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Spurious Regression

 The pioneer work of Granger and Newbold (1974) was just the 
introduction of a new phenomenon, known as spurious regression.

 Actually, this phenomenon was initially presented by Yule (1926) as 
a spurious correlation phenomenon.   

 Granger and Newbold (1974) showed, using a Monte Carlo 
analysis, that the regression of two independent drift-free random 
walk processes will produce strong evidence of a linear 
relationship.

 Phillips (1986) proved mathematically this behavior showing that 
the usual t-statistic does not have a limiting distribution.  

 Entorf (1997) consider random walk with drifts.
 Granger, Hyung and Jeon (2001) found spurious results even for 

two stationary independent AR(1) processes.



Serially Correlated Errors

 Spurious regression is linked to serially correlated errors. 
 Granger and Newbold (1974) pointed out that along with the large 

t-values strong evidence of serially correlated errors will appear in 
regression analysis, stating that when a low value of the Durbin-
Watson statistic is combined with a high value of the t-statistic the 
relationship is not true.

 Marmol (1995), who generalized the work of Phillips (1986) for high-
order integrated processes, showed that the Durbin Watson statistic 
will converge in probability to zero and therefore low values of this 
statistic are expected to appear in the presence of spurious 
regressions. 

 Newbold and Davies (1978) found autocorrelated errors for non-
stationary moving average processes.

 Agiakloglou (2009) reported serially correlated errors for the first 
and second moment, indicating the presence ARCH(1) error 
structure, for stationary AR(1) processes.

 Agiakloglou, Tsimbos and Tsimpanos (2015) found evidence of 
spatially correlated errors for stationary spatial autoregressive 
SAR(1) processes.



Two Examples

 Harvey ( 1980) “Econometrics – Alchemy or science?” studied 
the relationship between rainfall and inflation rate in U.K..

 Ferson, Sarkissian and Simin (2003) “Spurious regression in 
financial Economics” found that many predictive stock return 
regressions in the literature, based on individual predicting 
variables, may be spurious. 



Spurious Regression vs. Correlation

 Two similar if not identical terms referring to the same phenomenon 
of obtaining false evidence about the existence of a linear 
relationship between two variables.  

 Spurious Regression: 
Large t-value along with low Durbin-Watson statistic. 

 Spurious Correlation: 
No hint.

 Agiakloglou and Tsimpanos (2012) examined the spurious correlation 
phenomenon for two independent stationary AR(1) processes and 
they found no evidence of spurious behavior using the true variance 
of their sample correlation coefficient. 

 Also, Agiakloglou and Agiropoulos (2016) examined the balance 
between size and power in testing for linear association between 
two independent stationary AR(1) processes.  

 More difficult to detect spurious correlations. 



The Issue

 Consider the following regression model: 

 where the error term is normally distributed with mean zero and 
constant variance and the variables Xt and Yt are generated by  the 
following DGP: 

and                               

 where the errors εxt and εyt are each white noise N(0, 1) processes 
independent of each other and the autoregressive parameters are 
allowed to take values of 0.0, 0.2, 0.5, 0.8 and 0.9. 

 Note that if φ = 1, both processes are non-stationary random walk 
processes without drift, whereas if φ = 0, both processes are white 
noise processes. 

t t tY Xα β ε= + +

1t t ytY Yϕ ε−= + 1t t xtX Xϕ ε−= +



Testing for a Linear Relationship

 The test of no linear relationship is based on the following 
hypotheses:

H0: β = 0   against   H1: β ≠ 0

and it is implemented by the usual t statistic, i.e.,

where the t statistic follows a t distribution with (T - 2). 
 The null hypothesis will be accepted if its absolute value is less than 

the critical value.
 Note that t must have zero mean and variance one, asymptotically. 
 Unfortunately, as it is known, false conclusions will be drawn for 

time series data obtained from independent non-stationary and/or 
stationary processes. 



Two independent non-stationary processes

 Consider two independent random walk processes without drift.

