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Bayesian Estimation The Classical Linear Regression Model

The classical linear regression model (CLRM)

Consider the following linear regression and the task of estimating β

Y = X β+ ε; ε ∼ N(0, σ2IT )

In the standard approach we write down the likelihood function

p(Y |β, σ2) = (2π)−
T
2

∣∣∣σ2IT ∣∣∣− 12 exp [−12 (Y − X β)′
(

σ2IT
)−1

(Y − X β)

]
Then we obtain data and maximize p(Y |β, σ2), which gives the standard
OLS estimator

β̂ =
(
X ′X

)−1 X ′Y
Incorporates information from the data only. Bayesian analysis allows to
combine our beliefs about β with information from the data
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More on the CLRM

More specifically, Maximum Likelihood esimation gives:

β̂ ∼ N(β, σ2
(
X ′X

)−1
),

but since σ2 is usually unknown it is estimated with

σ̂2 =
(Y − X β̂)′(Y − X β̂)

T − k .

Noting that

(T − k)σ̂2/σ2 =
ε′

σ
(I − PX )

ε

σ
∼ χ2T−k ,

we have

β̂−β√
σ2(X ′X )−1√
(T−k )σ̂2/σ2

(T−k )

∼ tT−K → β̂ ∼ tT−K (β, σ̂2
(
X ′X

)−1
),

which is approximately normal in reasonably large samples.
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Bayesian Estimation The Classical Linear Regression Model

Updating a linear projection

Start with:
y = X β+ ε; ε ∼ N(0, σ2IT )

and get
β̂ =

(
X ′X

)−1 X ′Y
Add data: [

Y
Y1

]
=

[
X
X1

]
β+

[
ε
ε1

]
; ε ∼ N(0, σ2IT+T1 )

and get

β̂ =

([
X ′ X

′
1

] [ X
X1

])−1 [
X ′ X

′
1

] [ Y
Y1

]
=

(
X ′X + X

′
1X1

)−1
(X ′Y + X

′
1Y1)
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Bayesian Estimation The Classical Linear Regression Model

The Bayesian approach to the CLRM

Bayesian approach
1 The researcher starts with a prior belief about the coeffi cient β. The prior
belief is in the form of a distribution p(β)

β ∼ N(β0,Σ0)

2 Collect data and write down the likelihood function as before p(Y |β).
3 Update your prior belief on the basis of the information in the data. Combine
the prior distribution p(β) and the likelihood function p(Y |β) to obtain the
posterior distribution p(β|Y )
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Bayesian Estimation The Classical Linear Regression Model

Key identities

These three steps come from Bayes Theorem:

p(β|Y ) = p(Y |β)× p(β)
p(Y )

Useful identities:

p(Y , β)
joint

= p(Y )
data density

× p(β|Y )
posterior

= p(Y |β)
likelihood

× p(β)
prior

p(Y ) is the data density (also known as marginal likelihood).It is the
constant of integration of the posterior:∫

p(β|Y )dβ =
1

p(Y )

∫
p(Y |β)× p(β)︸ ︷︷ ︸
posterior kernel

dβ = 1,

therefore it is not needed if we are only interested in the posterior kernel. The
posterior kernel is suffi cient to compute e.g. mean and variance of p(β|Y ).
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Prior distribution of coeffi cients

We assume for the moment that σ2 is known, k is the number of regressors.
1. Set prior distribution for β ∼ N(β0,Σ0)

p(β) = (2π)−
k
2 |Σ0 |−

1
2 exp

[
−1
2
(β− β0)

′ Σ−10 (β− β0)

]
∝ exp

[
−0.5 (β− β0)

′ Σ−10 (β− β0)
]

2. Obtain data and form the likelihood function:

p(Y |β) = (2π)−
T
2

∣∣∣σ2IT ∣∣∣− 12 exp[−12 (Y − X β)′ (σ2IT )
−1 (Y − X β)]

∝ exp[−0.5 (Y − X β)′ (Y − X β) /σ2 ]
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Bayesian Estimation The Classical Linear Regression Model

Posterior distribution of coeffi cients

3. Obtain the posterior kernel

p(β|Y ) ∝ p(Y |β)× p(β)
∝ exp[−0.5 (β− β0)

