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Example of dynamic systems: financial crisis
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Another dynamic system: Infectious Disease
Epidemics



Introduction Iterated Filtering Stochastic Leverage



Introduction Iterated Filtering Stochastic Leverage

Problem: realistic models are likely
non-linear, non-Gaussian & partially observed
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Hence: their statistical analysis is complicated
& slows down scientific exploration
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Contribution (I): R package POMP
(Frequentist particle filter, PMCMC, ABC, etc)
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Contribution (II): iterated filtering algorithm
Plug-and-play likelihood-based inference on POMPs



Introduction Iterated Filtering Stochastic Leverage

Contribution (III): Example from financial econometrics
Stochastic volatility with stochastic leverage
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Take-home message: straightforward,
likelihood-based inference is possible for general

dynamic systems
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Problem: realistic models are likely
non-linear, non-Gaussian & partially observed
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State-space: unobservable variables/mechanisms
Coca−cola Returns

Time
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• Stochastic volatility:

yt = σtεt

σ2
t = exp (ht )

ht = µ(1− φ) + φht−1 + η∗t

• SIR-type compartment models:

Ct = ρIt + σεt

It = exp(̃It ) = (βSt−1)Iαt−1η
∗
t

Ĩt = (β̃ + S̃t−1) + αĨt−1 + η̃∗t
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Linearity and Gaussianity: unusual but convenient
Coca−cola Returns
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• Stochastic volatility:

log(yt ) = log(σt ) + log(εt )

σ2
t = exp (ht )

ht = µ(1− φ) + φht−1 + η∗t

• SIR-type compartment models:

Ct ∼ Pois(ρIt )
It ∼ bin

(
St−1, e−βIαt−1

)
−

− bin
(
It−1, e−γ

)
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Linearity and Gaussianity: unusual but convenient

• Stochastic volatility:

dy∗(t) = µ+ βσ2(t)dt + σ(t)dB(t)
dσ2(t) = −λσ2(t)dt + dz(λt)

• SIR-type compartment models:

P(S → S) = 1− βsiαh + o(h)

P(S → I) = βsiαh + o(h)
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Contribution (I): R package POMP
(Frequentist particle filter, PMCMC, ABC, etc)
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POMP object: notation

• Formal:

• Markov unobservables:
(

X1(t), . . . ,XKX (t)
)

• Unobservable time: either continuous t ∈ R+
0 or discrete t ∈ N0

• Conditionally independent measurements:
(

Y1(tn), . . . ,YKY (tn)
)

• Measurement time: discrete t1, . . . , tN
• Parameters θ

• Algorithmic (POMP code):

• rprocess: a draw from fX (tn)|X (tn−1)(x(tn)|x(tn−1),θ)

• dprocess: evaluate fX (tn)|X (tn−1)(x(tn)|x(tn−1),θ)

• rmeasure: a draw from fY (tn)|X (tn)(y(tn)|x(tn),θ)

• dmeasure: evaluate fY (tn)|X (tn)(y(tn)|x(tn),θ)

• Nuisances: Initial value parameters
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POMP inference: difficult parameter estimation

• Alternative model-based inference approaches:

• MoM (need to check moments, not full information)

• MQLE (need to check Gaussian approx.)

• Bayesian MCMC (Jaquier et al., 1994) (need to check priors)

• EMM (Gallant & Tauchen, 1996) (need to check auxiliary model)

• MCL (Sandmann and Koopman, 1998) (need to check approx.)

• EIS (Lesenfeld and Richard, 2003) (need to check Imp. Sampler)

• Reasonable estimates on average across different samples
(error compensation)

• We have only one (long) sample: importance of efficiency

• What about “plug-and-play” modelling?
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POMP: Plug-and-play inference

• Plug-and-play algorithm:
• rprocess but not dprocess
• code simulating sample paths is “plugged” into inference software

• Not plug-and-play:
• EM algorithm (dprocess)
• MCMC (dprocess+dmeasure)

• Bayesian plug-and-play:
• Artificial parameter evolution (Liu & West, 2001: posterior

correction, rprocess+dmeasure)
• ABC (Beaumont et al., 2002: sufficient statistics,

rprocess+rmeasure)
• PMCMC (Andrieu et al., 2010: SMC + MCMC,

rprocess+dmeasure)

• Non-Bayesian plug-and-play:
• Iterated filtering (Ionides et al., 2006: likelihood-based inference,

rprocess+dmeasure)
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Other settings: plug-and-play

• Optimization: Methods requiring only evaluation of the objective
function to be optimized are sometimes called gradient-free. This
is the same concept as plug-and-play: the code to evaluate the
objective function can be plugged into the optimizer

• Complex systems: Methods to study the behavior of large
numerical simulations (e.g., molecular models for phase
transitions) that only employ the underlying code as a “black box”
to generate simulations are called equation-free (Kevrekidis et
al., 2003, 2004)

• ABC and PMCMC: Plug-and-play methods have recently been
called likelihood-free. In this terminology, iterated filtering does
likelihood-free likelihood-based inference
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Cost: plug-and-play

• Efficiency: Approximate Bayesian methods and simulated
moment methods lead to a loss of statistical efficiency

• Iterated filtering: enables (almost) exact likelihood-based
inference

• Improvements: numerical efficiency may be possible when
analytic properties are available (at the expense of
plug-and-play). But many interesting dynamic models are
analytically intractable—for example, it is standard to investigate
systems of ordinary differential equations numerically
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Contribution (II): iterated filtering algorithm
Plug-and-play likelihood-based inference on POMPs
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Iterated filtering. Filtering Probl.: extensively-studied
Cond. distr. of state x(tn) given obs. y(t1), . . . , y(tn)
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Iterated filtering: sequence of solutions to filtering
to maximize likelihood over unknown parameters
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Iterated filtering. Sequential Monte Carlo
Provides plug-and-play filter (for P&P IF and PMCMC)
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Likelihood-based inference via iterated filtering

• MLE: asymptotically smallest estimator variance across different
samples

• The properties of likelihood-based inference have been
extensively studied:

1. Invariant estimators

2. Nested and non-nested hypothesis testing (via LR and AIC)
(meaningful differences in the criterion)

3. Computationally cheap standard errors (via FI)

4. Likelihood profiles: robustness to identifiability issues
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Toy example: AR(1) with noisy measurement

Xt = φXt−1 + εxt

Yt = Xt + εyt(
εxt
εyt

)
= N

(
0,

(
σ2

x 0
0 σ2

y

) )



Introduction Iterated Filtering Stochastic Leverage

Toy example: AR(1) with noisy measurement

Xt = φXt−1 + εxt

Yt = Xt + εyt(
εxt
εyt

)
= N

(
0,

(
σ2

x 0
0 σ2

y

) )



Introduction Iterated Filtering Stochastic Leverage

Toy example: AR(1) with noisy measurement

Xt = φXt−1 + εxt

Yt = Xt + εyt(
εxt
εyt

)
= N

(
0,

(
σ2

x 0
0 σ2

y

) )



Introduction Iterated Filtering Stochastic Leverage

Extend the model: Random-walk time-varying
parameters

Xt = logit(φt )Xt−1 + εxt

Yt = Xt + εyt

φt = φt−1 + εφt εxt
εyt
εφt

 = N

 0,

 σ2
x 0 0

0 σ2
y 0

0 0 σ2
φ

 
Take a limit as σφ ↓ 0
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E [φt |y1:t ]: Local estimates of fixed AR parameter φ
V [φt |y1:t ]: weighted by local uncertainty

Iteration = 1
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E [φt |y1:t ]: Local estimates of fixed AR parameter φ
V [φt |y1:t ]: weighted by local uncertainty

Iteration = 2
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E [φt |y1:t ]: Local estimates of fixed AR parameter φ
V [φt |y1:t ]: weighted by local uncertainty

Iteration = 3
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E [φt |y1:t ]: Local estimates of fixed AR parameter φ
V [φt |y1:t ]: weighted by local uncertainty

Iteration = 5
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E [φt |y1:t ]: Local estimates of fixed AR parameter φ
V [φt |y1:t ]: weighted by local uncertainty

Iteration = 10
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E [φt |y1:t ]: Local estimates of fixed AR parameter φ
V [φt |y1:t ]: weighted by local uncertainty

Iteration = 20
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Easy to implement: Use POMP package!