 In this case, the null hypothesis is rejected too often, reaching to 
100% for large sample sizes.

 The percentage of rejections increases as sample size increases.

 The t distribution does not convert to a standard normal 
distribution.

 The variance of the estimated coefficient is not properly defined.  



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) along with the standard deviation of the t statistic for two independent 

Random Walk without drift processes for sample sizes of 50, 100, 500 and 1000 
observations, based on 10,000 replications

Sample Size

50 100 500 1000

% of 
Rejections 68 76 89 93

St. dev. 5.201 7.294 16.431 23.831



Two stationary Processes

 Consider two independent stationary AR(1) processes.

 The null hypothesis is also rejected very often.

 The percentage of rejections depends only on the magnitude of the 
autoregressive parameter.

 The percentage of rejections is not affected by the sample size.

 The t distribution does not convert to a standard normal 
distribution.

 The variance of the estimated coefficient is not properly defined.  



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) along with the standard deviation of the t statistic for two independent 
stationary AR(1) processes regardless of sample size, based on 10,000 replications

φ

0.0 0.2 0.5 0.8 0.9

% of 
Rejections 5 6 13 35 52

St. dev. 1.003 1.046 1.288 2.138 3.049



Evidence of serially correlated errors

 Spurious Regression is related to autocorrelated errors.
 The Durbin-Watson (DW) statistic is affected by the magnitude 

of the autoregressive parameter and by the sample size.
 The value of the DW statistic decreases as the value of the 

autoregressive parameter increases.
 The value of the DW statistic decreases as sample size

increases reaching to some predetermined value as Marmol
(1995) has indicated for two independent non-stationary 
processes.

 The DW statistic converges to its population value, i.e., 
DW = 2(1 – ρ).

 So, for ρ = 1, DW  = 0, for ρ = 0.9, DW  = 0.2 etc.  



Mean values of the Durbin-Watson statistic 
for sample sizes of 50, 100, 500 and 1000 observations, 

based on 10,000 replications

φ

Sample 

Size
0.0 0.2 0.5 0.8 0.9 1.0

50 2.0014 1.6479 1.1237 0.6203 0.4693 0.3332

100 1.9981 1.6222 1.0613 0.5081 0.3216 0.1735

500 2.0003 1.6049 1.0123 0.4265 0.2240 0.0360

1000 1.9995 1.6021 1.0061 0.4102 0.2119 0.0183

10000 2.0009 1.6010 1.0009 0.4010 0.2010 0.0018



Dealing with Autocorrelation
 Granger, Hyung and Jeon (2001) proposed a new method called BART that 

improved the behavior of this phenomenon only for very large sample 
sizes. However, for moderate and even for large sample sizes the spuriocity
was not totally removed.  

 For example, for large value of the autoregressive parameter equal to 0.9, 
Granger et al. (2001) have reported 23.9 empirical percentage level of 
rejecting the null hypothesis at the 5% nominal level, for sample size of 
500 observations using the BART method. 

 Agiakloglou (2013) showed significant improvement on the performance of 
the test as well as on the Durbin-Watson statistic for small and moderate 
sample sizes for two independent stationary AR(1) processes and for two 
non-stationary I(1) processes by estimating the original simple regression 
model either with a lagged dependent variable or in first differences 
respectively.  

 Agiakloglou, Tsimbos and Tsimpanos (2015) showed that in spatial analysis 
at the global level the employment of the classical LM spatial dependence 
specification tests will suggest other forms of spatial model estimation that 
will not deliver spurious results and spatially autocorrelated errors. 



Autocorrelated Errors

 Consider the same DGP where now the error term is generated 
by the following AR(1) process, i.e., 

 where the absolute value of the autoregressive coefficient ρ is 
less than one, i.e., |ρ| < 1, and the error term ut is considered 
to be iid normally distributed with mean zero and constant 
variance σu

2, i.e., ut ~ iidN(0, σu
2).   

