◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Inference for non-linear, non-Gaussian state-space models

Universidad Complutense de Madrid Seminarios de Investigación del Departamento de Economía Cuantitativa

November 19, 2014

Carles Bretó Universidad Carlos III de Madrid (UC3M), Dep. de Estadística

Example of dynamic systems: financial crisis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Another dynamic system: Infectious Disease Epidemics

ELSEVIER

journal homepage: www.elsevier.com/locate/stapro

On idiosyncratic stochasticity of financial leverage effects

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Carles Bretó*

Departamento de Estadística and Instituto Flores de Lemas, Universidad Carlos III de Madrid, C/ Madrid 126, Getafe, 28903. Madrid, Spain

ARTICLE INFO

ABSTRACT

Article history: Received 12 December 2013 Received in revised form 28 March 2014 Accepted 1 April 2014 Available online 8 April 2014 We model leverage as stochastic but independent of return shocks and of volatility and perform likelihood-based inference via the recently developed iterated filtering algorithm using S&P500 data, contributing new evidence to the still stim empirical support for random leverage variation.

© 2014 Elsevier B.V. All rights reserved.

Reywords:

Stochastic leverage Random-walk time-varying parameter Non-linear non-Gaussian state-space model Maximum likelihood estimation Particle filter

1. Introduction

Problem: realistic models are likely non-linear, non-Gaussian & partially observed

Hence: their statistical analysis is complicated & slows down scientific exploration

<<p>(日)

Contribution (I): R package POMP (Frequentist particle filter, PMCMC, ABC, etc)

	00	
		+ 🕼 cran.at.r-project.org/web/packages/pomp/
	🕮 🇰 Apple Y	ahoo! Google Maps YouTube Wikipedia News▼ Popular▼ iCloud Facebook Twitte
		pomp
pomp: Statistical inference for partially observed Markov p		tical inference for partially observed Markov processes
Inference methods for partially-observed Markov processes		for partially-observed Markov processes
	Version:	0.53-5
	Depends:	$R (\geq 3.0.0), \underline{subplex}, \underline{nloptr}$
	Imports:	stats, graphics, methods, mvtnorm, deSolve, coda
	Published:	2014-08-04
	Author:	Aaron A. King [aut, cre], Edward L. Ionides [aut], Carles Breto [aut], Stephen P. Ellne [ctb], Simon N. Wood [ctb]
	Maintainer:	Aaron A. King <kingaa at="" umich.edu=""></kingaa>
	License:	<u>GPL-2</u> <u>GPL-3</u> [expanded from: GPL (\geq 2)]
	URL:	http://pomp.r-forge.r-project.org
	NeedsCompilation	: ves

Citation: pomp citation info

Manual Inc. NUMBER

Contribution (II): iterated filtering algorithm Plug-and-play <u>likelihood-based inference</u> on POMPs

Contribution (III): Example from financial econometrics Stochastic volatility with stochastic leverage

500

・ロト ・四ト ・ヨト ・ヨト

Take-home message: straightforward, likelihood-based inference is possible for general dynamic systems

Problem: realistic models are likely non-linear, non-Gaussian & partially observed

State-space: unobservable variables/mechanisms

• Stochastic volatility:

$$\begin{aligned} \mathbf{y}_t &= \sigma_t \epsilon_t \\ \sigma_t^2 &= \exp\left(h_t\right) \\ h_t &= \mu(1-\phi) + \phi h_{t-1} + \eta_t^* \end{aligned}$$

• SIR-type compartment models:

$$C_t = \rho I_t + \sigma \epsilon_t$$

$$I_t = \exp(\tilde{I}_t) = (\beta S_{t-1}) I_{t-1}^{\alpha} \eta_t^*$$

$$\tilde{I}_t = (\tilde{\beta} + \tilde{S}_{t-1}) + \alpha \tilde{I}_{t-1} + \tilde{\eta}_t^*$$

