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Bayesian estimation

Bayesian estimation of CLRM

We will now go more into the details of the estimation.

The likelihood function is

p(Y |β, σ2) = (2π)−
T
2

∣∣∣σ2IT ∣∣∣− 12 exp [−12 (Y − X β)′
(

σ2IT
)−1

(Y − X β)

]
Depending on the form of prior we will have different models/posteriors. The
most used priors are:

1 Fix the error variance with an estimate (Theil’s mixed estimator)
2 The Natural Conjugate N-IG prior
3 The Independent N-IG prior
4 The diffuse (Jeffrey’s) prior
5 The Normal-diffuse (Zellner’s) prior
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Bayesian estimation

Theil mixed estimation - OLS with uncertain restrictions

Consider the model:

Y = X β+ ε; ε ∼ N(0, σ̂2IT ),

where we are assuming σ̂2 is a frequentist estimate of the (non-random) error
variance σ2

Consider the set of uncertain (fuzzy) restrictions:

β ∼ N(β0,Σ0 )

This can be written:
Y ∗[
Y
β0

]
=

X ∗[
X
I

]
β+

ε∗[
ε
u

]
; Var (ε∗) =

Σ∗[
σ̂2IT 0
0 Σ0

]
where −u ≡ (β− β0) ∼ N(0,Σ0 )⇒ β0= β+ u
This system can be estimated with GLS (Theil and Goldberger 1960). The
GLS estimator b̄ is:

b̄ =
(
X ∗′Σ∗−1X ∗

)−1 (
X ∗′Σ∗−1Y ∗

)
Andrea Carriero (QMUL) The Classical Linear Regression Model January 2018 3 / 41



Bayesian estimation

Theil mixed estimation - GLS

The GLS estimator b̄ is:

b̄ =
(
X ∗′Σ∗−1X ∗

)−1 (
X ∗′Σ∗−1Y ∗

)
=

([
X ′ I

] [ (σ̂2)−1IT 0
0 Σ−1

0

] [
X
I

])−1
×
([

X ′ I
] [ (σ̂2)−1IT 0

0 Σ−1
0

] [
Y
β0

])
= (X ′(σ̂2)−1X + Σ−1

0
)−1(X ′(σ̂2)−1Y + Σ−1

0
β0)

which is a mix of the data and the restrictions.
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Bayesian estimation

Theil mixed estimation - Bayesian interpretation

This model is -basically- the one we have seen in the very beginning, except
there we assumed knowledge of σ2 while here we use an estimate σ̂2

The prior for β is:
β ∼ N(β0,Σ0)

The parameter σ2 is assumed fixed (i.e. not random) and estimated (σ̂2) in a
preliminary step

The posterior is:
β|y ∼ N(β1,Σ1)

with

Σ1 =
(

Σ−10 +
1

σ̂2
X ′X

)−1
, β1 = Σ1

(
Σ−10 β0 +

1

σ̂2
X ′Y

)
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Bayesian estimation

Theil mixed estimation - posterior derivation

Prior:
p(β) ∝ exp

[
−0.5 (β− β0)

′ Σ−10 (β− β0)
]

Likelihood:
p(Y |β) ∝ exp[−0.5 (Y − X β)′ (Y − X β) /σ̂2 ]

Posterior kernel:

p(β|Y ) ∝ exp[−0.5{(β− β0)
′ Σ−10 (β− β0) + (Y − X β)′ (Y − X β) /σ̂2}]

∝ exp[−0.5 (β− β1)
′ Σ−11 (β− β1)]

where:

Σ1 =
(

Σ−10 +
1

σ̂2
X ′X

)−1
, β1 = Σ1

(
Σ−10 β0 +

1

σ̂2
X ′Y

)
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Bayesian estimation

Prior selection

Can we estimate the optimal degree of "uncertainty" of the restrictions?