 Estimation of the original simple regression model with OLS, 
under the assumption of serially correlated errors, will produce 
the same estimates, which will still be unbiased, but with 
different variance.  

� ��� �



Variance under Autocorrelated Errors

 The variance of the new OLS-AUTO estimator will be obtained as: 

��� �� =
��

�

∑ �� − �� � 1 + 2�
∑(�� − ��)(���� − ��)

∑ �� − �� � + 2�� ∑(�� − ��)(���� − ��)
∑ �� − �� � + ⋯

 or equivalently
� �

 where Var( ) is the OLS variance of without the presence of serially 
correlated errors, r is the sample autocorrelation of the independent 
variable, knowing that Xt follows an AR(1) process, and ρ is the correlation 
coefficient of the error term.  Hence, 

 where A > 0 such as � �



The factor A

 The correct variance under AUTO is greater than the incorrect OLS 
variance times a factor A, i.e., 

� �

 The value of A can be obtained either as an approximation of the first two 
terms, i.e., 

�

 or as an infinite sum of a geometric process, i.e., as: 

�
� �

 A defines the ratio of the two variances.  



Comments on A
 For small values of ρ and r both approximations of A will take the same value, 

i.e., for ρ = r = 0.2, A1 = A2 = 1.08.
 For large values of ρ and r the two approximations of A will take different 

values, i.e., for ρ = r = 0.8, A1 = 2.28 and A2 = 4.56.  
 Hence, if the presence of serially correlated errors is ignored and the incorrect 

variance, Var( ), is used to calculate the relevant t statistic, instead of the 
correct variance, Var( ), the values of the t statistic will be larger, resulting to 
more rejections of the null hypothesis, since the incorrect variance is smaller 
than the correct variance.  

 In this case, the variance of the estimator is underestimated, the magnitude of 
which depends on the approximation of A that is used.  

 For small values of ρ and r the variance will be underestimated equally at a 
small level, i.e., for ρ = r = 0.8 is 7.4%, while for large values of ρ and r the 
underestimation will differ significantly.  For example, for ρ = r = 0.8 the 
variance is underestimated 56% using the A1 approximation and 78% 
(1/4.56=0.22) using the A2 approximation.  

 Thus, the use of the incorrect variance alters the distribution of the t statistic 
which does not convert to a standard normal distribution, producing 
misleading statistical results.  



Testing the null under AUTO
 The objective is to correct the behavior of the t statistic by importing the 

correct variance so that the test will have better performance, knowing 
that the variance that was used was smaller than the correct variance.  

 Keeping the same simulation process alive, the relevant t statistic, for 
testing the null hypothesis that β = 0, is now calculated by replacing the 
OLS incorrect variance with the correct variance, obtained under 
autocorrelated errors and the new two t statistics, using the two 
approximations of A, are obtained as follows:  

�
��

�� �� ��
and �

��

�� �� ��

 where the values of A1 and A2 are calculated individually in every trial using 
the sample correlation coefficient r of Xt and the estimate of ρ obtained by 
estimating the AR(1) for the errors using the residuals resulting from the 
OLS estimation of the original simple regression model. 

 The whole simulation process is conducted in R. 



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) using the � and � statistics along with their standard deviations for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 
observations, based on 10,000 replications



Comments on the t1 test results
 The performance of the test has significantly improved simply by correcting 

the variance of the estimator, regardless of the formula that is used for 
getting values of A.

 Using the A1 approximation of A, the relevant t1 statistic has the same 
behavior as that of the classical t statistic under spurious regression, 
meaning that the number of rejections of the null hypothesis is only 
affected by the magnitude of the autoregressive parameter and not by the 
sample size.

 The difference is that the null hypothesis is rejected less frequently than 
using the classical t statistic for every value of the autoregressive parameter 
and sample size.

 For example, using the classical t statistic the null hypothesis is rejected 
52% and 35% for φ = 0.9 and 0.8 respectively at the 5% nominal level, 
whereas using the t1 statistic the null hypothesis is rejected 30% and 17.5%  
respectively.  