• SMC Filtering input:

• f (xt |xt−1) or rprocess: rnorm(φxt−1, σ2
x )

• f (yt |xt ) or dmeasure: dnorm(xt , σ2
y )

Xt = φXt−1 + εxt

Yt = Xt + εyt(
εxt
εyt

)
= N

(
0,

(
σ2

x 0
0 σ2

y

) )
• Algorithmic input:

• Extended model variance (σ2
φ): how big should the random walk

variances in the extended model be
• Speed of convergence (σ2

φ → 0 ): how fast should the extended
model converge to the true model (∝ number of iterations)
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Accurate: Maximizing the likelihood

1!! gives mean time to recovery; 1!r and 1!(kr2) are respectively
the mean and variance of the immune period; 1!m is the life
expectancy excluding cholera mortality, and mc is the mortality
rate for infected individuals. The equation for dNt

BS in Eq. 4 is
based on cholera mortality being a negligible proportion of total
mortality. The stochastic system was solved numerically using the
Euler–Maruyama method (32) with time increments of 1!20
month. The data on observed mortality were modeled as yt !
![Ct " Ct"1, "2(Ct " Ct"1)2], where Ct # Nt

IC. In the
terminology given above, the state process xt is a vector repre-
senting counts in each compartment.

Results
Testing the Method Using Simulated Data. Here, we provide evi-
dence that the MIF methodology successfully maximizes the
likelihood. Likelihood maximization is a key tool not just for
point estimation, via the maximum likelihood estimate (MLE),
but also for profile likelihood calculation, parametric bootstrap
confidence intervals, and likelihood ratio hypothesis tests (34).

We present MIF on a simulated data set (Fig. 2 A), with
parameter vector #* given in Table 1, based on data analysis

and!or scientifically plausible values. Visually, the simulations
are comparable to the data in Fig. 2B. Table 1 also contains the
resulting estimated parameter vector #̂ from averaging four
MIFs, together with the maximized likelihood. A preliminary
indicator that MIF has successfully maximized the likelihood is
that "(#̂) $ "(#*). Further evidence that MIF is closely approx-
imating the MLE comes from convergence plots and sliced
likelihoods (described below), shown in Fig. 3. The SEs in Table
1 were calculated via the sliced likelihoods, as described below
and elaborated in Supporting Text. Because inference on initial
values is not of primary relevance here, we do not present
standard errors for their estimates. Were they required, we
would recommend profile likelihood methods for uncertainty
estimates of initial values. There is no asymptotic justification of
the quadratic approximation for initial value parameters, since
the information in the data about such parameters is typically
concentrated in a few early time points.

Applying the Method to Cholera Mortality Data. We use the data in
Fig. 2B and the model in Eqs. 3 and 4 to address two questions:
the strength of the environmental reservoir effect, and the
influence of ENSO on cholera dynamics. See refs. 19 and 20 for
more extended analyses of these data. A full investigation of the
likelihood function is challenging, due to multiple local maxima
and poorly identified combinations of parameters. Here, these
problems are reduced by treating two parameters (m and r) as
known. A value k # 3 was chosen based on preliminary analysis.
The remaining 15 parameters (the first eleven parameters in
Table 1 and the initial values S0, I0, R0

1, R0
2, R0

3, constrained to

Fig. 2. Data and simulation. (A) One realization of the model using the
parameter values in Table 1. (B) Historic monthly cholera mortality data for
Dhaka, Bangladesh. (C) Southern oscillation index (SOI), smoothed with local
quadratic regression (33) using a bandwidth parameter (span) of 0.12.

Table 1. Parameters used for the simulation in Fig. 2A together
with estimated parameters and their SEs where applicable

#* #̂ SE(#̂)

b0 "0.58 "0.50 0.13
b1 4.73 4.66 0.15
b2 "5.76 "5.58 0.42
b3 2.37 2.30 0.14
b4 1.69 1.77 0.08
b5 2.56 2.47 0.09
$ % 104 1.76 1.81 0.26
" 0.25 0.26 0.01
% 0.80 0.78 0.06
1!! 0.75
mc 0.046
1!m 600
1!r 120
k 3
" "3,690.4 "3,687.5

Log likelihoods, ", evaluated with a Monte Carlo standard deviation of 0.1,
are also shown.

Fig. 3. Diagnostic plots. (A–C) Convergence plots for four MIFs, shown for
three parameters. The dotted line shows #*. The parabolic lines give the sliced
likelihood through #̂, with the axis scale at the top right. (D–F) Corresponding
close-ups of the sliced likelihood. The dashed vertical line is at #̂.

18440 " www.pnas.org!cgi!doi!10.1073!pnas.0603181103 Ionides et al.
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Contribution (III): Example from financial econometrics
Stochastic volatility with stochastic leverage
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Leverage equations: Harvey & Shephard, 1996

• Stochastic volatility with leverage (Harvey & Shephard, 1996)

yt = σ2
t εt = exp

{
ht/2

}
εt

ht = µh(1− φ) + φht−1 + ση
√

1− φ2

(
ρεt−1 + ωt

√
1− ρ2

)

• Modifications to POMP code:

• rprocess:
f (xt |xt−1) = rnorm(φxt−1, σ2

x ) −→ rnorm(µxt |xt−1 , σ
2
xt |xt−1

)

µxt |xt−1 = µ(1− φ) + φht−1 + ση
√

1− φ2ρεt−1

σ2
xt |xt−1

= ση
√

1− φ2
√

1− ρ2

• dmeasure:
f (yt |xt ) = dnorm(xt , σ2

y ) −→ dnorm (0,σ2
t )
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Idiosyncratic leverage: AR and RW equations

• Stochastic volatility with stochastic leverage (Bretó, 2013)

yt = σ2
t εt = exp

{
ht/2

}
εt

ht = µh(1− φ) + φht−1 + ση
√

1− φ2

(
ρtεt−1 + ωt

√
1− ρ2

)

• Fisher-transformed correlation: ρt = e2ft−1
e2ft +1

∈ (−1,1)

• AR(1) leverage: ft = µf (1− ψ) + ψft−1 + νtσν
√

1− ψ2

• RW leverage: ft = ft−1 + νtσν

• Stochastic volatility with random walk leverage: highly
non-Gaussian, non-linear state-space model
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Data analysis: S&P500 1988-2012 (25 y., 6302 obs.)
• Estimates for the volatility equation: usual & equal

Model µh φ ση

Fixed leverage -0.2506 0.9805 0.9003
(0.0710) (0.0017) (0.0375)

Random-walk leverage -0.2610 0.9818 0.9222
(0.0776) (0.0015) (0.0406)

• ρ and likelihood (6.78 log-lik. units ≈ 7 parameters)

Model ρ σν `

Fixed leverage -0.6579 – -8416.44
(0.0599) – (0.0410)

Random-walk leverage – 0.0086 -8409.06
– (0.0013) (0.1333)
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Random walk leverage (1988-2012, 25 y., 6302 obs.)
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Random walk leverage (1988-2012, 25 y., 6302 obs.)
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Flexibility: Extending stochastic volatility models

• Yu 2012

Author's personal copy

J. Yu / Journal of Econometrics 167 (2012) 473–482 475
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Remark 2.1. The closed form expression for moments facilitates
calculations of all moments and model comparison. This result
holds true for any value ofm. Whenm ! 1, themoments involve
an infinite product and an infinite sum, and hence truncations are
inevitable.