イロト イポト イヨト イヨト

ъ

State-space: unobservable variables/mechanisms

• Stochastic volatility:

$$y_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \exp(h_t)$$

$$h_t = \mu(1 - \phi) + \phi h_{t-1} + \eta_t^*$$

• SIR-type compartment models:

$$C_{t} = \rho I_{t} + \sigma \epsilon_{t}$$

$$I_{t} = \exp(\tilde{I}_{t}) = (\beta S_{t-1}) I_{t-1}^{\alpha} \eta_{t}^{*}$$

$$\tilde{I}_{t} = (\tilde{\beta} + \tilde{S}_{t-1}) + \alpha \tilde{I}_{t-1} + \tilde{\eta}_{t}^{*}$$

イロト イポト イヨト イヨト

ъ

State-space: unobservable variables/mechanisms

• Stochastic volatility:

$$y_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \exp(h_t)$$

$$h_t = \mu(1 - \phi) + \phi h_{t-1} + \eta_t^*$$

• SIR-type compartment models:

$$C_t = \rho I_t + \sigma \epsilon_t$$

$$I_t = \exp(\tilde{I}_t) = (\beta S_{t-1}) I_{t-1}^{\alpha} \eta_t^*$$

$$\tilde{I}_t = (\tilde{\beta} + \tilde{S}_{t-1}) + \alpha \tilde{I}_{t-1} + \tilde{\eta}_t^*$$

イロト イポト イヨト イヨト

ъ

Linearity and Gaussianity: unusual but convenient

• Stochastic volatility:

$$\begin{aligned} \log(\mathbf{y}_t) &= \log(\sigma_t) + \log(\epsilon_t) \\ \sigma_t^2 &= \exp(h_t) \\ h_t &= \mu(1-\phi) + \phi h_{t-1} + \eta_t^* \end{aligned}$$

• SIR-type compartment models:

$$\begin{array}{rcl} C_t & \sim & \mathsf{Pois}(\rho I_t) \\ I_t & \sim & \mathsf{bin}(S_{t-1}, \, e^{-\beta I_{t-1}^{\alpha}}) - \\ & - & \mathsf{bin}(I_{t-1}, \, e^{-\gamma}) \end{array}$$

(日)

Linearity and Gaussianity: unusual but convenient

• Stochastic volatility:

$$dy^{*}(t) = \mu + \beta \sigma^{2}(t)dt + \sigma(t)dB(t)$$

$$d\sigma^{2}(t) = -\lambda \sigma^{2}(t)dt + dz(\lambda t)$$

SIR-type compartment models:

$$P(S \to S) = 1 - \beta s i^{\alpha} h + o(h)$$

$$P(S \to I) = \beta s i^{\alpha} h + o(h)$$

Contribution (I): R package POMP (Frequentist particle filter, PMCMC, ABC, etc)

O C			
C III Apple Ya	ahoo! Google Maps YouTube Wikipedia News▼ Popular▼ iCloud Facebook Twit		
	pomp		
pomp: Statis	tical inference for partially observed Markov processes		
pompi budubuldul iniciondo ioi purdiulij obbeliou inicioi procebbeb			
Inference methods t	for partially-observed Markov processes		
Version:	0 53-5		
Depends:	R (> 3.0.0) subplex ploptr		
Importa	state graphics methods mutacrim defelue code		
Dablished	stats, graphics, memous, <u>memorin</u> , <u>desorve</u> , <u>coda</u>		
Published:	2014-08-04		
Author:	Aaron A. King [aut, cre], Edward L. Ionides [aut], Carles Breto [aut], Stephen P. Elln [ctb], Simon N. Wood [ctb]		
Maintainer:	Aaron A. King <kingaa at="" umich.edu=""></kingaa>		
License:	<u>GPL-2</u> <u>GPL-3</u> [expanded from: GPL (≥ 2)]		
URL:	http://pomp.r-forge.r-project.org		
NeedsCompilation	i: yes		
Citation:	pomp citation info		
Materials:	<u>NEWS</u>		