Yes. For simplicity, let us say:

β ∼ N(β0 = 0,Σ0 = λ−1Ik )

that is, all of the k restrictions are mutually independent

Consider the simplest possible case in which the parameter λ can take just 2
values: λ1 and λ2

Basically, these correspond to two different models:

M1 : Y = X β+ ε; ε ∼ N(0, σ̂2IT ), β ∼ N(0,λ−11 Ik )

M2 : Y = X β+ ε; ε ∼ N(0, σ̂2IT ), β ∼ N(0,λ−12 Ik )

How can I choose among the two models?
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Bayesian estimation

Marginal data density

We can compute p(Y |M1) and p(Y |M2). These are the data densities under
the two alternative models
Recall that, in general:

1 =
∫
p(β|Y )dβ =

∫ p(Y |β)× p(β)
p(Y )

dβ =
1

p(Y )

∫
p(Y |β)× p(β)︸ ︷︷ ︸
posterior kernel

dβ

−→ p(Y ) =
∫
p(Y |β)× p(β)dβ

We just have to apply this to the two models, choose the model with the
highest p(Y |Mj )

p(Y |Mj ) =
∫
p(Y |β,Mj )× p(β|Mj )dβ, j = 1, 2

The value p(Y |Mj ) is the marginal data density for model Mj (marginal
likelihood)
In general, computation of the MDD is not easy, as it requires integration of∫
p(Y |β,Mi )× p(β|Mi )
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Bayesian estimation

Marginal data density

However Theil estimation is one case in which computation of the MDD is
easy.

Indeed, in this case we can use the Bayes formula:

p(β|Y ) = p(Y |β)× p(β)
p(Y )

→ p(Y ) =
p(Y |β)× p(β)

p(β|Y )

and note that the quantity on the RHS is known.

This is a consequence of conjugacy: since both the numerator
p(Y |β)× p(β) and the denominator p(β|Y ) share the same kernel
(Gaussian) by construction, they will simplify and all is left is the ratio of the
integrating constants!

So far we have only used the posterior kernel, we now need the properly
normalized posterior.
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Bayesian estimation

Theil mixed estimation - marginal data density

Let us see how this works:

pMj
(Y ) =

pMj (Y |β)︷ ︸︸ ︷ (2π)−
T
2

∣∣∣σ̂2IT ∣∣∣− 12 ×
exp

[
− 12 (Y − X β)′

(σ2IT )−1 (Y − X β)

]


pMj (β)

×

︷ ︸︸ ︷ (2π)−
k
2 |Σ0 |−

1
2×

exp
[
− 12 (β− β0)

′

Σ−10 (β− β0)

] 
(
(2π)−

k
2 |Σ1 |

− 12 × exp
[
−1
2

(
(β− β1)

′ Σ−11 (β− β1)
)])

︸ ︷︷ ︸
pMj (β|Y )
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Bayesian estimation

Theil mixed estimation - marginal data density

pMj
(Y ) =

pMj (Y |β)×pMj (β)︷ ︸︸ ︷
(2π)−

T
2

∣∣∣σ̂2IT ∣∣∣− 12 × (2π)−
k
2 |Σ0 |−

1
2×

exp

[
− 12

(
(β− β1)

′ Σ−11 (β− β1)

-β′1Σ−11 β1+β′0Σ−10 β0+Y
′(σ̂2)−1Y

)]


(
(2π)−

k
2 |Σ1 |

− 12 × exp
[
−1
2

(
(β− β1)

′ Σ−11 (β− β1)
)])

︸ ︷︷ ︸
pMj (β|Y )

= (2π)−
T
2

∣∣∣σ̂2IT ∣∣∣− 12 |Σ0 |− 12 |Σ1 |
1
2

× exp[−1
2
(β′1Σ−11 β1 + β′0Σ−10 β0 + Y

′(σ̂2)−1Y )]
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Bayesian estimation

Theil mixed estimation - marginal data density

Note that Y ′Y = Ŷ ′LS ŶLS + ε̂′LS ε̂LS = β̂
′
LSX

′X β̂LS + ε̂′LS ε̂LS , therefore:

pMj
(Y ) = (2π)−

T
2

∣∣∣σ̂2IT ∣∣∣− 12 |Σ0 |− 12 |Σ1 |
1
2

× exp[−1
2
(β′1Σ−11 β1 + β′0Σ−10 β0 + β̂

′
LSX

′X β̂LS/σ̂2 + ε̂′LS ε̂LS/σ̂2)],

and by re-grouping we can see:

pMj
(Y ) = (2πσ̂2)−

T
2 exp[−1

2
ε̂′LS ε̂LS/σ̂2 ]× exp[−1

2
β̂
′
LS (σ̂

2(X ′X )−1)−1 β̂LS ]