Remark 2.2. Two choices have to be made in the proposed model,
m and ⌧ s. Ideally, one should allow m to increase with the
sample size (such as o(n)). However, the larger the m, the more
parameters in the model and hence the higher the computational
cost. Essentially increasing m trades off smaller bias with larger
variance. The reason that the variance increases withm is because
less effective observations are used to estimate ⇢

i

with a larger
m. To control the computational cost, we fix m in this paper.
The choice of ⌧ s could be based on trial and error or more
formally a model selection criterion. However, the exercise will be
computationally expensive if a large set of ⌧ s is considered.

Remark 2.3. If m = 1, there are only two regimes. When we set
⌧1 = 0, corr(✏

t

, v
t

) = ⇢1 if ✏
t

> 0 and corr(✏
t

, v
t

) = ⇢2 if ✏
t

 0.
This model nicely nests the classical leverage effect model and is
called Spline1 SV in this paper. The moments of y

t

is given by

E(y2i�1
t

) = 0,

E(y2i
t

) = (2i)!
2i

i! � 2i
G1(i, ⇢1, ⇢2, � ,'), i = 1, 2, . . . ,

where G1(s, ⇢1, ⇢2, � ,') = Q1
j=0{exp

� 1
2 s

2� 2'2j
� [�(s� 'j⇢1) +

�(�s� 'j⇢2)]}.
Remark 2.4. If m = 2 there are three regimes. This model is
called Spline2 SV in this paper. It is known in the GARCH literature
that when ✏

t

is very close to zero, volatility does not respond to
✏
t

in a significant manner (Engle and Ng, 1993). As a result, it is
reasonable to choose ⌧1 to be a small, positive number, ⌧2 to be
a small, negative number. However, if ⌧ s are too close to zero,
there are too few observations to estimate ⇢2; if ⌧1 (or ⌧2) is too
far away from zero, there are too few observations to estimate ⇢1
(or ⇢3). In the empirical applications, we choose ⌧1,2 = ±0.4. Since
Pr(✏

t

> 0.4) = Pr(✏
t

< �0.4) = 34.5%, Pr(|✏
t

| > 0.4) = 31%,
we have a nearly equal split of observations to estimate the ⇢s. A
drawbackwith such a choice is that the Spline2 SV does not nest the
Spline1 SV. Since ourmodel comparisonmethod is Bayesian-based,
such a drawback does not impose any problem to us.

Nearly all the existing ARCH models assume an additive
functional form to relate the conditional variance (or log-variance)
to the return news and the lagged conditional variance. Such an
additive structure greatly facilitates the news impact analysis.
The news impact function (NIF), first introduced in Pagan and
Schwert (1990) and extended by Engle and Ng (1993), treats the
conditional variance as a function of the return news lagged one-
period, holding constant the other lagged variables. Consequently,
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to divide up ownership. This said, changes in the firm’s total
value should translate into analogous changes in the value of the
company’s stock. Negative news decrease the firm value (and its
stock price) and increase the debt-to-equity ratio (i.e., financial
leverage). The increased debt-to-equity ratio leads to a larger stock
return volatility for a given volatility of the total firm’s value. In
other words, the firm’s stock volatility �S depends on the firm’s
total volatility �V and on the debt-to-equity, or leverage, value D

E .
Specifically, �S = �V

�

1 + D
E

�

(see Christie, 1982, and Figlewski
and Wang, 2000, among others, for discussions). If the firm’s total
volatility is fixed or relatively stable, time-variation in the firm’s
stock volatility will be induced by changing levels of leverage. In
particular, increases in financial leverage (as possibly implied by
negative shocks to prices) will increase stock volatility, whereas
decreases in financial leverage (as possibly implied by positive
shocks to prices) will decrease stock volatility (Black, 1976).

Note, however, that since times of high return volatility should
be associated with relatively higher financial leverage, price
changes of a certain size should have a larger effect on volatility
changes when leverage is relatively higher (or, equivalently, when
volatility is higher). To see this, return to the expression �S =
�V

�

1 + D
E

�

. Then,

@�S = ��V
D
E2 @E = �

✓

�S � �V

E

◆

@E

) @�S

@E
= �

✓

�S � �V

E

◆

< 0,

if D
E > 0. In other words, changes in the value of equity should

induce opposite volatility changes whose magnitude depends on
the volatility itself.

In the constant leverage case, the transmission mechanism
(from low returns to high volatility) implied by aModigliani–Miller
economy has been questioned in empirical work. In agreement
with this observation, we strongly emphasize that we do not
commit to a Modigliani–Miller world. In no way our theoretical
and empirical analysis, in fact, hinges on the validity of the
transmissionmechanism implied by this classical economy. Hence,
the discussion in the present section should be viewed as
illustrative. It is merely meant to stress that even the most
traditional economic justification for leverage effects in the
stochastic volatility literature implies time-variation in leverage as
a function of spot volatility. Yet, this dependence, which appears to
be in the data as shown in the previous section, has invariably been
unaccounted for. This paper focuses on it.

4. A continuous-time stochastic volatility model with time-

varying leverage

Assume a complete probability space (⌦, =, P, {=t}t�0). Con-
sider the system
✓

d log pt
d⇠(� 2

t )

◆

=
✓

µt
mt

◆

dt +
✓

�t 0
0 ⇤(� 2

t )

◆

⇥
 

⇢(� 2
t )

q

1 � ⇢2(� 2
t )

1 0

!

✓

dW 1
t

dW 2
t

◆

+
✓

dJrt
dJ�t

◆

(4)

where
�

J rt , J
�
t
 

and
�

W 1
t ,W 2

t
 

are a bidimensional compound
Poisson jump process and a bivariate standard Brownian motion,
respectively. Note that

hd log pt , d⇠(� 2
t )i

phd log ptihd⇠(� 2
t )i = ⇢(� 2)

defines the infinitesimal (conditional) correlation between contin-
uous shocks to returns and continuous shocks to (transformed, by
⇠(·)) variance.

In order to specify the vector
�

J rt , J
�
t
 

, we define three intensity
functions: �� (� 2

t ), the intensity of the jumps in variance, �r(�
2
t ),

the intensity of the jumps in returns, and �r,� (� 2
t ), the intensity

of the co-jumps (we refer to Remark 8 for more details). The
jump sizes of ⇠(� 2

t ) and log pt are determined by the random
variables cr and c� , respectively. We allow for correlation in both
jump times and jump sizes, but not between times and sizes.4 We
also assume independence between the jumps and the standard
Brownian shocks W 1,W 2. The monotonic function ⇠(·) in the
variance process is introduced for generality. It is meant to allow
for alternative specifications including the logarithmic model in,
e.g., Jacquier et al. (1994), the linear (in variance) model proposed
by, e.g., Duffie et al. (2000) and Eraker et al. (2003), and, possibly, a
linear model in volatility. The object of econometric interest is the
conditional leverage function⇢(·). Its dependence on spot variance
(or spot volatility) generalizes to a nonparametric continuous-time
framework the parametric specification used as a motivation in
Section 2.