′ Σ−10 (β− β0)]

× exp[−0.5 (Y − X β)′ (Y − X β) /σ2 ]

∝ exp[−0.5{(β− β0)
′ Σ−10 (β− β0) + (Y − X β)′ (Y − X β) /σ2}]

∝ exp[−0.5 (β− β1)
′ Σ−11 (β− β1)]

where the last step uses:

Σ1 =

(
Σ−10 +

1
σ2
X ′X

)−1
(1)

β1 = Σ1

(
Σ−10 β0 +

1
σ2
X ′Y

)
(2)

This is the kernel of a normal distribution. Therefore we can write:

β|σ2,Y ∼ N (β1,Σ1)
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Bayesian Estimation The Classical Linear Regression Model

Posterior distribution of coeffi cients - details

we have:

p(β|Y ) ∝ exp[−0.5{(β− β0)
′ Σ−10 (β− β0) + (Y − X β)′ (Y − X β) /σ2}]

completing the squares gives:

k = β′Σ−10 β− β′Σ−10 β0 − β′0Σ−10 β+ β′0Σ−10 β0 +

+Y ′(σ2)−1Y − Y ′(σ2)−1X β− β′X ′(σ2)−1Y + β′X ′(σ2)−1X β

regrouping gives:

k = β′(Σ−10 + X ′(σ2)−1X )︸ ︷︷ ︸
Σ−11

β− β′(Σ−10 β0 + X
′(σ2)−1Y )︸ ︷︷ ︸

Σ−11 β1

+

− (β′0Σ−10 + Y ′(σ2)−1X )︸ ︷︷ ︸
β′1Σ−11

β+ β′0Σ−10 β0 + Y
′(σ2)−1Y

where the elements in braces follow from the definitions (1) and (2).
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Bayesian Estimation The Classical Linear Regression Model

Posterior distribution of coeffi cients - details

k = β′Σ−11 β− β′Σ−11 β1 − β′1Σ−11 β+ β′0Σ−10 β0 + Y
′(σ2)−1Y (3)

The last two terms will remain as they are. Rewrite the first term as:

β′Σ−11 β = (β− β1︸ ︷︷ ︸+ β1︸︷︷︸)′Σ−11 (β− β1 + β1)

= (β− β1)
′︸ ︷︷ ︸Σ−11 (β− β1)︸ ︷︷ ︸+( β1︸︷︷︸)′Σ−11 ( β1︸︷︷︸)

+ (β− β1)
′︸ ︷︷ ︸Σ−11 ( β1︸︷︷︸) + ( β1︸︷︷︸)′Σ−11 (β− β1)︸ ︷︷ ︸ .

Simplifying the β′1Σ−11 β1 appearing in the last three terms (+,-,-) gives:

β′Σ−11 β = (β− β1)
′Σ−11 (β− β1)− β′1Σ−11 β1 + β′Σ−11 β1 + β1

′Σ−11 β

The terms underlined simplify with those in (3), which then becomes:

k = (β− β1)
′Σ−11 (β− β1)− β′1Σ−11 β1 + β′0Σ−10 β0 + Y

′(σ2)−1Y

∝ (β− β1)
′Σ−11 (β− β1)
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Comparison with OLS

Note that, as X ′X β̂ = X ′Y , we have:

β1 =

(
Σ−10 +

1
σ2
X ′X

)−1 (
Σ−10 β0 +

1
σ2
X ′X β̂

)
Without the priors, these moments are simply the OLS estimates

Without the data, these moments are simply the priors

The mean is a weighted average of the prior and OLS.

The weights are inversely proportional to the precision of prior and data
information

Σ−10 and Σ−10 β0 are the prior moments, can be interpreted as dummy
observations/pre-sample observations.