×|Σ0 |−
1
2 × exp[−1

2
β′0Σ−10 β0 ]

× |Σ1 |
1
2 × exp[−1

2
β′1Σ−11 β1 ], (1)

where the first line of (1) comes from the likelihood and represents the LS fit of
the model. Therefore the first line is going to be the same across all models (since
the models we considered here only differ in the prior while they share the same
likelihood).
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Bayesian estimation

Theil mixed estimation - marginal data density

The second line of (1) is a sum of squares of prior moments, which are chosen by
the econometrician. Finally, in this model the joint/marginal posterior moments
Σ1 and β1 are known in closed form:

Σ1 =
(

Σ−10 +
1

σ̂2
X ′X

)−1
, β1 = Σ1

(
Σ−10 β0 +

1

σ̂2
X ′Y

)
,

which means that the term

β′1Σ−11 β1 =

(
Σ−10 β0 +

1

σ̂2
X ′Y

)′ (
Σ−10 +

1

σ̂2
X ′X

)−1 (
Σ−10 β0 +

1

σ̂2
X ′Y

)
depends only on the prior moments β0, Σ0, and the data.
It follows that the MDD for this model is readily available.
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Bayesian estimation

Theil mixed estimation - example

Going back to our example, considering the two models:

M1 : Y = X β+ ε; ε ∼ N(0, σ̂2IT ), β ∼ N(0,λ−11 Ik )

M2 : Y = X β+ ε; ε ∼ N(0, σ̂2IT ), β ∼ N(0,λ−12 Ik )

where Σ−10 (M1) = λ1I ,Σ−10 (M2) = λ2I . We can simply compute p(Y |M1) and
p(Y |M2) and compute the ratio p(Y |M1)

p(Y |M2)
which in this case is:

λk/2
1 |Σ1(λ1)|

1
2 × exp[− 12 (β

′
0λ1β0 − β′1(λ1)Σ

−1
1 (λ1)β1(λ1))]

λk/2
2 |Σ1(λ2)|

1
2 × exp[− 12 (β

′
0λ2β0 − β′1(λ2)Σ

−1
1 (λ2)β1(λ2))]

where

Σ1(λ1) = (λ1I + X
′X/σ̂2)−1, Σ1(λ2) = (λ2I + X ′X/σ̂2)−1

β1(λ1) = Σ1(λ1β0 + X
′Y /σ̂2), β1(λ2) = Σ2(λ2β0 + X

′Y /σ̂2)
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Bayesian estimation

The Natural Conjugate N-IG prior

Now let us consider the task of estimating σ2. In the mixed estimation, we have
that:

Σ1 =
(

Σ−10 +
1

σ̂2
X ′X

)−1
, β1 = Σ1

(
Σ−10 β0 +

1

σ̂2
X ′Y

)
rewrite as:

Σ1 =
(
1

σ̂2
Σ∗−10 +

1

σ̂2
X ′X

)−1
, β1 = Σ1

(
1

σ̂2
Σ∗−10 β0 +

1

σ̂2
X ′Y

)
with Σ0 = σ̂2Σ∗0 and Σ1 = σ̂2Σ∗1 and:

Σ∗1 =
(

Σ∗−10 + X ′X
)−1

, β1 =
(

Σ∗−10 + X ′X
)−1 (

Σ∗−10 β0 + X
′Y
)
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Bayesian estimation

The Natural Conjugate N-IG prior

The prior for β is:
β|σ2 ∼ N(β0,σ2Σ∗0)

therefore we have Σ0 = σ2Σ∗0.

