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Bayesian Vector Autoregressions

The Bivariate VAR Model

Suppose we have observed two time series, Y1,t and Y2,t , over time.

A priori, we wish to allow for the two time series to co-move. That is, past
(lagged) values of Y2,t may potentially explain the current value of Y1,t , and
vice versa.

Bivariate VAR(p): A natural tool to model the joint dynamics of
(Y1,t ,Y2,t ) is by extending the idea of ADL models as follows:

Y1,t = µ1 +
p

∑
k=1

φ1,kY1,t−k +
p

∑
k=1

γ1,kY2,t−k + ε1,t ,

Y2,t = µ2 +
p

∑
k=1

φ2,kY2,t−k +
p

∑
k=1

γ2,kY1,t−k + ε2,t .

Separately, each of the two equations constitutes a restricted ADL model:

same #lags for both Y1,t and Y2,t in both equations.
current value of additional explanatory variable ("Xt") is ruled out.
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Bayesian Vector Autoregressions

The Bivariate VAR Model

Recall the model:

Y1,t = µ1 +
p

∑
k=1

φ1,kY1,t−k +
p

∑
k=1

γ1,kY2,t−k + ε1,t ,

Y2,t = µ2 +
p

∑
k=1

φ2,kY2,t−k +
p

∑
k=1

γ2,kY1,t−k + ε2,t .

Collecting the coeffi cients in vectors and matrices,

Yt =
[
Y1,t
Y2,t

]
, εt =

[
ε1,t
ε2,t

]
, µ =

[
µ1
µ2

]
, Φk =

[
φ1,k γ1,k
φ2,k γ2,k

]
for k = 1, ..., p, the above equations can be written as

Yt = µ+Φ1Yt−1 + ...+ΦpYt−p + εt .

The VAR(p)-model is just a multivariate extension of the univariate AR(p) model.
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Bayesian Vector Autoregressions

Relationship with simultaneous equation structural models

Consider the following model, where the errors are mutually uncorrelated:

Y1t = c1 + d1Y1t−1 + δY2t + u1t
Y2t = c2 + γY1t + d2Y2t−1 + u2t

The model above is a simultaneous equation model (SEM). Models of this
type are widely used in economics. Re-write as follows:[

1 −δ
−γ 1

] [
Y1t
Y2t

]
=

[
c1
c2

]
+

[
d1 0
0 d2

] [
Y1t−1
Y2t−1

]
+

[
u1t
u2t

]
A0Yt = C +DYt−1 + ut

No forecasts can be computed from this form, as we need the
contemporaneous values of one variable to forecast the other.
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Bayesian Vector Autoregressions

Relationship with simultaneous equation structural models

To forecast, we need the reduced form which provides us with the values of
the variables as function of only shocks and past values.

By premultiplying by A−10 we have:

Yt = A−10 C + A−10 DYt−1 + A
−1
0 ut = B0 + B1Yt−1 + εt

where:

B0 =

[
B (1)0
B (2)0

]
=

[
1 −δ
−γ 1

]−1 [ c1
c2

]

B1 =

[
B(11)1 B (12)1

B(21)1 B (22)1

]
=

[
1 −δ
−γ 1

]−1 [ d1 0
0 d2

]
[

ε1t
ε2t

]
=

[
1 −δ
−γ 1

]−1 [ u1t
u2t

]
The reduced form is an unrestricted VAR
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Bayesian Vector Autoregressions

Structural VARs

This means that, given a VAR:

Yt = B0 + B1Yt−1 + εt (1)

If we identify the shocks in some way, e.g. εt = A−10 ut where ut has a
diagonal variance matrix we can write:

A0Yt = A0B0 + A0B1Yt−1 + ut (2)

which is a Structural VAR, i.e. a simultaneous equations model in which each
structural shock ut is uncorrelated with the others.