Assumption 1. The return and variance drifts µt and mt are
adapted stochastic processes. The functions ⇤(·), �r(·), �� (·),
�r,� (·), and⇢(·) are at least twice continuously-differentiable Borel
measurable functions of the Markov state. All objects are such that
a unique and strong solution of Eq. (4) exists and the spot variance
process is recurrent in a bounded set.5

We begin by assuming availability of n + 1 observations on
both log pt and � 2

t in the time interval [0, T ]. We denote by
�n,T = T/n the time distance between adjacent discretely-
sampled observations. Our asymptotic design lets �n,T ! 0
with n, T ! 1. The case of observability of � 2

t is, of course,
unrealistic in practice. However, it is important in that it allows us
to lay out themain ideaswhile avoiding the complications induced
by spot variance estimation. Having made this point, we stress
that Section 7 discusses the case of spot variance estimation by
virtue of functional methods applied to high-frequency price data.
Section 7 presents conditions which guarantee that the estimation
error associated with the spot variance estimates is asymptotically
negligible. These conditions take the nature of realistic intra-daily
price formationmechanisms seriously and, coherentlywith Eq. (4),
account for jumps in both returns and variance.

Define the infinitesimal moments

#1,1(�
2) = lim

�!0

1
�

E

⇥

(log pt+� � log pt)
�

⇠(� 2
t+�) � ⇠(� 2

t )
� |

� 2
t = � 2⇤ ,

#j(�
2) = lim

�!0

1
�

E

h

�

⇠(� 2
t+�) � ⇠(� 2

t )
�j |� 2

t = � 2
i

,

j = 1, 2, . . .

and the corresponding Nadaraya–Watson kernel estimators given
in Box I, where, as is traditional, hn,T denotes an asymptotically-
vanishingwindowwidth andK(·) is a kernel function. The function
K(·) satisfies the following assumption.

4 It is hard to evaluate the empirical significance of the assumption of
independence between times and sizes. While one could speculate about the
economics of the problem, to the best of our knowledge this assumption has not
been relaxed in empirical work on estimation of jump-diffusion stochastic volatility
models. This said, we can allow for intensities of the jumps, as well as for moments
of the jump size distributions, which depend on the underlying spot variance
process.
5 BR (2008) discusses how this assumption is without loss of generality. The

theoretically interesting, but empirically vacuous, case in which boundedness is
not satisfied is thoroughly studied in BR (2008). It solely translates into stronger,
and unverifiable, discretization conditions (analogous to, e.g., condition 3.1 in
Assumption 3).
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Definition 2 1. The Generalised Heston model (GH) is defined by

dYt =
(
µ + bσ 2

t

)
dt + σt d Xt ,

d Xt = ρt dWt +
√

1 − ρ2
t dW̃t , (5)

dσ 2
t = α(β − σ 2

t )dt + γ σt dWt ,

where µ, b ∈ R,α,β, γ > 0, and where ρ = (ρt )t≥0 is a stochastic correlation
process. Furthermore, the processes W, W̃ , ρ are assumed to be independent.

2. A GH model is called generalised Heston model with Jacobi correlation (GHJ) if
ρ satisfies

dρt = ((2ζ − η) − ηρt ) dt + θ
√

(1 + ρt )(1 − ρt )dW V
t ,

where η, ζ, θ are positive constants and W V = (W V
t )t≥0 is a standard Brownian

motion.

If 2αβ ≥ γ 2, σ 2 stays almost surely positive when σ0 > 0. Furthermore, it follows
immediately from Lévy’s Theorem, that the process X is a standard Brownian motion,
see e.g. Musiela and Rutkowski (2005, p. 232).

Similarly, we can defined the generalised BNS model in the following way.

Definition 3 1. The generalised BNS model (GBNS) is defined by

dYt =
(
µ + bσ 2

t

)
dt + σt dWt + ρλt d Lλt ,

(6)
dσ 2

t = −λσ 2
t dt + d Lλt ,

where σ 2
0 =

∫ 0
−∞ eλsd Lλs . Furthermore, µ, b ∈ R and λ > 0. The stochas-

tic correlation process ρ is assumed to be non-positive. Furthermore, we assume
independence between the processes W, L and ρ.

2. A GBNS model is called a generalised BNS model with Jacobi correlation
(GBNSJ), if the stochastic leverage ρ = (ρt )t≥0 is given by a linear transfor-
mation of a stationary Jacobi process ρt = −Vt , where

dVt = (ζ − ηVt )dt + θ
√

Vt (1 − Vt )dW V
t , (7)

where W V is a standard Brownian motion and ζ, η, θ > 0.

Remark 1 – Clearly, the squared volatility process σ 2 is a non-Gaussian Ornstein
Uhlenbeck process with stationary representation σ 2

t =
∫ t
−∞ e−λ(t−s)d Lλs .

– By restricting ρ to be non-positive, we ensure that the jumps in the price are locally
bounded, see Remark 1 in Hubalek and Sgarra (2009).

– For parameter estimation in a GBNS model, it will be necessary to fix some
moments of either ρ or L to make sure that the model is uniquely identified.
Otherwise, one could always multiply ρ by a constant and scale the subordinator
L accordingly.

123

Stochastic volatility and stochastic leverage 213

Definition 2 1. The Generalised Heston model (GH) is defined by

dYt =
(
µ + bσ 2

t

)
dt + σt d Xt ,

d Xt = ρt dWt +
√

1 − ρ2
t dW̃t , (5)

dσ 2
t = α(β − σ 2

t )dt + γ σt dWt ,

where µ, b ∈ R,α,β, γ > 0, and where ρ = (ρt )t≥0 is a stochastic correlation
process. Furthermore, the processes W, W̃ , ρ are assumed to be independent.

2. A GH model is called generalised Heston model with Jacobi correlation (GHJ) if
ρ satisfies

dρt = ((2ζ − η) − ηρt ) dt + θ
√

(1 + ρt )(1 − ρt )dW V
t ,

where η, ζ, θ are positive constants and W V = (W V
t )t≥0 is a standard Brownian

motion.

If 2αβ ≥ γ 2, σ 2 stays almost surely positive when σ0 > 0. Furthermore, it follows
immediately from Lévy’s Theorem, that the process X is a standard Brownian motion,
see e.g. Musiela and Rutkowski (2005, p. 232).

Similarly, we can defined the generalised BNS model in the following way.

Definition 3 1. The generalised BNS model (GBNS) is defined by

dYt =
(
µ + bσ 2

t

)
dt + σt dWt + ρλt d Lλt ,

(6)
dσ 2

t = −λσ 2
t dt + d Lλt ,

where σ 2
0 =

∫ 0
−∞ eλsd Lλs . Furthermore, µ, b ∈ R and λ > 0. The stochas-

tic correlation process ρ is assumed to be non-positive. Furthermore, we assume
independence between the processes W, L and ρ.

2. A GBNS model is called a generalised BNS model with Jacobi correlation
(GBNSJ), if the stochastic leverage ρ = (ρt )t≥0 is given by a linear transfor-
mation of a stationary Jacobi process ρt = −Vt , where

dVt = (ζ − ηVt )dt + θ
√

Vt (1 − Vt )dW V
t , (7)

where W V is a standard Brownian motion and ζ, η, θ > 0.

Remark 1 – Clearly, the squared volatility process σ 2 is a non-Gaussian Ornstein
Uhlenbeck process with stationary representation σ 2

t =
∫ t
−∞ e−λ(t−s)d Lλs .

– By restricting ρ to be non-positive, we ensure that the jumps in the price are locally
bounded, see Remark 1 in Hubalek and Sgarra (2009).

– For parameter estimation in a GBNS model, it will be necessary to fix some
moments of either ρ or L to make sure that the model is uniquely identified.
Otherwise, one could always multiply ρ by a constant and scale the subordinator
L accordingly.