The prior for σ2 is:

σ2 ∼ Γ−1
(

ν0
2
,
s20
2

)
⇔ 1

σ2
= h ∼ Γ

(
ν0
2
,
s20
2

)

The posterior is:

σ2 |y ∼ Γ−1
(

ν1
2
,
s21
2

)
β|σ2, y ∼ N(β1,σ

2Σ∗1)

where Σ1 = σ2Σ∗1
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Bayesian estimation

The Natural Conjugate N-IG prior: posterior moments

The moments of the posterior are:

ν1 = ν0 + T

s21 = s20 +Q

σ2Σ∗1 = σ2
(

Σ∗−10 + X ′X
)−1
−→ Σ∗1 =

(
Σ∗−10 + X ′X

)−1
β1 =

(
Σ∗−10 + X ′X

)−1 (
Σ∗−10 β0 + X

′X β̂
)

with:

Q = s + sβ

s = (Y − X β̂)′(Y − X β̂)

sβ = (β1 − β̂)′X ′X (β1 − β̂) + (β1 − β0)
′Σ∗−10 (β1 − β0)

which -note- only depends on the prior and posterior moments, and the data
(but not on the actual draws of β)
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Bayesian estimation

Posterior derivation

It is useful to re-write it as follows:

p(Y |β, σ2) = (2π)−
T
2

∣∣∣σ2IT ∣∣∣− 12 exp [−12 (Y − X β)′
(

σ2IT
)−1

(Y − X β)

]
= (2πσ2)−

T
2 exp

[
− 1
2σ2
(Y − X β̂)′(Y − X β̂)

− 1
2σ2
(β− β̂)′X ′X (β− β̂)

]

where we have used (Y − X β+ X β̂− X β̂) and completed the squares, exploiting

the orthogonality ε̂′X (β− β̂) = 0. Then by breaking σ2−
T
2 into (σ2)−

k
2 and

(σ2)−
T−k−2

2 −1 and defining s = (Y − X β̂)′(Y − X β̂) we have:

p(Y |β, σ2) ∝ (σ2)−
T−k−2

2 −1 exp
[
− s
2σ2

]
(σ2)−

k
2 exp

[
− 1
2σ2

(β− β̂)′X ′X (β− β̂)

]
which is the kernel of a Normal-Gamma form, with β|σ2 a normal and σ2 a
Gamma with T − k − 2 shape and scale s.
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Bayesian estimation

The Natural Conjugate N-IG prior: joint and marginals

Prior:

p(β, σ2) = p(β|σ2)p(σ2)

=
(
2πσ2

)− v02 −1
exp

[
− s0
2σ2

]
(σ2)−

k
2 exp

[
−1
2
(β− β0)

′ 1
σ2

Σ∗−10 (β− β0)

]
where - note - 1

σ2
Σ∗−10 = Σ−10

Posterior:

p(β, σ2 |Y ) ∝ (σ2)−
T−k−2

2 −1 exp
[
− s
2σ2

] (
σ2
)− v02 −1

exp
[
− s0
2σ2

]
(σ2)−

k
2 exp

[
− 1
2σ2

(β− β̂)′X ′X (β− β̂)

]
(σ2)−

k
2 exp

[
− 1
2σ2

(β− β0)
′ Σ∗−10 (β− β0)

]
Note that the last two terms can be put together because − 1

2σ2
appears in the

prior!
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Bayesian estimation

The Natural Conjugate N-IG prior: joint and marginals

Posterior:

p(β, σ2 |Y ) ∝ (σ2)−
T+v0
2 −1 exp

[
− s0 + s
2σ2

]
(σ2)−

k
2 exp

[
− 1
2σ2
(β− β̂)′X ′X (β− β̂)

− 1
2σ2
(β− β0)

′ Σ∗−10 (β− β0)

]
we want to separate the part depending from β. Complete the squares and
regroup:

(β− β̂)′X ′X (β− β̂) = β′X ′X β− β′X ′X β̂− β̂
′
X ′X β+ β̂

′
X ′X β̂

+

(β− β0)
′ Σ∗−10 (β− β0) = β′Σ∗−10 β− β′Σ∗−10 β0 − β′0Σ∗−10 β+ β′0Σ∗−10 β0

= β′(X ′X + Σ∗−10 )︸ ︷︷ ︸
Σ∗1

β− β′(X ′X β̂− Σ∗−10 β0︸ ︷︷ ︸
Σ∗1β1

)− (β̂′X ′X + β′0Σ∗−10 )︸ ︷︷ ︸
β′1Σ∗1

β+

+β̂
′
X ′X β̂+ β′0Σ∗−10 β0
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Bayesian estimation