 Therefore, the problem of getting spurious results has decreased, but not 
removed, simply because the values that the A1 approximation of A was 
taking were not large enough to significantly increase the variance of the 
estimator and thus the distribution of the t1 statistic did not convert to a 
standard normal distribution.  



Comments on the t2 test results
 Using the A2 approximation for A, the relevant t2 statistic produced even 

better results, showing evidence of convergence to the right nominal levels.  
 Thus, the issue of getting spurious results for two independent stationary 

AR(1) processes can totally be removed asymptotically, since for large 
sample sizes the empirical levels are very close to the nominal levels 
regardless of the value of the autoregressive parameter and the standard 
deviations of the t2 statistic converge to 1.  

 Actually, the performance of the t2 statistic depends not only on the value 
of the autoregressive parameter but also on the sample size.  

 For small and moderate sample sizes the percentage of rejections of the 
null hypothesis increases as the value of the autoregressive parameter 
increases.  

 For large sample sizes though the number of rejections of the null 
hypothesis decreases for all values of the autoregressive parameter, 
reaching happily the nominal level.  

 It seems, therefore, that in this case the value of A2 was large enough to 
alter the magnitude of the variance and produce smaller number of 
rejections.  



Test performance

 Clearly, the use of the correct variance, when serially correlated errors are 
observed, improves the test results, regardless of the approximation that is 
used, but it did not remove the spurious regression phenomenon for small 
sample sizes. 

 The test behaves better using the A2 approximation of A, instead of A1, 
especially, for large sample sizes and large values of the autoregressive 
parameter.  

 For small values of the autoregressive parameter both approximations 
work equally well.  

 However, for small and moderate sample sizes and for large values of the 
autoregressive parameter the empirical levels are not close to the nominal 
ones using the t2 statistic.  

 A more thoroughly examination of the simulation process suggests that 
the source of this problem, along with the asymptotic behavior of the t2
statistic, comes from the estimated values of ρ and r used to calculate the 
value of A2, since these values are not close enough to their theoretical 
ones for small and moderate sample sizes.  



Mean values of r and ρ
for sample sizes of 50, 100, 500 and 1000 observations, 

based on 10,000 replications

 T 
φ 

0.0 0.2 0.5 0.8 0.9 

� 

50 0.001 0.193 0.479 0.759 0.852 

100 0.002 0.198 0.490 0.780 0876 

500 -0.002 0.197 0.496 0.796 0.895 

1000 -0.001 0.198 0.498 0.797 0.897 

� 

50 -0.017 0.163 0.429 0.685 0.763 

100 -0.007 0.183 0.467 0.746 0.836 

500 -0.000 0.198 0.494 0.790 0.888 

1000 -0.003 0.196 0.495 0.794 0.893 
 



The estimated values of ρ and r
 The estimated mean values of ρ and r, used to calculate the value of A2, 

are smaller than the theoretical ones, but as sample size increases, these 
values become identical to the theoretical generated ones.  

 For this see also Agiakloglou and Agiropoulos (2016).
 This finding suggests that the value of A2, unlike the value of A1, will 

strongly be affected by these estimated values.  
 For example, for ρ = r = 0.9      A2 = 9.526 and  A1 = 2.62.  
 However, if these values of ρ and r are replaced by their mean estimated 

values obtained through the simulation process we have:
 A) For T = 50, ρ = 0.763  and  r = 0.852 A2 = 4.716  and  A1 = 2.300. 
 B) For T = 100, ρ = 0.836  and  r = 0.876  A2 = 6.472  and  A1 = 2.465.
 C) For T = 500,    ρ = 0.888  and  r = 0.895  A2 = 8.745  and  A1 = 2.590.
 D) For T = 1000,  ρ = 0.893  and r = 0.897  A2 = 9.097  and  A1 = 2.604.
 Hence, for small sample sizes, the value of A2 is significantly smaller of 

what it should be.
 Therefore, it is underestimated.  
 More concerns on the estimated values of ρ.