123



Introduction Iterated Filtering Stochastic Leverage

Empirical evidence: Bandi and Renó (2012)
104 F.M. Bandi, R. Renò / Journal of Econometrics 169 (2012) 94–113

Fig. 2. Estimated time series of spot volatility (top) and leverage (bottom) for the
S&P500 index futures.

with �ϑ1,1(·) as defined in Eq. (5).15 We apply a similar first-order
correction to evaluate the confidence bands. These are obtained by
using the limiting results in Section 5 for the casewith independent
return/volatility jumps. Finally, when estimating µσ weweigh the
addend by virtue of the estimated local time at �σiT/n ∀i = 1,
. . . , n.

The empirical findings are presented in Figs. 1 and 2. Fig. 1
contains the S&P500 future variance of volatility function, the
intensity of the jumps in volatility (expressed in terms of the
number of yearly jumps), and the leverage estimates. In all
cases, spot volatility is expressed (on the horizontal axis) in daily
percentage terms. In agreement with much empirical work in
which volatility is filtered from low-frequency (daily) stock returns
(see, e.g., Eraker et al., 2003), the volatility of volatility is found
to be increasing. The point estimates of the number of yearly
jumps are centered around 20 and are statistically significant. The
leverage estimates are, as expected, negative and, barring a hump-
shape for low volatilities, decreasingwith the volatility level. These
estimates vary between roughly −0.24 and −0.35 in the most
populated volatility range, the value −0.47 being reached for
high, seldomly seen, volatility levels. These findings are consistent
with the parametric evidence in Section 2. They are, once more,
indicative of time-variation in the correlation between shocks
to returns and shocks to volatility. For a dynamic assessment
of this time variation, see Fig. 2. We evaluate the potential for
upward biases (i.e., biases towards zero) of the leverage estimates
in Section 9 (Section 9.2).

We, of course, emphasize that, in light of Theorem 5, the
reported leverage estimates are theoretically consistent for ρ(σ )
only in the absence of co-jumps (or if, in the presence of co-jumps,
the jump sizes are uncorrelated and the mean of the return jumps
is equal to zero, as sometimes assumed in the literature). In spite of
the impact of co-jumps on estimating ρ(·), however, the presence
of co-jumps does not invalidate the empirical relevance of our
methods. As emphasized in Section 6, the methods simply lead
to the estimation of a broader notion of leverage. We leave the
issue of separately identifying (and evaluating the relative impact
of) the different components of total leverage, dubbed ‘‘continuous

15 Even though the previous work on nonparametric jump-diffusion estimation
has shown that jump identification by virtue of higher-order moments is
empirically feasible (Bandi and Nguyen, 2003 and Johannes, 2004, for instance),
estimating higher-order moments is known to be cumbersome. The proposed bias-
corrections aremeant to improve finite-sample inference by reducing discretization
error.

leverage’’ and ‘‘co-jump leverage’’ earlier, for future work. Ideas on
identification were laid out in Remark 10.

9. Finite sample issues

9.1. Discretization: the impact of risk-return trade-offs and volatility
feedback effects

Feedback effects generated by unaccounted risk-return trade-
offs may imply time-variation of the leverage estimates as a
function of spot volatility. To see this, return to themodel in Eq. (2)
(Section 2). Assume µt = 0, as yielded by a commonly-employed
martingale difference assumption on the return process. Then, of
course,

covt(rt+1, �σt)

stdt(rt+1)stdt(�σt)
=

under µt=0

Et [rt+1�σt ]
stdt(rt+1)stdt(�σt)

.

If, however, the true model is, instead, so that µt = γ σt , i.e., there
is a risk-return trade-off, and spot volatility is mean-reverting as
given by mt = β0(β1 − σt), for instance, then

Et [rt+1�σt ]
stdt(rt+1)stdt(�σt)

=
if, instead, µt=γ σt

γ β0β1

Λ
− γ β0σt

Λ
+ ρ. (18)

In this case, the empirical leverage should vary (become more
negative) with the volatility level because of an unaccounted
risk-return trade-off and volatility mean reversion. Clearly, this
is not the type of dependence on spot volatility which we have
been emphasizing in that our focus has been on ρ, the genuine
correlation between shocks to prices and shocks to volatility.

Importantly, however, this effect may have implications for
our analysis. Our estimator is, in fact, a sample counterpart to

Et [rt+1�σt ]
stdt (rt+1)stdt (�σt )

. We are of course not erroneously setting µt = 0.
More simply, the drift components in returns and volatility are
asymptotically zero in our continuous-time framework since
∆n,T → 0. Hence, asymptotically, our estimator is, as shown,
consistent for ρ(·). In finite samples, however, ∆n,T is fixed (albeit
small with daily data), and the estimates may be contaminated by
a term (like term γ β0β1

Λ
− γ β0σt

Λ
in Eq. (18)) which is decreasing

with the volatility level, givenmean reversion in volatility, thereby
potentially inducing spurious (negative) dependence on volatility.

We account for this possibility by recomputing our leverage
estimator after subtracting the infinitesimal means (µ(σt)∆
and (m(σt) − µσ λσ (σt)) ∆) from the price changes and the
spot volatility changes. Fig. 1 contains the ‘‘corrected’’ leverage
estimates. As shown, consistent with asymptotic arguments, the
impact of the correction is minimal, thereby giving support to our
reported genuine dependence between ρ(·) and σ .

9.2. Measurement error: estimating spot volatility

While we use the language of continuous-time modelling, the
model is estimated using daily return data and daily estimates
of spot volatility (obtained by virtue of high-frequency price
data, as discussed in Section 7). This is, of course, standard in
the continuous-time pricing literature (see, e.g., Eraker et al.,
2003, and the references therein). What differentiates us from
the existing literature is the way in which we filter spot
volatility (nonparametrically, using intra-daily data, rather than by
simulationmethods). In finite samples, however, anynotion of spot
volatility is effectively a notion of integrated volatility in that φ is
fixed. Setting φ equal to a day, as in our case, is consistent with
common practice in the stochastic volatility literature and makes
our analysis comparable to existing results.

Having made this point, it is important to evaluate the possible
impact of different levels of spot variance measurement error

◦ Model: driven by mean-reverting spot volatility ρt = ρ(σ2
t )

◦ Period: 1982-2008 (long: 27 years)

◦ Estimation: non-parametric & high-frequency data

◦ Results: ρt ∈ (−0.45,−0.25)± s.e.

◦ Implication: E [ρt ] ≈ −0.30 (?)
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◦ Model: white noise driven by return noise εt−1

◦ ρt = ρ(εt−1):

ρt =


ρ1 if τ1 < εt−1 ≤ τ0
...
ρm+1 if τm+1 < εt−1 ≤ τm

◦ m = 1 & τ1 = 0: simply two leverages
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Table 1
Finite sample properties ofMCMC for three SVmodels based on500 simulated sample paths of 1000 observations
in each path. For the basic SV and the leverage SV, the number of total iterations inMCMC is 30,000 with the first
10,000 iterations used as the burn-in. For the Spline1 SV, the number of total iterations in MCMC is 150,000 with
the first 50,000 iterations used as the burn-in.