The Natural Conjugate N-IG prior: joint and marginals

Recall from the same step as previous lecture that β′Σ∗1β− β′Σ∗1β1 − β1Σ∗1β can
be written as (β− β1)

′Σ∗−11 (β− β1)− β′1Σ∗−11 β1. Then we have

(β− β̂)′X ′X (β− β̂) + (β− β0)
′ Σ∗−10 (β− β0)

= (β− β1)
′Σ∗−11 (β− β1)− β′1Σ∗−11 β1 + β̂

′
X ′X β̂+ β′0Σ∗−10 β

and:

p(β, σ2 |Y ) ∝ (σ2)−
T+v0
2 −1 exp

[
−
s0 + s + sβ

2σ2

]
(σ2)−

k
2 exp

[
− 1
2σ2

(β− β1)
′Σ∗−11 (β− β1)

]
with

sβ = −β′1Σ∗−11 β1 + β̂
′
X ′X β̂+ β′0Σ∗−10 β0

= (β1 − β̂)′X ′X (β1 − β̂) + (β1 − β0)
′Σ∗−10 (β1 − β0)

Note that Q = s + sβ = Y ′Y − β′1Σ∗−11 β1 + β′0Σ∗−10 β0
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Bayesian estimation

The Natural Conjugate N-IG prior: joint and marginals

We can integrate out the parameter σ2 and get the marginal β|y :

p(β|Y ) =
∫
(β|σ2,Y )p(σ2 |Y )dσ2

= c−1
[
s1 + (β− β1)

′Σ∗−11 (β− β1)
]− v1+k2

with c =
πk/2Γ( v12 )
Γ
(
v1+k
2

) |Σ∗−11 |−1/2s−v1/2
1 (Dickey 1967 parameterization).

The distribution resulting from the integration is known, it is a multivariate t:

β|Y ∼ t(β1,Σ∗1, s21 , ν1)

To draw from this distribution we can simply use MC simulation, drawing
from p(σ2 |Y ) and then (β|σ2,Y ) :

p(β, σ2)|Y = (β|σ2,Y )p(σ2 |Y )

which gives the joint (and the marginals).
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Bayesian estimation

The Natural Conjugate N-IG prior: marginal likelihood

The same applies to the prior (and likelihood):

p(β) =
∫
(β|σ2)p(σ2)dσ2 ∼ t(β0,Σ0, s20 , ν0)

The prior, the posterior, and the likelihood, are of the same form (conjugacy):

β|σ2 ∼ N; σ2 ∼ Γ−1 −→ β ∼ t
β|σ2,Y ∼ N; σ2 |Y ∼ Γ−1 −→ β|Y ∼ t
Y |β, σ2 ∼ N; −→ Y |β ∼ t

An important advantage is that then we can apply Bayes formula to obtain:

p(Y )
data density

=

p(Y |β)
likelihood

× p(β)
prior

p(β|Y )
posterior

which is also a multivariate t (known).
Drawback: have to specify the prior on β as a function of σ2
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Bayesian estimation

The Natural Conjugate N-IG prior: marginal likelihood

The marginal likelihood is multivariate t:

Y = X β+ ε

with ε ∼ N(0, σ2I ). Since β|σ2 ∼ N(β0, σ2Σ∗0) then
X β|σ2 ∼ N(X β0, σ

2XΣ∗0X
′). It follows that

Y |σ2 ∼ N(X β0, σ
2(XΣ∗0X

′ + I ))

because ε and β are independent when conditioning on σ2. This is a normal, and
σ2 an inverse gamma, so integrating this out gives a t:

Y ∼ t(X β0, (XΣ∗0X
′ + I ), s0, v0)

which has pdf:

p(Y ) =

[
s0 + (Y − X β0)

′(XΣ∗0X
′ + I )−1(Y − X β0)