POMP object: notation

- Formal:
 - Markov unobservables: $(X_1(t), \ldots, X_{K_X}(t))$
 - Unobservable time: either continuous $t \in \mathbb{R}_0^+$ or discrete $t \in \mathbb{N}_0$
 - Conditionally independent measurements: $(Y_1(t_n), \ldots, Y_{K_Y}(t_n))$
 - Measurement time: discrete t₁,..., t_N
 - Parameters θ
- Algorithmic (POMP code):
 - rprocess: a draw from $f_{\mathbf{X}(t_n)|\mathbf{X}(t_{n-1})}(\mathbf{X}(t_n)|\mathbf{X}(t_{n-1}), \theta)$
 - dprocess: evaluate $f_{\boldsymbol{X}(t_n)|\boldsymbol{X}(t_{n-1})}(\boldsymbol{x}(t_n)|\boldsymbol{x}(t_{n-1}), \boldsymbol{\theta})$
 - rmeasure: a draw from $f_{\mathbf{Y}(t_n)|\mathbf{X}(t_n)}(\mathbf{y}(t_n)|\mathbf{x}(t_n), \theta)$
 - dmeasure: evaluate $f_{\mathbf{Y}(t_n)|\mathbf{X}(t_n)}(\mathbf{y}(t_n)|\mathbf{x}(t_n), \theta)$
- Nuisances: Initial value parameters

(ロ) (同) (三) (三) (三) (三) (○) (○)

POMP inference: difficult parameter estimation

- Alternative model-based inference approaches:
 - MoM (need to check moments, not full information)
 - MQLE (need to check Gaussian approx.)
 - Bayesian MCMC (Jaquier et al., 1994) (need to check priors)
 - EMM (Gallant & Tauchen, 1996) (need to check auxiliary model)
 - MCL (Sandmann and Koopman, 1998) (need to check approx.)
 - EIS (Lesenfeld and Richard, 2003) (need to check Imp. Sampler)
- Reasonable estimates on average across different samples (error compensation)
- We have only one (long) sample: importance of efficiency
- What about "plug-and-play" modelling?

POMP: Plug-and-play inference

- Plug-and-play algorithm:
 - rprocess but not dprocess
 - · code simulating sample paths is "plugged" into inference software
- Not plug-and-play:
 - EM algorithm (dprocess)
 - MCMC (dprocess+dmeasure)
- Bayesian plug-and-play:
 - Artificial parameter evolution (Liu & West, 2001: posterior correction, rprocess+dmeasure)
 - ABC (Beaumont et al., 2002: sufficient statistics, rprocess+rmeasure)
 - PMCMC (Andrieu et al., 2010: SMC + MCMC, rprocess+dmeasure)
- Non-Bayesian plug-and-play:
 - Iterated filtering (Ionides et al., 2006: likelihood-based inference, rprocess+dmeasure)

Other settings: plug-and-play

- Optimization: Methods requiring only evaluation of the objective function to be optimized are sometimes called gradient-free. This is the same concept as plug-and-play: the code to evaluate the objective function can be plugged into the optimizer
- Complex systems: Methods to study the behavior of large numerical simulations (e.g., molecular models for phase transitions) that only employ the underlying code as a "black box" to generate simulations are called equation-free (Kevrekidis et al., 2003, 2004)
- ABC and PMCMC: Plug-and-play methods have recently been called likelihood-free. In this terminology, iterated filtering does likelihood-free likelihood-based inference

Cost: plug-and-play

- Efficiency: Approximate Bayesian methods and simulated moment methods lead to a loss of statistical efficiency
- Iterated filtering: enables (almost) exact likelihood-based inference
- Improvements: numerical efficiency may be possible when analytic properties are available (at the expense of plug-and-play). But many interesting dynamic models are analytically intractable—for example, it is standard to investigate systems of ordinary differential equations numerically

Contribution (II): iterated filtering algorithm Plug-and-play <u>likelihood-based inference</u> on POMPs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Iterated filtering. *Filtering Probl.*: extensively-studied Cond. distr. of state $x(t_n)$ given obs. $y(t_1), \ldots, y(t_n)$

Iterated filtering: sequence of solutions to filtering to maximize likelihood over unknown parameters

Iterated filtering. Sequential Monte Carlo Provides plug-and-play filter (for P&P IF and PMCMC)

SQC.