Two propositions

 To investigate further the performance of the test we tried using :

 I) The theoretical generated values of ρ and r. 

 II) The unbiased estimate of the variance of the error term, when 
serially correlated errors are observed.  



The generated values of ρ and r
 The correct variance is calculated using constant values for A1 and A2

throughout the simulation process, based on the generated values of ρ and 
r, to calculate respectively the new two relevant �

� and �
� statistics.  

 The performance of test using the �
� statistic, was not affected at all, 

simply because, as previously discussed, the value of A1 is small enough to 
significantly change the magnitude of the variance. 

 On the other hand, the empirical size of the test using the �
� statistic, 

based on the A2 approximation of A, has really produced very astonishing 
results.

 For all values of the autoregressive parameter and for all sample sizes the 
empirical levels of this test are very close to the nominal levels, indicating 
that the value of A2 was large enough to change significantly the 
magnitude of the variance of the estimator and the relevant statistic did 
convert to a standard normal distribution.  

 It will be almost impossible to visualize in practice a scenario like this, in 
which case the analyst will a priori know the true generating values of an 
observed series.  



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) using the �

� and �
� statistics along with their standard deviations for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 
observations, based on 10,000 replications



The unbiased estimate of the variance 

 If ρ = 0, OLS uses:  �
� �

��� �
� since     �

�
�
� .

 If , then:  �
�

�
� and  therefore the unbiased 

estimate of the variance will be obtained as: 
 ��

� =
1

[ � − 1 − �]
� ��̂

�

 Note that the values of the residuals will not be affected. Auto does not 
affect the estimates.   

 Notice also that if ρ = 0, then A = 1 and both expressions are identical.   

 Hence: �
�

�
� where  ��� 

[ ��� ��]

 K is a positive number greater than one defining the ration of the two 
estimated variances of the error term.  

 If ρ = 0, then K = 1 and, therefore, both variances are identical.  
 K will also take the value of one asymptotically, as sample size increases.



Comments on the value of K

 Hence: �
�

�
� where  ��� 

[ ��� ��]

 K is a positive number greater than one defining the ration of the two 
estimated variances of the error term.  

 If ρ = 0, then K = 1 and, therefore, both variances are identical.  

 Thus, if there is any significant contribution to the magnitude of the variance, 
using the unbiased estimate of the variance of the error term,  that is 
expected only to happen for small sample sizes and large values of the 
autoregressive parameter.  

 For example, for ρ = r = 0.8 and T = 50, K = 1.08, while for T = 500, K = 1.0072, 
using the A2 approximation of A, declaring an underestimation of the 
variance at the level of 7.4% and 0.71% respectively. 

 The value of K will be even smaller using the estimated values of ρ and r
and/or using the A1 approximation of A.  

 Basically, significantly changes are not expected.  



The new Variance

 The new variance will be obtained as: �

 And the test will be implemented based on the new two test statistics:

�
�� ��

�� �� ����
and �

�� ��

�� �� ����

 using both approximations of A. 

 As expected, the performance of the test has been improved, but by little 
and only for small sample size and for large value of the autoregressive 
parameter.  

 For example, for T = 50 and for φ = 0.9 the percentage of rejections of the 
null hypothesis at the 5% nominal level is now 12.7% instead of 13.8% 
using the A2 approximations of A.  

 In general, the use of the unbiased estimator of the variance of the error 
term did not remove the spurious behavior for small sample sizes and for 
large values of the autoregressive parameter.  



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) using the �

�� and �
��statistics along with their standard deviations for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 
observations, based on 10,000 replications



The Cochrane-Orcutt procedure

 The natural way to deal with autocorrelated errors in time series 
econometrics is to apply the Cochrane –Orcutt (CO) procedure, although: 

 I) Granger and Newbold (1974) have stated that the CO procedure will fail 
to correct this problem. 