]− v0+T2
πT /2Γ( v02 )
Γ
(
v0+T
2

) |(XΣ∗0X
′ + I )|−1/2s−v0/2

0
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Bayesian estimation

The Natural Conjugate N-IG prior: marginal likelihood

The expression further simplifies if one notes that v0+T = v1, and

s0 + (Y − X β0)
′(XΣ∗0X

′ + I )−1(Y − X β0) = s0 + s + sβ = s1,

and ∣∣XΣ∗0X
′ + I

∣∣ = |Σ∗0 | |Σ∗1 |−1
giving:

p(Y ) = π−T /2 Γ
( v1
2

)
Γ
( v0
2

) |Σ∗1 |−1/2∣∣Σ∗0∣∣−1/2
[s1 ]
−v1/2

[s0 ]
−v0/2

note this is very easy to compute just on the basis of prior moments and data.
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Bayesian estimation

The diffuse (Jeffrey’s) prior

Ensures uninformativeness, regardless of transformations of the model
(invariance)
It is specified as follows:

p(β, σ2) ∝ 1/σ2

And it gives:

σ2 |y ∼ Γ−1
(

ν1
2
,
s21
2

)
; β|σ2, y ∼ N(β1,σ2Σ1)

with

ν1 = ν0 + T ; s
2
1 = s

2
0 + (Y − X β̂)′(Y − X β̂)

σ2Σ1 = σ2
(
X ′X

)−1
; β1 =

(
X ′X

)−1 (X ′X β̂
)

Note this is the "limit" of the conjugate N-IW prior when the prior precision
tends to 0.
Marginal β|y is a multivariate t. This is the equivalent of classical estimation
of the CLRM.
Marginal likelihood is 0.
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Bayesian estimation

The Independent N-IG prior

The prior for β and σ2 is:

β ∼ N(β0,Σ0); σ2 ∼ Γ−1
(

ν0
2
,
s20
2

)
where -note- Σ0 no longer depends on σ2

The posterior is:

p(β, σ2 |Y ) ∝ (σ2)−
T+v0
2 −1 exp

[
− s0 + s
2σ2

]
(σ2)−

k
2 exp

[
− 1
2σ2
(β− β̂)′X ′X (β− β̂)

− 12 (β− β0)
′ Σ−10 (β− β0)

]
This still contains the kernels of a Normal and a Gamma, but due to the lack
of a common scale factor 1

σ2
in the prior and the likelihood we cannot

proceed as we did for the conjugate case.
Since the kernel of p(β) does not have a 1

σ2
the term

− 1
2σ2
(β− β̂)′X ′X (β− β̂) cannot be eliminated from the kernel for σ2

Andrea Carriero (QMUL) The Classical Linear Regression Model January 2018 27 / 41



Bayesian estimation

The Independent N-IG prior

We can still write:

p(β|σ2,Y ) ∝ (σ2)−
k
2 exp

[
− 1
2σ2

(β− β1)
′Σ−11 (β− β1)

]
Recognizing the kernel of p(β|σ2) gives:

β|σ2,Y ∼ N (β1,Σ1) ;

with

Σ1 =
(

Σ−10 +
1

σ2
X ′X

)−1
; β1 = Σ1

(
Σ−10 β0 +

1
σ2
X ′X β̂

)
Therefore we can still derive β|σ2 , but note that now also its mean
β1 depends on σ2.
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Bayesian estimation

The Independent N-IG prior

We can still write:

p
(

σ2 |Y , β
)

∝ (σ2)−
T+v0
2 −1 exp

[
− s0 + s + (β− β̂)′X ′X (β− β̂)

2σ2

]

= (σ2)−
T+v0
2 −1 exp

[
− s0 + (Y − X β)′ (Y − X β)

2σ2

]

where s = Y ′Y − β̂
′
X ′X β̂.