Setting Σ−10 = λ
σ2
I and β0 = 0 gives the Ridge regression:

β1 =
(
λI + X ′X

)−1 X ′Y .
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Bayesian Estimation The Classical Linear Regression Model

The Likelihood Principle

Consider tossing a drawing pin (Lindley and Phillips 1976). Luigi says he
tossed it 12 times and obtained :

{U,U,U,D,U,D,U,U,U,U,U,D}

You -as a statistician- are asked to give a 5% rejection region for the null
that U and D are equally likely

Obtaining 9 U’s out of 12 suggests that the chance of its falling uppermost
(U) exceeds 50%.The results that would even more strongly support this
conclusion are:

(10, 2), (11, 1), and (12, 0),

so that, under the null hypothesis θ = 1/2, the chance of the observed
result, or more extreme, is:{(

12
3

)
+

(
12
2

)
+

(
12
1

)
+

(
12
0

)}(
θ =

1
2

)12
= 7.5% >5%

Hence, you do NOT reject the null that U and D are equally likely (50%).
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Bayesian Estimation The Classical Linear Regression Model

The Likelihood Principle

However, now Luigi tells you: "but I didn’t set to throw the pin 12 times. My
plan was to throw the pin until 3 Ds appeared"

Does this change your inference? Yes it does

Under the new scenario, the more exreme events would be:

(10, 3), (11, 3), (12, 3), ...,

while the events (10, 2), (11, 1), and (12, 0) actually can NOT take place
under this design.

So the chance of the observed result under the null hypothesis becomes:{
1−

(
10
2

)(
1
2

)11
−
(
9
2

)(
1
2

)10
− ...−

(
2
2

)(
1
2

)3}
= 3.25% <5%

Why is this happening? Because the two setups imply a different stopping
rule (stop at 12 draws, or stop at 3 D draws). This, more generally, alters
the sample space.
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The Likelihood Principle

Things are even more problematic. Think if Luigi says "I just kept drawing
the pin until lunch was served". How would you tackle this?
Confidence intervals similarly demand consideration of the sample space.
Indeed, so does every statistical technique, with the exception of maximum
likelihood.

Lindley and Phillips (1976): Many people’s intuition says this
specification is irrelevant. Their argument might more formally be
expressed by saying that the evidence is of 12 honestly reported tosses, 9
of which were U; 3, D. Furthermore, these were in a particular order,
that reported above. Of what relevance are things that might have
happened [e.g. no lunch], but did not?

Indeed, this helps us understand The LIKELIHOOD PRINCIPLE:
1 All the information about θ obtainable from an experiment is contained in
the likelihood function for θ given the data.

2 Two likelihood functions for θ(from the same or different experiments)
contain the same information about θ if they are proportional to one another.
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The Likelihood Principle

By using only the likelihood, and nothing else from the experiment, the
answer to the problem is the same regardless of the stopping rule.

Indeed, let x1 = #U in experiment 1 x2 = #U in experiment 2

In experiment 1 (E1) we have a binomial density:

f 1θ (x1) =
(
12
x1

)
θx1 (1− θ)12−x1 =⇒ `1θ (9) =

(
12
9

)
θ9(1− θ)3

In experiment 2 (E2) we have a negative binomial density:

f 2θ (x2) =
(
x2 + 3− 1

x2

)
θx2 (1− θ)3 =⇒ `2θ (9) =

(
11
9

)
θ9(1− θ)3

In this situation, the Likelihood Principle says that:
1 for experiment E1 alone the information about θ is contained solely in `1θ (9);
2 for experiment E2 alone the information about θ is contained solely in `2θ (9);
3 since `1θ (9) and `

2
θ (9) are proportional as functions of θ, the information about

θ in the two experiments is identical
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Bayesian Estimation The Classical Linear Regression Model

Error variance

We assume for the moment that β is known. A typical prior for the variance
σ2 is an inverse Gamma prior.

Suppose we have ν0 i .i .d . observations from a normal distribution:

vt ∼ N(0, 1/s20 ).

Then s0vt ∼ N (0, 1) and the sum of squares of these is

ν0

∑
t=1
(s0vt )

2 ∼ χ2(ν0).