 II) Granger et al. (2001) have also stated “Patch-work procedures, such as 
the CO correction, will be inefficient compared to using a wider 
specification”.

 As shown, the problem of not getting the right size for the test, using the 
correct variance under serially correlated AR(1) errors, was he estimated 
values of ρ.  

 One way of getting better estimated values of ρ Is to apply the iterative 
Cochrane-Orcutt procedure.



The Cochrane-Orcutt procedure Cont’d

 The CO procedure is  based on the generalized difference equation:
� ��� � ��� � ���

 where �
�

� and �
�

� .
 The variance of the estimated coefficient β will asymptotically equal to:  

��

�
�
�

�
� �

 And the relevant t statistic for testing the null hypothesis that = 0 is 
calculated as:

��
����

�� ����

 The results are astonishing.
 The application of the CO procedure has removed the spurious regression 

phenomenon for two independent stationary AR(1) processes. 



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) using the �� statistic along with its standard deviation for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 
observations, based on 10,000 replications

 φ 

0.0 0.2 0.5 0.8 0.9 

% of rej. 

50 6.8 6.8 7.0 7.6 7.9 

100 6.2 6.2 6.2 6.4 6.6 

500 5.3 5.3 5.3 5.3 5.3 

1000 5.0 5.0 5.0 5.0 5.0 

st. dev. 

50 1.069 1.070 1.076 1.100 1.133 

100 1.049 1.044 1.046 1.051 1.058 

500 1.012 1.012 1.012 1.011 1.011 

1000 0.999 0.999 0.999 1.000 1.000 
 



Three Additional Comments

 The results obtained by CO procedure:

 The estimated values of ρ.
Indeed they are closer to the true values. 

 Compared with GLS method.
Similar results, slightly better for small sample sizes. 

 Applied to two independent random walk process without drift.
It works even for those processes. 



Mean values of ρ using OLS and Cochrane-Orcutt
for sample sizes of 50, 100, 500 and 1000 observations, 

based on 10,000 replications

 T 
φ 

0.0 0.2 0.5 0.8 0.9 

���� 

50 -0.017 0.163 0.429 0.685 0.763 

100 -0.007 0.183 0.467 0.746 0.836 

500 -0.000 0.198 0.494 0.790 0.888 

1000 -0.003 0.196 0.495 0.794 0.893 

��� 

50 -0.022 0.166 0.446 0.722 0.807 

100 -0.009 0.184 0.475 0.763 0.857 

500 -0.002 0.197 0.495 0.793 0.892 

1000 -0.001 0.199 0.498 0.797 0.896 
 



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) using the ��� statistic along with its standard deviation for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 
observations, based on 10,000 replications

 φ 

0.0 0.2 0.5 0.8 0.9 

% of rej. 

50 6.8 6.9 6.8 7.4 7.4 

100 6.1 6.2 6.3 6.5 6.4 

500 5.2 5.3 5.3 5.3 5.3 

1000 5.0 5.0 4.9 5.0 5.0 

st. dev. 

50 1.069 1.069 1.072 1.084 1.093 

100 1.044 1.044 1.045 1.049 1.053 

500 1.012 1.012 1.012 1.012 1.012 

1000 0.999 0.999 0.999 1.000 1.000 
 



Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level
(|t| > 1.96) using the �� statistic along with its standard deviation for two 

independent random walk processes without drift for sample sizes of 50, 100, 500 
and 1000 observations, based on 10,000 replications

 
Sample Size 

50 100 500 1000 

% of 
Rejections 9.5 7.5 5.4 5.1 

st. dev. 1.268 1.112 1.019 1.004 

 



General Comments

 It is very difficult to analyze time series data.
 Spuriocity is an issue. 
 The Cochrane-Orcutt procedure works for two independent 

stationary and non-stationary processes.
 GLS also works. 
 Agiakloglou (2013) showed that regressing the original simple 

regression model in first difference for two random walk 
without drift processes one will get 5% empirical levels for 
sample sizes of 50 and 100 observations.    