This is a conditional posterior σ|β, with s1 depending on β:

σ2 |β,Y ∼ Γ−1
(

ν1
2
,
s21
2

)
with

ν1 = ν0 + T

s21 = s20 + (y − X β)′(y − X β)

Note this is the same we derived in lecture 1.
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Bayesian estimation

The Independent N-IG prior

Therefore, the (conditional) posteriors are:

β|σ2,Y ∼ N (β1,Σ1) ; σ2 |β,Y ∼ Γ−1
(

ν1
2
,
s21
2

)

with moments:

ν1 = ν0 + T

s21 = s20 + (y − X β)′(y − X β)

Σ1 =

(
Σ−10 +

1
σ2
X ′X

)−1
β1 =

(
Σ−10 +

1
σ2
X ′X

)−1 (
Σ−10 β0 +

1
σ2
X ′X β̂

)
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Bayesian estimation

The Independent N-IG prior: Gibbs sampling

This prior is only conditionally conjugate.

We can only obtain closed form solutions for β|σ2,Y and σ2 |β,Y
Simple MC is not an option to obtain the joint β, σ2 |Y . Other methods are
needed−→ Gibbs Sampling (MCMC)

Integrating out σ2 analytically is not an option, since to draw it one needs to
know β. Computing the marginal likelihood in closed form is not feasible.

However, the model is more flexible than the one with conjugate prior for it
does not require proportionality between the prior on β and the error variance.
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Bayesian estimation

The Normal-diffuse prior (Zellner 1971)

The uninformativeness is only imposed on the error variance.
It is specified as follows:

β ∼ N(β0,Σ0); p(σ2) ∝ 1/σ2

The (conditional) posteriors are:

β|σ2,Y ∼ N (β1,Σ1) ; σ2 |β,Y ∼ Γ−1
(

ν1
2
,
s21
2

)
with moments:

ν1 = T ; s21 = (y − X β)′(y − X β);

Σ1 =

(
Σ−10 +

1
σ2
X ′X

)−1
; β1 = Σ1

(
Σ−10 β0 +

1
σ2
X ′X β̂

)
that is, the "limit" of the independent N-IW prior, when ν0 → 0, s20 → 0
Estimation via Gibbs sampling
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Bayesian estimation

Gibbs sampling

1 Set starting values for x1....xk

x j=01 , ..., x j=0k

2 Sample x j=11 from f
(
x11 |x02 , x03 ..., x0k

)
,then sample x j=12

from f
(
x12 |x11 , x03 , ..., x0k

)
,

... then sample x j=1i from

f
(
x1i |x11 , x12 , ..., x1i−1, x0i+1, ..., x0k

)
.... finally, sample x j=1k from f

(
x1k |x11 , x12 , ..., x1k−1

)
.

3 This completes iteration j = 1. Set j = 2 and repeat until j = J:

f
(
x ji |x

j
1, x

j
2, ..., x

j
i−1, x

j−1
i+1 , ..., x

j−1
k

)
File example_gibbs.m
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Bayesian estimation

Gibbs sampling

Gibbs sampling is a special case of more general MCMC sampling

As J → ∞ the joint and marginal distributions of simulated {x j1, ...x
j
K }mj=1

converge at an exponential rate to the joint and marginal distributions of
x1....xk
For simple models (e.g. linear regressions, also multivariate), this happens
*really fast*

How to evaluate if convergence happened?

By construction the Gibbs sampler produces draws than are autocorrelated

Some burn-in required
What is the effi ciency/mixing?
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Bayesian estimation

Gibbs sampling - convergence and mixing

Convergence
Time series plots
Tests of equality across independent chains e.g. Geweke’s (1992) convergence
diagnostic test for equal means
Potential Scale Reduction Factors (PSRF), Gelman and Rubin (1992)

Mixing
Time series plots
Autocorrelograms
Ineffi ciency factors (IF) give an idea of how far we are from i.i.d. sampling

Check out the R / MATLAB packages COnvergence DiAgnostics
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Bayesian estimation

Convergence - PSRF

Gelman and Rubin (1992) and Brooks, S.P. and Gelman, A. (1998)

Let {θmj}Jj=1 be the m−th simulated chain, m = 1, . . . ,M. Let θ̂m and σ̂2m
be the sample posterior mean and variance of the m−th chain, and let the
overall sample posterior mean be θ̂ = ΣMm+1 θ̂m/M.