σ ϕ γ ρ σ ϕ γ ρ1 ρ2

Basic SV Spline1 SV
True 1 0.9 0.135 1 0.9 0.135 −0.5 −0.5
Mean 1.0031 0.8806 0.1208 1.0115 0.8733 0.1251 −0.4086 −0.5276
Std 0.0318 0.0466 0.0225 0.1104 0.0436 0.0285 0.2716 0.2192

Leverage SV Spline1 SV
True 1 0.9 0.135 −0.3 1 0.9 0.135 −0.5 0
Mean 1.0081 0.8649 0.1222 −0.2895 0.9486 0.8584 0.1130 −0.4116 −0.0737
Std 0.0353 0.0639 0.0224 0.2107 0.1326 0.0483 0.0139 0.2060 0.2352

Table 2
Estimation results from daily data. The number in parenthesis is the posterior standard error. The number in bracket
is the Monte Carlo standard error.
Data Model -Log MargLik σ ϕ γ ρ1 ρ2 ρ3

S&P500 Basic 1730.26 0.9302 0.9426 0.2621
(0.067) (0.019) (0.042)
[0.001] [0.0008] [0.0021]

Leverage 1720.13 0.9336 0.9212 0.3066 −0.3691
(0.055) (0.024) (0.049) (0.087)
[0.0014] [0.0012] [0.0030] [0.0041]

Spline1 1700.40 2.077 0.9135 0.3689 −0.8386 0.1435
(0.3961) (0.019) (0.058) (0.090) (0.137)
[0.015] [0.0008] [0.0026] [0.0133] [0.005]

Spline2 1704.38 1.874 0.9157 0.3458 −0.8446 0.2059 0.1429
(0.3537) (0.019) (0.051) (0.1079) (0.3484) (0.1672)
[0.014] [0.0007] [0.0022] [0.0046] [0.011] [0.0066]

MSFT Basic 3017.76 2.685 0.9444 0.2422
(0.274) (0.029) (0.063)
[0.0088] [0.0016] [0.0037]

Leverage 3020.49 2.669 0.9397 0.2603 −0.1343
(0.2892) (0.030) (0.063) (0.097)
[0.0131] [0.0018] [0.004] [0.0045]

Spline1 2955.02 24.42 0.7778 1.509 −0.9724 0.9003
(6.57) (0.0317) (0.1921) (0.0243) (0.046)
[0.2795] [0.0014] [0.009] [0.001] [0.0021]

Spline2 2967.30 8.304 0.7136 1.627 −0.7541 −0.963 0.6941
(2.38) (0.051) (0.1407) (0.069) (0.024) (0.064)
[0.099] [0.0022] [0.006] [0.0026] [0.0009] [0.0021]

return series. In this empirical exercise, µy is estimated but not
reported to save space.

Estimation results are reported in Table 3. Several conclusions
can be drawn. First, in the leverage SV, ρ is estimated to be−0.075.
As in the daily MSFT, ρ is statistically insignificant. Once again
the results are reinforced by a small difference in the marginal
likelihood values of the basic SV and the leverage SV models.
Hence, onewould conclude the absence of the leverage effect if the
leverage SV is fitted, consistent with the usual claim for individual
stocks.

Second, the Spline1 SV provides a significant improvement over
the leverage SV model with ln(BF) � 0. The estimated ρ1 is
negative (−0.2968) and the estimated ρ2 is positive (0.2678). The
10% credible interval of ρ1 excludes 0. This signs for estimated
ρs corroborate well with those in the daily data. Third, in the
estimated Spline2 SV, ρ1 is close to ρ2. They are both close to the
estimate of ρ1 in the Spline1 SV. Also, ρ3 in the estimated Spline2 SV
is close to ρ2 in the estimated Spline1 SV. Not surprisingly, adding
one more knot to the Spline1 SV decreases the marginal likelihood

value. Hence, there is no evidence to support the Spline2 SV in the
weekly data.

To check the robustness of the empirical results, we fit the
classical leverage SV and the Spline1 SV to three weekly return
series of Johnson and Johnson (JnJ), 3M, and Kellogg, all from
April 4, 1986 to December 24, 2007. The number of observations
is 1133 in all cases. To save space, we choose not to report results
on the basic SV and the Spline2 SV because both models are found
to be outperformed by the Spline1 SV.

Estimation results are reported in Table 4. Similar conclusions
can be drawn from Table 4 as from Table 3. For example, in
all cases, ρ is statistically insignificant in the leverage SV. The
Spline1 SV provides a significant improvement over the leverage
SV in all cases. The ln(BF)s are 13.14, 8.06 and 5.24, suggesting
very strong evidence in favor of Spline1 SV. The estimated ρ1
is always very negative (−0.5161, −0.4408, and −0.5409) and
significantly less than 0. On the other hand, the estimated ρ2 is
always insignificantly different from 0. Therefore, the leverage
effect is found to be significant in one regime albeit not globally.

◦ Model: white noise driven by return noise εt−1

◦ Period: 1986-1989 (shorter: 4 years)

◦ Estimation: non-parametric & MCMC

◦ Results (m=2): ρt ∈ (−1,−0.65) ∪ (−0.13,0.40)

◦ Implication: E [ρt ] ≈ −0.35 ( ≈ ρ )
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Fig. 1 Sensitivity with respect to θ : Sample path of a Jacobi process with V0 = 0.5, ζ = 0.5, η = 1 and
θ ∈ {1, 5, 25}. Number of steps in the simulation: 5000; step size 0.0002. a θ = 1. b θ = 5. c θ = 25

We could therefore model a rather extreme behaviour of the correlation process
by increasing the parameter θ . Then the correlation process will essentially take two
values. Generally, we find that the Jacobi diffusion and its generalisations are ideal
diffusions to model stochastic correlation. We assume that stochastic correlation is
mean-reverting to a long-term mean and is driven by a Brownian motion whose fluc-
tuation can be amplified by using a higher volatility parameter for the stochastic
correlation process. From an economic perspective this is perfectly sensible. We do
expect that the correlation between the stock returns and the volatility process has
some long term mean around which it fluctuates. If we want to model more extreme
stochastic behaviour, this can be done either by playing with the volatility parameter
in the Jacobi diffusion or by choosing a slower speed of mean reversion parameter.

3 Generalised Heston and generalised BNS model with stochastic leverage

The aim of this section is to introduce two concrete models which allow for the new con-
cept of stochastic leverage. They are extensions of stochastic volatility models which
are particularly popular and successful both from a practical and a theoretical point of
view: The Heston model, Heston (1993), in which the squared stochastic volatility is
modelled as a square root diffusion, see Cox et al. (1985), and the Barndorff-Nielsen &
Shephard model, in which the squared stochastic volatility is modelled as a non-Gauss-
ian Ornstein–Uhlenbeck process, see Barndorff-Nielsen and Shephard (2001, 2002).

3.1 Model definition

Suppose that we have a probability space ($,A, P), on which we define four inde-
pendent processes: three standard Brownian motions W = (Wt )t≥0, W̃ = (W̃t )t≥0
and W V = (W V

t )t≥0 and a Lévy subordinator L = (Lt )t≥0. Throughout this paper,
we denote by Y = (Yt )t≥0 the logarithmic asset price, by St = S0 exp(Yt ) the asset
price, where S0 > 0, by σ = (σt )t≥0 the stochastic volatility, and by ρ = (ρt )t≥0 the
stochastic correlation process.

First of all we extend the classical Heston model by allowing for stochastic
correlation.
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Fig. 1 Sensitivity with respect to θ : Sample path of a Jacobi process with V0 = 0.5, ζ = 0.5, η = 1 and
θ ∈ {1, 5, 25}. Number of steps in the simulation: 5000; step size 0.0002. a θ = 1. b θ = 5. c θ = 25

We could therefore model a rather extreme behaviour of the correlation process
by increasing the parameter θ . Then the correlation process will essentially take two
values. Generally, we find that the Jacobi diffusion and its generalisations are ideal
diffusions to model stochastic correlation. We assume that stochastic correlation is
mean-reverting to a long-term mean and is driven by a Brownian motion whose fluc-
tuation can be amplified by using a higher volatility parameter for the stochastic
correlation process. From an economic perspective this is perfectly sensible. We do
expect that the correlation between the stock returns and the volatility process has
some long term mean around which it fluctuates. If we want to model more extreme
stochastic behaviour, this can be done either by playing with the volatility parameter
in the Jacobi diffusion or by choosing a slower speed of mean reversion parameter.