The matrix A0 describes the contemporaneous correlations across the
variables.
[Prior on B0 or A0B0?]
[Uninformative sign restrictions on A−10 are uninformative for A0?]
The same reduced form (1) corresponds to several structural forms (2), so
while it is easy to go from (2) to (1) the opposite is not obvious.
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Bayesian Vector Autoregressions

The General VAR Model

The bivariate VAR model is easily extended to the general N-dimensional
case.

Let Yt = [Y1,t , ...,Yk ,t ]
′ ∈ Rk be a N-dimensional vector of time series.

The corresponding VAR(p) model is

Yt = µ+Φ1Yt−1 + ...+ΦpYt−p + εt ,

where µ ∈ RN is a vector, Φi ∈ RN×N is a matrix, i = 1, ..., p, and
εt = [ε1,t , ..., εN ,t ]

′ ∈ RN is a vector of errors.

The errors are assumed to be i.i.d. with mean zero and covariance

Var (εt ) = Σ
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Bayesian Vector Autoregressions

Stationarity and Characteristic polynomial

Characteristic polynomial: Introducing the matrix polynomial
corresponding to the VAR model,

Φ (z) = IN −Φ1z − ...−Φpzp , IN is the identity matrix,

we can write the VAR(p) model as

Φ (L)Yt = µ+ εt .

Stationarity: Suppose {εt} is i.id. (0,Σ). Then the VAR(p) process is
stationary and mixing if all the roots of Φ (z) lie outside the unit circle:

|Φ (z)| = 0⇒ |z | > 1.

Moreover, E
[
‖Yt‖p

]
< ∞ if E

[
‖εt‖p

]
< ∞.
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Bayesian Vector Autoregressions

ACF of a stationary VAR(1)

Yt = µ+ΦYt−1 + εt .

First and second moments:

E [Yt ] = µ+ΦE [Yt−1 ]→ µY = (I −Φ)−1 µ

Var [Yt ] = ΦVar [Yt−1 ]Φ′ + Σ→ VY = ΦVY Φ′ + Σ
vec(Var [Yt ]) = (I −Φ⊗Φ′)−1vec(Σ)

Autocovariance function:

Cov [Yt ,Yt−1 ] = Cov [ΦYt−1 + εt ,Yt−1 ] = ΦVY
Cov [Yt ,Yt−2 ] = Cov [ΦYt−1 + εt ,Yt−2 ] = ΦCov [Yt ,Yt−1 ]

= Φ2VY ...

Cov [Yt ,Yt−k ] = Cov [ΦYt−1 + εt ,Yt−k ] = ΦkVY
Corr (Yt ,Yt−k ) = Φk
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Bayesian Vector Autoregressions

Forecasting with a VAR

Consider for example a VAR(1) Yt = µ+ΦYt−1 + εt . Its MSFE-optimal
forecast is:

Ŷt+1 = E (Yt+1 |It ) = µ+ΦYt

What happens if we go further ahead in the forecasting horizon?

Ŷt+2 = µ+ΦŶt+1 = µ+Φ(µ+ΦYt ) = µ+Φµ+Φ2Yt

IMPORTANT: the notation Φ2 means Φ = ΦΦ, which is different from
squaring the elements of Φ!
The h-step ahead forecast is:

Ŷt+h = µ+Φµ+Φ2µ+ ...+Φh−1µ+ΦhYt

If the horizon is infinite, we have:

Ŷt+∞ = (Σ∞
i=1Φ)µ = (I −Φ)−1µ = E [Yt ]
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Bayesian Vector Autoregressions

Forecast errors

The 1-step ahead forecast error is:

vt+1 = Yt+1 − E (Yt+1 |It )
= Yt+1 − (µ+ΦYt )
= (µ+ΦYt + εt+1)− (µ+ΦYt ) = εt+1

The 2-step ahead forecast error is:

vt+2 = Yt+2 − E (Yt+2 |It )
= (µ+ΦYt+1 + εt+2)− (µ+Φµ+ΦYt )
= ΦYt+1 + εt+2 −Φµ−ΦYt
= Φ(Yt+1 − (µ+ΦYt )) + εt+2