Likelihood-based inference via iterated filtering

- MLE: asymptotically smallest estimator variance across different samples
- The properties of likelihood-based inference have been extensively studied:
 - 1. Invariant estimators
 - 2. Nested and non-nested hypothesis testing (via LR and AIC) (meaningful differences in the criterion)
 - 3. Computationally cheap standard errors (via FI)
 - 4. Likelihood profiles: robustness to identifiability issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Toy example: AR(1) with noisy measurement

$$\begin{array}{rcl} \boldsymbol{X}_t &=& \phi \boldsymbol{X}_{t-1} + \boldsymbol{\epsilon}_{xt} \\ \boldsymbol{Y}_t &=& \boldsymbol{X}_t + \boldsymbol{\epsilon}_{yt} \end{array} \\ \left(\begin{array}{c} \boldsymbol{\epsilon}_{xt} \\ \boldsymbol{\epsilon}_{yt} \end{array} \right) = \boldsymbol{\mathsf{N}} \left(\begin{array}{c} \boldsymbol{0}, & \left(\begin{array}{c} \sigma_x^2 & \boldsymbol{0} \\ \boldsymbol{0} & \sigma_y^2 \end{array} \right) \end{array} \right) \end{array}$$

Stochastic Leverage

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Toy example: AR(1) with noisy measurement

$$X_t = \phi X_{t-1} + \epsilon_{xt}$$

$$Y_t = X_t + \epsilon_{yt}$$

$$\begin{pmatrix} \epsilon_{xt} \\ \epsilon_{yt} \end{pmatrix} = \mathsf{N} \begin{pmatrix} 0, & \begin{pmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{pmatrix} \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Toy example: AR(1) with noisy measurement

$$X_t = \phi X_{t-1} + \epsilon_{xt}$$

$$Y_t = X_t + \epsilon_{yt}$$

$$\begin{pmatrix} \epsilon_{xt} \\ \epsilon_{yt} \end{pmatrix} = \mathsf{N} \begin{pmatrix} 0, & \begin{pmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{pmatrix} \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Extend the model: Random-walk time-varying parameters

$$X_{t} = \operatorname{logit}(\phi_{t})X_{t-1} + \epsilon_{xt}$$

$$Y_{t} = X_{t} + \epsilon_{yt}$$

$$\phi_{t} = \phi_{t-1} + \epsilon_{\phi t}$$

$$\epsilon_{xt}$$

$$\epsilon_{yt} = N \left(\begin{array}{c} \sigma_{x}^{2} & 0 & 0 \\ 0 & \sigma_{y}^{2} & 0 \end{array} \right)$$

$$\begin{pmatrix} \epsilon_{yt} \\ \epsilon_{\phi t} \end{pmatrix} = \mathbf{N} \begin{pmatrix} 0, & \begin{pmatrix} 0 & \sigma_y^2 & 0 \\ 0 & 0 & \sigma_{\phi}^2 \end{pmatrix}$$

Take a limit as $\sigma_{\phi} \downarrow 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Extend the model: Random-walk time-varying parameters

$$X_{t} = \operatorname{logit}(\phi_{t})X_{t-1} + \epsilon_{xt}$$

$$Y_{t} = X_{t} + \epsilon_{yt}$$

$$\phi_{t} = \phi_{t-1} + \epsilon_{\phi t}$$

$$\begin{pmatrix} \epsilon_{xt} \\ \epsilon_{yt} \\ \epsilon_{\phi t} \end{pmatrix} = \operatorname{N}\left(\begin{array}{ccc} 0, & \begin{pmatrix} \sigma_{x}^{2} & 0 & 0 \\ 0 & \sigma_{y}^{2} & 0 \\ 0 & 0 & \sigma_{\phi}^{2} \end{array}\right)\right)$$