3 Generalised Heston and generalised BNS model with stochastic leverage

The aim of this section is to introduce two concrete models which allow for the new con-
cept of stochastic leverage. They are extensions of stochastic volatility models which
are particularly popular and successful both from a practical and a theoretical point of
view: The Heston model, Heston (1993), in which the squared stochastic volatility is
modelled as a square root diffusion, see Cox et al. (1985), and the Barndorff-Nielsen &
Shephard model, in which the squared stochastic volatility is modelled as a non-Gauss-
ian Ornstein–Uhlenbeck process, see Barndorff-Nielsen and Shephard (2001, 2002).

3.1 Model definition

Suppose that we have a probability space ($,A, P), on which we define four inde-
pendent processes: three standard Brownian motions W = (Wt )t≥0, W̃ = (W̃t )t≥0
and W V = (W V

t )t≥0 and a Lévy subordinator L = (Lt )t≥0. Throughout this paper,
we denote by Y = (Yt )t≥0 the logarithmic asset price, by St = S0 exp(Yt ) the asset
price, where S0 > 0, by σ = (σt )t≥0 the stochastic volatility, and by ρ = (ρt )t≥0 the
stochastic correlation process.

First of all we extend the classical Heston model by allowing for stochastic
correlation.

123

◦ Model: driven by idiosyncratic, independent Jacobi process Vt

dVt =
(
ζ − Vt

)
dt + θ

√
Vt
(
1− Vt

)
dWt

ρt = 2V (t)− 1 ∈ [−1,1]

◦ Period, Estimation, Results: –

◦ Implication: E [ρt ] = 2ζ − 1

◦ Good candidate for new evidence!
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AR / RW evidence: consistent with Yu (2012)?
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◦ Period 1988-1999:

◦ RW: ρt ∈ (−0.55,−0.10)

◦ Yu (2012): ρ1 ∈ (−0.5431,−0.1951)
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AR / RW evidence: consistent with Bandi (2012)?
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F.M. Bandi, R. Renò / Journal of Econometrics 169 (2012) 94–113 105

Fig. 3. Estimated leverage on simulated paths. Confidence bands are reported only
for the case of estimated integrated variance.

(inclusive of aggregation issues, for different φ levels) on the
resulting leverage estimates. In particular, we expect genuine
measurement error in spot variance to have a larger (positive)
effect on the variance of variance than on the conditional
covariance between returns and spot variance changes (since the
error is likely to be fairly uncorrelated with the return process). On
the other hand, aggregation (as implied by a non-vanishing φ in
a finite sample) might lead to Epps-type effect in the estimated
conditional covariance. Both effects will lead to an attenuation of
the leverage estimates.

We investigate this issue by simulation. Consider the dis-
cretized system:

rt,t+∆ = µ∆ + σt
√

∆εr
t ,

σ 2
t+∆ − σ 2

t = κ(θ − σ 2
t )∆ + συσt

√
∆εσ

t ,

where
�
εr
t , ε

σ
t
�

are standard Gaussian random variables with
correlation ρ(σ 2) = max(−0.9(σ 2 − 0.35)2 − 0.5, −1). Assume
µ = 0.0506, κ = 0.025, θ = 0.75, and συ = 0.0896, as
in Eraker et al. (2003). The system is simulated over 2500 days.
Fig. 3 reports mean leverage estimates across 1000 simulations
associatedwith the true spot variance, the true integrated variance,
and realized variance (a classical estimate of integrated variance
in the absence of jumps). For each simulated path, we estimate
leverage using Eq. (10) in conjunction with the small-sample
adjustments discussed in the previous section. Going from spot
variance, to daily integrated variance, to estimated daily integrated
variance, attenuates the leverage estimates. Importantly for our
purposes, the nonlinear shape at high spot variance levels is also
attenuated. This is due to the fact that the biases are positively
correlated with the variance of the measurement error and this is
a positive function of spot variance.

The simulations suggest that the methods proposed in this
paper are effective in identifying true leverage with accurate spot
variance estimates. The true leverage level is, however, likely lower
than estimated on discretized variance estimates, a point made
by Aït-Sahalia et al. (2010). Aggregation and integrated variance
estimation error, in fact, will bias the leverage estimates towards
zero. The extent of these biases is of course a function of the true
model, of the level of aggregation, and of the precision of the
integrated variance estimates for each level of aggregation. While
these simulations should therefore be solely viewed as illustrative,
they suggest that the nonconstant pattern found with data is
likely genuine. In effect, the finite sample biases are higher at
higher variance levels. Thus, if anything, the reported nonconstant

Fig. 4. Leverage estimates for the 1990–2009 period obtained with a threshold
bipower variation and with the combination of threshold bipower variation and
the VIX used as a predictor.

leverage shape estimated from data (in Sections 2 and 8) may just
be somewhat attenuated.

It is now of interest to study methods which will reduce
potential biases. The use of more localized spot variance estimates
requires care. It increases the relative size of the measurement
error variance since integrated variance notions are more easily
estimated than instantaneous notions. In agreement with the
simulations reported above, however, the conditions for a
vanishing asymptotic measurement error in Theorem 7 provide
orders which may be consistent with the empirical usefulness
of a higher degree of localization than a daily φ (see BR,
2008, for further discussions). Thus, the careful use of more
localized spot variance estimates is a promising direction for
future research. This direction is pursued by Bandi and Renò
(2011). Alternatively, one may ‘‘instrument’’ the daily variance
estimates by employing variables which are highly correlatedwith
them but are uncorrelated with measurement error. Consider the
regression �σt = α + β�σt + ηt , where �σt is the VIX. In the
presence of an approximate linear relation between integrated
variance and �σt , and since η is uncorrelated with �σ , the use of
the fitted values �α + �β�σt should lead to consistent estimates
of integrated variance. These ‘‘relatively less noisy’’ estimates of
integrated variance will translate into lower variance of variance
estimates and more negative leverage estimates. Consistent with
this observation, for the shorter sample over which VIX values are
available (January 2, 1990–February 28, 2009), Fig. 4 reports much
lower leverage estimates when regressing the variance estimates
on the VIX. Importantly, the VIX-based estimates display a very
clear nonlinear pattern which is somewhat attenuated in the
case of the original estimates.16 This effect is consistent with our
simulations: higher estimation error increases the leverage level,
and attenuates potential nonlinearities, precisely in regions where
the spot variance-related biases are more prevalent. These results
are suggestive of leverage dynamics which are time-varying, as
emphasized in this paper, and more negative than generally found
in the literature. The relationship between the VIX and the price
volatility is, however, a complicated object which depends on the
true model as well as on the features of the volatility risk premia.
We view these findings as being promising but requiring a more
complete exploration which is better left for future work.

16 As pointed out, the difference between the threshold bipower variation
estimates in this figure and those in Fig. 1 depends on the use of a different sample
(a sample over which the VIX values are available).

◦ Period 2003-2012:

◦ RW: ρt ∈ (−0.9,−0.6)

◦ Bandi (2012): ρt “more negative than those generally found in the
literature” when using VIX as an instrumental variable for daily
variance estimation
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AR / RW evidence: consistent with Veraart (2012)?
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(b)(a) (c)

Fig. 1 Sensitivity with respect to θ : Sample path of a Jacobi process with V0 = 0.5, ζ = 0.5, η = 1 and
θ ∈ {1, 5, 25}. Number of steps in the simulation: 5000; step size 0.0002. a θ = 1. b θ = 5. c θ = 25

We could therefore model a rather extreme behaviour of the correlation process
by increasing the parameter θ . Then the correlation process will essentially take two
values. Generally, we find that the Jacobi diffusion and its generalisations are ideal
diffusions to model stochastic correlation. We assume that stochastic correlation is
mean-reverting to a long-term mean and is driven by a Brownian motion whose fluc-
tuation can be amplified by using a higher volatility parameter for the stochastic
correlation process. From an economic perspective this is perfectly sensible. We do
expect that the correlation between the stock returns and the volatility process has
some long term mean around which it fluctuates. If we want to model more extreme
stochastic behaviour, this can be done either by playing with the volatility parameter
in the Jacobi diffusion or by choosing a slower speed of mean reversion parameter.