= Φεt+1 + εt+2
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Bayesian Vector Autoregressions

Forecast errors

The h-step ahead forecast error is:

vt+h = Yt+h − E (Yt+h |It )
= Φh−1εt+1 + ...+Φεt+h−1 + εt+h = ∑h

j=1 Φh−j εt+j

The variance of the h-step ahead forecast error is:

Var(vt+h) = Φh−1ΣΦh−1′ + ...+ΦΣΦ′ + Σ

where Σ is the variance (matrix) of the error term εt .

As in the univariate case, the forecast errors are correlated with correlation:

Cov(vt+2, vt+1) = Cov(Φεt+1 + εt+2, εt+1) = ΦΣ
Cov(vt+3, vt+1) = Cov(Φ2εt+1 +Φεt+2 + εt+3, εt+1) = Φ2Σ

Cov(vt+h , vt+1) = Cov(Φh−j εt+j + ..., εt+1,) = Φh−jΣ
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Bayesian Vector Autoregressions

Variance decomposition

The expression

Var(vt+h) = Φh−1ΣΦh−1′ + ...+ΦΣΦ′ + Σ

is particularly useful because it can be use to decompose the total variance of
the innovations vt+h in the contributions given by each of the variables in the
VAR.

However, in order to do so in an economically meaningful way one needs to
"rotate" the errors εt so that they are orthogonal
The simplest (but by no means the only) way to do so is by defining:

εt = A−10 ut , with Var(ut ) = Λ,

with A−10 lower triangular with ones on the main diagonal, and Λ diagonal.
By construction we have:

Σ = A−10 ΛA−1′0
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Bayesian Vector Autoregressions

MA Representation of Stationary VARs

Example with VAR(1):

Yt = µ+Φ1Yt−1 + εt

(I −Φ1L)Yt = µ+ εt (AR representation, Φ(L) = (I −Φ1L))
Yt = µ+Φ1Yt−1 + εt

= µ+Φ1(µ+Φ1Yt−2 + εt−1) + εt

= µ+Φ1(µ+Φ1(µ+Φ1Yt−3 + εt−2) + εt−1) + εt

....

= µ(I +Φ1 +Φ21 + ....+Φ∞
1 )

+(I +Φ1L+Φ21L
2 + ....+Φ∞

1 L
∞)εt

= µΠ(1) +Π(L)εt (MA, Π(L) = (I −Φ1L)−1)

Π(1) → (I −Φ1)−1 and µ(I −Φ1)−1 = µY , then

Yt = µ(I −Φ1)−1 +Π(L)εt = µY +Π(L)εt
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Bayesian Vector Autoregressions

MA Representation and impulse responses.

The MA representation can be used to compute impulse responses:

Φ (L)Yt = µ+ εt ⇔ Yt = µY +Π(L)εt

Define the notation Π(L) = I +Π0 +Π1L+ ...+ΠhLh + ..., where Πl has
generic element [Πl ]i ,j . We have:

∂Yi ,t+h
∂εj ,t

= [Πl ]i ,j

As with the variance decomposition, there is not too much economic meaning
unless we rotate the disturbances. Defining again

εt = A−10 ut , with Var(ut ) = Λ,

allows to compute instead:

∂Yi ,t+h
∂uj ,t

= [Π∗l ]i ,j

where
Yt = µY +Π(L)A−10 ut = µY +Π∗(L)ut
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Bayesian Vector Autoregressions

VARs - Multivariate regression representation

Consider the following VAR:

yt = B0 + B1yt−1 + B2yt−2 + ...+ Bpyt−p + ut

By collecting B = (B0, B1, ...,Bp)′ of dimension N × k (where k = 1+Np)
and xt = (1, y ′t−1, y

′
t−2, ..., y

′
t−p)

′ of dimension k × 1 we have:

yt = B ′xt + vt .