Take a limit as $\sigma_{\phi} \downarrow 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Extend the model: Random-walk time-varying parameters

$$X_{t} = \operatorname{logit}(\phi_{t})X_{t-1} + \epsilon_{xt}$$

$$Y_{t} = X_{t} + \epsilon_{yt}$$

$$\phi_{t} = \phi_{t-1} + \epsilon_{\phi t}$$

$$\begin{pmatrix} \epsilon_{xt} \\ \epsilon_{yt} \\ \epsilon_{\phi t} \end{pmatrix} = \operatorname{N}\left(\begin{array}{ccc} 0, & \begin{pmatrix} \sigma_{x}^{2} & 0 & 0 \\ 0 & \sigma_{y}^{2} & 0 \\ 0 & 0 & \sigma_{\phi}^{2} \end{array}\right) \right)$$

Take a limit as $\sigma_{\phi} \downarrow 0$

$E[\phi_t | y_{1:t}]$: Local estimates of fixed AR parameter ϕ $V[\phi_t | y_{1:t}]$: weighted by local uncertainty

Iteration = 1

 $E[\phi_t | y_{1:t}]$: Local estimates of fixed AR parameter ϕ $V[\phi_t | y_{1:t}]$: weighted by local uncertainty

Iteration = 2

$E[\phi_t | y_{1:t}]$: Local estimates of fixed AR parameter ϕ $V[\phi_t | y_{1:t}]$: weighted by local uncertainty

Iteration = 3

$E[\phi_t | y_{1:t}]$: Local estimates of fixed AR parameter ϕ $V[\phi_t | y_{1:t}]$: weighted by local uncertainty

Iteration = 5

$E[\phi_t | y_{1:t}]$: Local estimates of fixed AR parameter ϕ $V[\phi_t | y_{1:t}]$: weighted by local uncertainty

Iteration = 10

$E[\phi_t | y_{1:t}]$: Local estimates of fixed AR parameter ϕ $V[\phi_t | y_{1:t}]$: weighted by local uncertainty

Iteration = 20

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Easy to implement: Use POMP package!

- SMC Filtering input:
 - $f(x_t|x_{t-1})$ or *rprocess*: rnorm($\phi x_{t-1}, \sigma_x^2$)
 - $f(y_t|x_t)$ or *dmeasure*: dnorm (x_t, σ_y^2)

$$X_t = \phi X_{t-1} + \epsilon_{xt}$$
$$Y_t = X_t + \epsilon_{yt}$$
$$\begin{pmatrix} \epsilon_{xt} \\ \epsilon_{yt} \end{pmatrix} = \mathsf{N} \left(\begin{array}{cc} 0, & \begin{pmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{pmatrix} \right)$$

- Algorithmic input:
 - Extended model variance (σ_{ϕ}^2) : how big should the random walk variances in the extended model be
 - Speed of convergence ($\sigma_{\phi}^2 \rightarrow 0$): how fast should the extended model converge to the true model (\propto number of iterations)

Accurate: Maximizing the likelihood

Contribution (III): Example from financial econometrics Stochastic volatility with stochastic leverage

・ロト・西ト・西ト・西ト・日・ つんの

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Leverage equations: Harvey & Shephard, 1996

Stochastic volatility with leverage (Harvey & Shephard, 1996)

$$y_t = \sigma_t^2 \epsilon_t = \exp\left\{h_t/2\right\} \epsilon_t$$

$$h_t = \mu_h(1-\phi) + \phi h_{t-1} + \sigma_\eta \sqrt{1-\phi^2} \left(\rho \epsilon_{t-1} + \omega_t \sqrt{1-\rho^2}\right)$$

- Modifications to POMP code:
 - rprocess: $f(x_t|x_{t-1}) = \operatorname{rnorm}(\phi x_{t-1}, \sigma_x^2) \longrightarrow \operatorname{rnorm}(\mu_{x_t|x_{t-1}}, \sigma_{x_t|x_{t-1}}^2)$ $\mu_{x_t|x_{t-1}} = \mu(1 - \phi) + \phi h_{t-1} + \sigma_\eta \sqrt{1 - \phi^2} \rho \epsilon_{t-1}$ $\sigma_{x_t|x_{t-1}}^2 = \sigma_\eta \sqrt{1 - \phi^2} \sqrt{1 - \rho^2}$ • *dmeasure*: $f(y_t|x_t) = \operatorname{dnorm}(x_t, \sigma_v^2) \longrightarrow \operatorname{dnorm}(0, \sigma_t^2)$