3 Generalised Heston and generalised BNS model with stochastic leverage

The aim of this section is to introduce two concrete models which allow for the new con-
cept of stochastic leverage. They are extensions of stochastic volatility models which
are particularly popular and successful both from a practical and a theoretical point of
view: The Heston model, Heston (1993), in which the squared stochastic volatility is
modelled as a square root diffusion, see Cox et al. (1985), and the Barndorff-Nielsen &
Shephard model, in which the squared stochastic volatility is modelled as a non-Gauss-
ian Ornstein–Uhlenbeck process, see Barndorff-Nielsen and Shephard (2001, 2002).

3.1 Model definition

Suppose that we have a probability space ($,A, P), on which we define four inde-
pendent processes: three standard Brownian motions W = (Wt )t≥0, W̃ = (W̃t )t≥0
and W V = (W V

t )t≥0 and a Lévy subordinator L = (Lt )t≥0. Throughout this paper,
we denote by Y = (Yt )t≥0 the logarithmic asset price, by St = S0 exp(Yt ) the asset
price, where S0 > 0, by σ = (σt )t≥0 the stochastic volatility, and by ρ = (ρt )t≥0 the
stochastic correlation process.

First of all we extend the classical Heston model by allowing for stochastic
correlation.
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◦ RW decade 1988-1997: E [ρt ] ≈ −0.4

◦ RW decade 2003-2012: E [ρt ] ≈ −0.8

◦ Fixed-leverage: ρ ≈ −0.6
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Idiosyncratic leverage: AR and RW evidence
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◦ Model: driven by idiosyncratic AR/RW process

◦ Period: 1988-2012 (three sub-periods)

◦ Estimation: parametric & likelihood maximization

◦ Results: ρt ∈ (−0.8,−0.3)± s.e. (consistent with Bandi, Yu, and
Veraart?)

◦ Implication: E [ρt ] = ? E [ρt ] ≈ −0.6 ( ≈ ρ ) ?
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Theory behind iterated filtering

• Update: θ̂(n+1)
0 = V1,n

(∑T−1
t=1 (V−1

t ,n − V−1
t+1,n)θ̂

(n)
t + V−1

T ,nθ̂
(n)
T

)
• Equivalently θ̂(n+1) = θ̂(n) + V1,n

∑T
t=1 V−1

t ,n (θ̂
(n)
t − θ̂(n)t−1)

• Assuming sufficient regularity conditions, a Taylor expansion
gives

lim
σ→0

T∑
t=1

V−1
t (θ̂t − θ̂t−1) = ∇ log f (y1:T |θ, σ=0)
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A word of caution: Compartment models with random
rates
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∆NS1I∗1
(t) = NS1I∗1

(t + h)− NS1I∗1
(t)

• Continuous Time Markov Chain (system of death processes)

P(∆NS1I∗1
(t) = 0|X (t) = x) = 1− (1− γ)λ1s1h + o(h)

P(∆NS1I∗1
(t) = 1|X (t) = x) = (1− γ)λ1s1h + o(h)

P(∆NS1I∗1
(t) > 1|X (t) = x) = o(h)
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Continuous-time & iterated filtering

• IF has been applied to continuous-time stochastic volatility
models

• Comment to Andrieu et al., 2010, JRSSB: Particle MCMC and
continuous-time Lévy-driven stochastic volatility model
(Barndorff-Nielsen and Sheppard, 2001)

dy∗(t) = µ+ βσ2(t)dt + σ(t)dB(t)
dσ2(t) = −λσ2(t)dt + dz(λt)

• Working paper - Bretó and Veiga: Forecasting performance and
continuous-time log-linear one volatility factor model (Chernov et
al., 2003)

dU1(t) = α10dt + exp(β10 + β12U2(t))(ψ11dW1(t) + ψ12dW2(t))

dU2(t) = α22U2(t)dt + (1 + β22U2(t))dW2(t).
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Continuous-time SVDiscussion on the Paper by Andrieu, Doucet and Holenstein 315
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Fig. 11. Diagnostic plots for iterated filtering: (a) likelihood at each iteration, evaluated by sequential Monte
Carlo sampling (- - - - - - -, likelihood at the truth); (b)–(e) likelihood surface for each parameter sliced through
the maximum (!, parameter values, where the likelihoods were evaluated; j, maximum likelihood estimate;
, true parameter value)

The decision about whether one wishes to carry out a Bayesian analysis should depend on whether
one wishes to impose a prior distribution on unknown parameters. Here, I have shown that likelihood-
based non-Bayesian methodology provides a computationally viable alternative to the authors’ Bayesian
approach for complex dynamic models.

Luke Bornn and Aline Tabet (University of British Columbia, Vancouver)
We congratulate the authors on this very important contribution to stochastic computation in statistics.
Whereas the authors have explored and discussed several applications in the paper, we would like to high-
light the benefits of using particle Markov chain Monte Carlo (PMCMC) methods as a way to extend
sequential Monte Carlo (SMC) methods which employ sequences of distributions of static dimension.
Through PMCMC sampling, we can separate the variables of interest into those which may be easily sam-
pled by using traditional MCMC techniques and those which require a more specialized SMC approach.
Consider for instance the use of simulated annealing in an SMC framework (Neal, 2001; Del Moral
et al., 2006). Rather than finding the posterior maximum a posteriori estimate of all parameters, PMCMC
sampling now allows practitioners to combine annealing with traditional MCMC methods to maximize
over some dimensions simultaneously while exploring the full posterior in others.

When variables are highly correlated, SMC methods may be used as an efficient alternative to MCMC
sampling. For instance, SMC samplers (Del Moral et al., 2006) and other population-based methods (Jasra
et al., 2007) proceed by working through a sequence of auxiliary distributions until a particle-based approx-
imation to the posterior is reached. In non-identifiable or weakly identifiable models, SMC sampling is used
to construct a sequence of tempered distributions allowing particles to explore fully the resulting ridges
in the posterior surface of the non-identifiable variables. However, because SMC algorithms often rely on
importance sampling, they can suffer in high dimensions owing to increased variability in the importance
weights. Many non-identifiable models contain only a small portion of variables with identifiability issues,
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Sequential Monte Carlo: Particle Filter

t = 0 t = 1 t = 2 t = 3
f (θ0)
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Sequential Monte Carlo: Particle Filter
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Sequential Monte Carlo: Particle Filter

t = 0 t = 1 t = 2 t = 3
f (θ0) f (θ1|y1)
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Sequential Monte Carlo: Particle Filter

t = 0 t = 1 t = 2 t = 3
f (θ0) f (θ1|y1) f (θ2|y1)f (θ2|y1:2)
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Sequential Monte Carlo: Particle Filter

t = 0 t = 1 t = 2 t = 3
f (θ0) f (θ1|y1) f (θ2|y1:2)
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Sequential Monte Carlo: Particle Filter

t = 0 t = 1 t = 2 t = 3
f (θ0) f (θ1|y1) f (θ2|y1:2) f (θ3)
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Take-home message: straightforward,
likelihood-based inference is possible for general

dynamic systems

THANK YOU
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