There are two ways to estimate the variance of the stationary distribution σ2:

The mean of the empirical variance within each chain:

W =
1
M

ΣMm+1 σ̂2m

The empirical variance from all chains combined:

V =
J − 1
J

W +
M + 1
MJ

B ,

where B = J
M−1ΣMm+1(θ̂m − θ̂)2 is the empirical between-chain variance
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Bayesian estimation

Convergence - PSRF

If the chains have converged, then both W and V are unbiased. Otherwise
the first method will underestimate the variance, since the individual chains
have not had time to range all over the stationary distribution, and the
second method will overestimate the variance, since the starting points were
chosen to be overdispersed.

The convergence diagnostic is:

PSRF =

√
V
W

Brooks and Gelman (1997) have suggested, if PSRF < 1.2 for all model
parameters, one can be fairly confident that convergence has been reached.

More reassuring (and common) is to apply the more stringent condition
PSRF < 1.1
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Bayesian estimation

Mixing - ineffi ciency factors

The ineffi ciency factor (IF) 1+ 2∑∞
k=1 ρk , where ρk is the k-th order

autocorrelation. This is the inverse of the relative numerical effi ciency
measure of Geweke (1992). Usually estimated as the spectral density at
frequency zero with Newey-West kernel (with a 4% bandwidth).

i.i.d. sampling (e.g. MC sampling) features IF=1, here IF < 20 are
considered good.

Note that mixing can *always* be improved artificially by a practice called
thinning. Thinning (or skip sampling) is only advisable if you have space
constraints, since it always implies loss of information

Andrea Carriero (QMUL) The Classical Linear Regression Model January 2018 38 / 41



Bayesian estimation

GLRM: autocorrelated errors

Gibbs sampling is powerful. For example, we can easily extend the model we
are considering:

yt = βxt + εt (2)

εt = φεt−1 + ut , ut ∼ iidN(0, σ2u) (3)

In this model there are 3 (groups of) parameters: β, φ, σ2u . Also, we have
σ2ε = Var(εt ) = σ2u/(1− φ2)

Consider the Cochrane-Orcutt transformation:

P =

 −φ 1 0
...

. . .
0 −φ 1


Py = PX β+ Pε (4)

where [Pε]t = −φεt−1 + εt .
The model in (4) is a Generalized LRM, with error variance

Var(Pε) = PVar(ε)P ′ = σ2εPP
′ = σ2u

1−φ2
PP ′ = Ω(φ, σ2u).
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Bayesian estimation

GLRM: autocorrelated errors

We have:
P(φ)y = P(φ)X β+ P(φ)ε (5)

which has likelihood:

p(Y |β, σ2, φ) = (2π)−
T
2 |Ω|−

1
2 exp

[
−1
2
(Y − X β)′ (Ω)−1 (Y − X β)

]
where recall Ω = Ω(φ, σ2u)
One can specify:

β ∼ N(β0,Σ0); φ ∼ N(φ0,Σφ0
); σ2u ∼ Γ−1

(
ν0
2
,
s20
2

)
Under knowledge of σ2u and φ, this gives the following posterior for β

β|φ, σ2, y ∼ N(β1,Σ1)

Σ1 =
(

Σ−10 + X ′Ω(φ, σ2u)
−1X

)−1
, β1 = Σ1

(
Σ−10 β0 + X

′Ω(φ, σ2u)
−1Y

)
which is simply the average of a GLS estimator and the prior.
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Bayesian estimation

GLRM: autocorrelated errors

Then, under knowledge of β, it is easy to use the model in (2) to
derive ε|β, y and this can be used as an observable in (3). This gives

ε1 = ε0φ+ u, ut ∼ N(0, σ2u IT−1) (6)

which is a standard linear regression model with AR coeffi cient φ and error
variance σ2u .

Given the prior specified in (3), the posteriors will be:

φ|β, σ2u , y ∼ N(φ1,Σφ1
);

Σφ1
=

(
Σ−1φ0

+
1

σ2u
ε′0ε0

)−1
, β1 = Σφ1

(
Σ−1φ0

φ0 +
1

σ2u
ε′0ε1

)
σ2u |β, φ, y ∼ Γ−1

(
ν0 + T
2

,
s20 + (ε1 − ε0φ)′(ε1 − ε0φ)

2

)
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