Idiosyncratic leverage: AR and RW equations

• Stochastic volatility with stochastic leverage (Bretó, 2013)

$$y_t = \sigma_t^2 \epsilon_t = \exp\left\{h_t/2\right\} \epsilon_t$$

$$h_t = \mu_h(1-\phi) + \phi h_{t-1} + \sigma_\eta \sqrt{1-\phi^2} \left(\rho_t \epsilon_{t-1} + \omega_t \sqrt{1-\rho^2}\right)$$

- Fisher-transformed correlation: $\rho_t = \frac{e^{2f_t}-1}{e^{2f_t}+1} \in (-1, 1)$
- AR(1) leverage: $f_t = \mu_f (1 \psi) + \psi f_{t-1} + \nu_t \sigma_{\nu} \sqrt{1 \psi^2}$
- RW leverage: $f_t = f_{t-1} + \nu_t \sigma_{\nu}$
- Stochastic volatility with random walk leverage: highly non-Gaussian, non-linear state-space model

Data analysis: S&P500 1988-2012 (25 y., 6302 obs.)

• Estimates for the volatility equation: usual & equal

Model	μ_h	ϕ	σ_η
Fixed leverage	-0.2506	0.9805	0.9003
	(0.0710)	(0.0017)	(0.0375)
Random-walk leverage	-0.2610	0.9818	0.9222
	(0.0776)	(0.0015)	(0.0406)

• ρ and likelihood (6.78 log-lik. units \approx 7 parameters)

Model	ρ	$\sigma_{ u}$	ℓ
Fixed leverage	-0.6579	_	-8416.44
	(0.0599)	_	(0.0410)
Random-walk leverage	_	0.0086	-8409.06
	_	(0.0013)	(0.1333)

Random walk leverage (1988-2012, 25 y., 6302 obs.)

◆□▶★@▶★≧▶★≧▶ ≧ のQで

Random walk leverage (1988-2012, 25 y., 6302 obs.)

Flexibility: Extending stochastic volatility models

• Yu 2012

$$h_{t+1} = \varphi h_t + \gamma \sum_{i=1}^{m+1} (\rho_i \epsilon_t + \sqrt{1 - \rho_i^2} w_t) \mathbf{1}(\tau_{i-1} \ge \epsilon_t > \tau_i)$$

Bandi & Renó 2012

$$\begin{split} \begin{pmatrix} d\log p_t \\ d\xi(\sigma_t^2) \end{pmatrix} &= \begin{pmatrix} \mu_t \\ m_t \end{pmatrix} dt + \begin{pmatrix} \sigma_t & 0 \\ 0 & \Lambda(\sigma_t^2) \end{pmatrix} \\ &\times \begin{pmatrix} \rho(\sigma_t^2) & \sqrt{1 - \rho^2(\sigma_t^2)} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} dW_t^1 \\ dW_t^2 \end{pmatrix} + \begin{pmatrix} dJ_t^r \\ dJ_t^\sigma \end{pmatrix} \end{split}$$

Veraart & Veraart 2012

$$dY_t = \left(\mu + b\sigma_t^2\right) dt + \sigma_t dX_t,$$

$$dX_t = \rho_t dW_t + \sqrt{1 - \rho_t^2} d\widetilde{W}_t,$$

$$d\sigma_t^2 = \alpha(\beta - \sigma_t^2) dt + \gamma \sigma_t dW_t,$$

$$d\rho_t = \left((2\zeta - \eta) - \eta\rho_t\right) dt + \theta \sqrt{(1 + \rho_t)(1 - \rho_t)} dW_t^V$$

Empirical evidence: Bandi and Renó (2012)

- Model: driven by mean-reverting spot volatility $\rho_t = \rho(\sigma_t^2)$
- Period: 1982-2008 (long: 27 years)
- Estimation: non-parametric & high-frequency data
- Results: $\rho_t \in (-0.45, -0.25) \pm \text{s.e.}$
- Implication: $E[\rho_t] \approx -0.30$ (?)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Empirical evidence: Yu (2012)

