for a different m containing the RMSDI, given by (36) with Np = 1, in percentage for each

EF portfolio. The right-hand graph exhibits three lines but now the x-axis shows a grid for the

monthly return thresholds such that τ ∈ [0%, 0.39%]. Meanwhile, the y-axis contains the RMSDI

with Np = 100 in (36). Thus, the case of τ = 0.39% in the left-hand graph corresponds to the last

3 points further on the right whatever the selected line (depending on m).
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Figure 5: This figure provides the skewness (sp) and kurtosis excess (ekp) for the four series of EF

portfolios as a function of the monthly portfolio expected return. The grid is the same as in Figure

4. The values of sp and ekp have been obtained by using, respectively, (41) and (42). Each graph

includes four lines that show, respectively, the results under the MV framework and the LPM

measures LPM(τ,m), m = 1, 2, 3, where τ denotes the monthly threshold return. The upper

and lower graphs include the results for, respectively, τ = 0% and τ = 0.39%. The co-skewness

and co-kurtosis matrices, M3 and M4, are given in closed-form assuming a Gaussian copula with

sample correlation matrix from hedge fund (HF) data in Appendix A. The parameters of the GC

pdf for the marginal distribution of each HF monthly return are given in Table 3 in Appendix A.
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