Defining h = ∑ν0
t=1 v

2
t we can write s

2
0h ∼ χ2(ν0) with pdf:

fs20 h
(
s20h
)
= [2

ν0
2 Γ(ν0/2)]−1(s20h)

ν0−2
2 exp(−s20h/2).
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Bayesian Estimation The Classical Linear Regression Model

Error variance - gamma

If s20h ∼ χ2(ν0) then h has the so-called gamma distribution (and vice-versa):

h =
ν0

∑
t=1

v2t ∼ Γ

(
ν0
2
,
s20
2

)
;

fh (h) = [Γ(ν0/2)]−1(s20/2)
ν0
2 h

ν0−2
2 exp(−s20h/2)

The pdf fh (h) above can be obtained using the change of variable theorem.
This theorem states that if x is a random variable (and we know its pdf
fx (·)), and z = r(x) is an invertible function of it (and therefore
x = r−1(z)), then the pdf of z can be derived as follows:

fz (z) =

∣∣∣∣ ddz r−1(z)
∣∣∣∣× fx (r−1(z))

In this case x = s20h ∼ fx and z = h = x/s20 ∼ fz . So r−1(z) = x = s20 × h,
and:

fh (h) =
∣∣∣s20 ∣∣∣× fx (s20h)
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Error variance - change of variable

Indeed we have:

fs20 h
(
s20h
)
= [2

ν0
2 Γ(ν0/2)]−1(s20h)

ν0−2
2 exp(−s20h/2) ∼ χ2(ν0).

and

fh (h) =
∣∣∣s20 ∣∣∣× fx (s20h)

=
∣∣∣s20 ∣∣∣ [2 ν0

2 Γ(ν0/2)]−1(s20h)
ν0−2
2 exp(−s20h/2)

=
∣∣∣s20 ∣∣∣ [2 ν0

2 Γ(ν0/2)]−1s20
( ν0
2 −1)h

ν0−2
2 exp(−s20h/2)

= [2
ν0
2 Γ(ν0/2)]−1s20

ν0
2 h

ν0−2
2 exp(−s20h/2)

= [Γ(ν0/2)]−1(s20/2)
ν0
2 h

ν0−2
2 exp(−s20h/2) ∼ Γ

(
ν0
2
,
s20
2

)
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Error variance - inverse gamma

Using a second change of variable σ2 = h−1 yields:

σ2 ∼ Γ−1
(

ν0
2
,
s20
2

)
;

fσ2 (σ
2) ∝ [Γ(ν0/2)]−1(s20/2)

ν0
2 (σ2)−

ν0+2
2 exp(−s20/2σ2),

In this case x = h ∼ fx and z = h−1 ∼ fz . So r−1(z) = x = h, and
fσ2 (h

−1) = 1× fh(h), that is we simply use h = 1
σ2
in fh (h).

Then σ2 has an inverse gamma distribution with mean s20
2 /( ν0

2 − 1) and
variance ( s

2
0
2 )
2/(( ν0

2 − 1)2(
ν0
2 − 2)).

Instead h is the precision, and has a gamma distribution with mean
ν0
2 / s

2
0
2 = ν0/s20 and variance

ν0
2 /
(
s20
2

)2
= 2ν0/s40 .
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Error variance - drawing from

To draw σ2 we can:

Draw a vector of dimension ν0 from a Gaussian distribution, i.e.
a

ν0×1
= s0v where v ∼ N(0, Iν0 ).

The quantity a′a = 1
s20
v ′v is a random draw of the precision h from

Γ
(

ν0
2 ,

s20
2

)
.

The inverse (a′a)−1 = s20/v ′v is a draw of σ2 from Γ−1
(

ν0
2 ,

s20
2

)
.
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The prior distribution for different degrees of freedom
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The prior distribution for different scale matrices
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Conditional Posterior of error variance

1. Set prior distribution σ2 ∼ Γ−1
(
v0/2, s20/2

)
p(σ2) = [Γ(ν0/2)]−1(s20/2)

ν0
2 (σ2)−

ν0+2
2 exp

(
−s20/2σ2

)
2. Obtain data and form the likelihood function

p(Y |β, σ2) = (2π)−
T
2

∣∣∣σ2IT ∣∣∣− 12 exp [−12 (Y − X β)′
(

σ2IT
)−1

(Y − X β)

]
3. Obtain the conditional posterior kernel

p
(

σ2 |Y , β
)

∝ (σ2)−
T+ν0+2

2 exp
[
−{s20 + (Y − X β)′ (Y − X β)}/2σ2

]
which is the kernel of an inverse gamma

Γ−1(v1/2, s21/2)

with
v1 = T + v0, s

2
1 = s

2
0 + (Y − X β)′ (Y − X β) .
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