• Model: white noise driven by return noise ϵ_{t-1}

• $m = 1 \& \tau_1 = 0$: simply two leverages

Empirical evidence: Yu (2012)

Data	Model	-Log MargLik	σ	φ	γ	ρ_1	ρ_2	ρ_3
S&P500	Basic	1730.26	0.9302 (0.067) [0.001]	0.9426 (0.019) [0.0008]	0.2621 (0.042) [0.0021]			
	Leverage	1720.13	0.9336 (0.055) [0.0014]	0.9212 (0.024) [0.0012]	0.3066 (0.049) [0.0030]	-0.3691 (0.087) [0.0041]		
	Spline1	1700.40	2.077 (0.3961) [0.015]	0.9135 (0.019) [0.0008]	0.3689 (0.058) [0.0026]	-0.8386 (0.090) [0.0133]	0.1435 (0.137) [0.005]	
	Spline2	1704.38	1.874 (0.3537) [0.014]	0.9157 (0.019) [0.0007]	0.3458 (0.051) [0.0022]	-0.8446 (0.1079) [0.0046]	0.2059 (0.3484) [0.011]	0.1429 (0.1672) [0.0066]

- Model: white noise driven by return noise ϵ_{t-1}
- Period: 1986-1989 (shorter: 4 years)
- Estimation: non-parametric & MCMC
- Results (m=2): $\rho_t \in (-1, -0.65) \cup (-0.13, 0.40)$
- Implication: $E[\rho_t] \approx -0.35$ ($\approx \rho$)

A B > A B >

Idiosyncratic leverage: Veraart & Veraart (2012)

Idiosyncratic leverage: Veraart & Veraart (2012)

• Model: driven by idiosyncratic, independent Jacobi process V_t

$$dV_t = (\zeta - V_t)dt + \theta \sqrt{V_t(1 - V_t)}dW_t$$

$$\rho_t = 2V(t) - 1 \in [-1, 1]$$

- Period, Estimation, Results: –
- Implication: $E[\rho_t] = 2\zeta 1$
- Good candidate for new evidence!

≣ *•*)९(~

・ロット (雪) (日) (日)

AR / RW evidence: consistent with Yu (2012)?

- Period 1988-1999:
 - RW: $\rho_t \in (-0.55, -0.10)$
 - Yu (2012): ρ₁ ∈ (−0.5431, −0.1951)

AR / RW evidence: consistent with Bandi (2012)?

• Period 2003-2012:

- RW: ρ_t ∈ (−0.9, −0.6)
- Bandi (2012): ρ_t "more negative than those generally found in the literature" when using VIX as an instrumental variable for daily variance estimation

AR / RW evidence: consistent with Veraart (2012)?

- RW decade 1988-1997: $E[\rho_t] \approx -0.4$
- RW decade 2003-2012: $E[\rho_t] \approx -0.8$
- Fixed-leverage: $\rho \approx -0.6$

Idiosyncratic leverage: AR and RW evidence

- Model: driven by idiosyncratic AR/RW process
- Period: 1988-2012 (three sub-periods)
- Estimation: parametric & likelihood maximization
- Results: $\rho_t \in (-0.8, -0.3) \pm$ s.e. (consistent with Bandi, Yu, and Veraart?)
- Implication: $E[\rho_t] = ?$ $E[\rho_t] \approx -0.6 (\approx \rho) ?$

Theory behind iterated filtering

• Update:
$$\hat{\theta}_0^{(n+1)} = V_{1,n} \Big(\sum_{t=1}^{T-1} (V_{t,n}^{-1} - V_{t+1,n}^{-1}) \hat{\theta}_t^{(n)} + V_{T,n}^{-1} \hat{\theta}_T^{(n)} \Big)$$

• Equivalently $\hat{\theta}^{(n+1)} = \hat{\theta}^{(n)} + V_{1,n} \sum_{t=1}^{T} V_{t,n}^{-1} (\hat{\theta}_t^{(n)} - \hat{\theta}_{t-1}^{(n)})$

Assuming sufficient regularity conditions, a Taylor expansion gives

$$\lim_{\sigma \to 0} \sum_{t=1}^{T} V_t^{-1}(\hat{\theta}_t - \hat{\theta}_{t-1}) = \nabla \log f(y_{1:T}|\theta, \sigma = 0)$$

Theory behind iterated filtering

- Update: $\hat{\theta}_0^{(n+1)} = V_{1,n} \Big(\sum_{t=1}^{T-1} (V_{t,n}^{-1} V_{t+1,n}^{-1}) \hat{\theta}_t^{(n)} + V_{T,n}^{-1} \hat{\theta}_T^{(n)} \Big)$
- Equivalently $\hat{\theta}^{(n+1)} = \hat{\theta}^{(n)} + V_{1,n} \sum_{t=1}^{T} V_{t,n}^{-1} (\hat{\theta}_{t}^{(n)} \hat{\theta}_{t-1}^{(n)})$
- Assuming sufficient regularity conditions, a Taylor expansion gives

$$\lim_{\sigma \to 0} \sum_{t=1}^{T} V_t^{-1}(\hat{\theta}_t - \hat{\theta}_{t-1}) = \nabla \log f(y_{1:T}|\theta, \sigma = 0)$$

Theory behind iterated filtering

- Update: $\hat{\theta}_0^{(n+1)} = V_{1,n} \Big(\sum_{t=1}^{T-1} (V_{t,n}^{-1} V_{t+1,n}^{-1}) \hat{\theta}_t^{(n)} + V_{T,n}^{-1} \hat{\theta}_T^{(n)} \Big)$
- Equivalently $\hat{\theta}^{(n+1)} = \hat{\theta}^{(n)} + V_{1,n} \sum_{t=1}^{T} V_{t,n}^{-1} (\hat{\theta}_{t}^{(n)} \hat{\theta}_{t-1}^{(n)})$
- Assuming sufficient regularity conditions, a Taylor expansion gives

$$\lim_{\sigma \to 0} \sum_{t=1}^{T} V_t^{-1}(\hat{\theta}_t - \hat{\theta}_{t-1}) = \nabla \log f(y_{1:T}|\theta, \sigma = 0)$$

A word of caution: Compartment models with random

Continuous Time Markov Chain (system of death processes)

$$P(\Delta N_{S_1 l_1^*}(t) = 0 | \mathbf{X}(t) = \mathbf{x}) = 1 - (1 - \gamma)\lambda_1 s_1 h + o(h)$$

$$P(\Delta N_{S_1 l_1^*}(t) = 1 | \mathbf{X}(t) = \mathbf{x}) = (1 - \gamma)\lambda_1 s_1 h + o(h)$$

$$P(\Delta N_{S_1 l_1^*}(t) > 1 | \mathbf{X}(t) = \mathbf{x}) = o(h)$$

Continuous-time & iterated filtering

- IF has been applied to continuous-time stochastic volatility models
 - Comment to Andrieu et al., 2010, JRSSB: Particle MCMC and continuous-time Lévy-driven stochastic volatility model (Barndorff-Nielsen and Sheppard, 2001)

$$dy^{*}(t) = \mu + \beta \sigma^{2}(t)dt + \sigma(t)dB(t)$$
$$d\sigma^{2}(t) = -\lambda \sigma^{2}(t)dt + dz(\lambda t)$$

 Working paper - Bretó and Veiga: Forecasting performance and continuous-time log-linear one volatility factor model (Chernov et al., 2003)

$$dU_{1}(t) = \alpha_{10}dt + \exp(\beta_{10} + \beta_{12}U_{2}(t))(\psi_{11}dW_{1}(t) + \psi_{12}dW_{2}(t))$$

$$dU_{2}(t) = \alpha_{22}U_{2}(t)dt + (1 + \beta_{22}U_{2}(t))dW_{2}(t).$$

Continuous-time SV

 Introduction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Introduction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Take-home message: straightforward, likelihood-based inference is possible for general dynamic systems

THANK YOU