Now consider the equations for all observations t = 1, ...,T . By stacking
them by columns and then transposing the system we get the multivariate
regression:

Y
T×N

= X
T×k

B
k×N

+ V
T×N

V ∼ N(0, Σ
N×N

)

where Y is a data-matrix with rows y ′t , X is a data-matrix with rows
x ′t = (1, y

′
t−1, y

′
t−2, ..., y

′
t−p) and V is a data-matrix with rows v ′t .

The FIML estimator coincides with OLS and is B̂ = (X ′X )−1X ′Y
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Bayesian Vector Autoregressions

VARs - Vectorized representation

Vectorizing:

vec(Y
T×N

) = vec(X
T×k

B)
k×N

+ vec(V )
T×N

V ∼ N(0, Σ
N×N

)

gives:
y = (IN ⊗ X )β+ v v ∼ N(0,Σ⊗ IT )

The OLS estimator is:

β̂ = (IN ⊗ (X ′X )−1X ′)y = vec((X ′X )−1X ′Y )

that is, equation by equation is equivalent to FIML system estimation.

This happens because of the peculiar structure of Σ⊗ IT
The VAR is a special case of a SUR model in which all the regressors are the
same. If we impose some restrictions on the coeffi cients of the VAR then it
becomes a SUR model in which the regressors in each equation are different,
hence FIML or 3SLS would be required.
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Bayesian Vector Autoregressions

Inference based on OLS estimator

If the VAR model is stable, OLS estimator is normally distributed in large
samples.

It is consistent (but only if the VAR has suffi cient lags to ensure the error is a
MDS)

Testing simple hypotheses: t-stat’s are standard normally dist’d.

Testing joint hypotheses: F -stat’s follow F -dist’s.

Multiple equations and F-test: You may want to test hypotheses involving
several equations. For example, H0 : Bp = 0 in Yt = ∑pi=1 BiYt−i + εt . You
can use F - or LR-statistics for this since the OLS estimators across equations
are jointly normally distributed.
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Bayesian Vector Autoregressions

Inference based on OLS estimator

Some things that are much harder to do on the basis of OLS estimates are:

Impulse responses
Variance decompositions
Forecasts (for h>1, both point and density)

This is because all the functions above are nonlinear functions of the VAR
coeffi cients!

For proper inference, we need to use the delta method, or bootstrap

Andrea Carriero (QMUL) Bayesian VARs January 2018 19 / 69



Bayesian Vector Autoregressions

Bayesian VARs

The outstanding ability of Bayesian methods in forecasting has been known
since the works of Litterman (1979) and Doan, Litterman, and Sims (1984)

Bayesian VARs offer three main advantages.
1 They are particularly well suited in handling very large cross-sections of data,
even when the time series available are short.

2 They offer a theoretically grounded way to impose judgmental information and
a-priori beliefs in the model.

3 They provide a natural environment to produce forecasts of the whole
distribution of a time series, i.e. fan charts.
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Bayesian Vector Autoregressions

Bayesian VARs

Small VAR
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Bayesian Vector Autoregressions

Bayesian VARs

Large VAR
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Bayesian Vector Autoregressions

Bayesian VARs

Large VAR with shrinkage
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Bayesian Vector Autoregressions

Bayesian VARs

In a Bayesian VAR, the matrix of coeffi cients B is random.

One can specify his/her beliefs on the values of B as follows:

β ∼ N(β0,Ω0 );

The vector β0 is the prior mean. One can set it to the values he/she believes
in

The matrix Ω0 is the variance around β0. It measures how uncertain we are
about our prior beliefs.
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Bayesian Vector Autoregressions

Bayesian VARs

We will now proceed to study the same 5 cases we considered for the univariate
model.

Fix the error variance with an estimate (Theil’s mixed estimator)

The Natural Conjugate N-IG prior

The Independent N-IG prior

The diffuse (Jeffrey’s) prior

The Normal-diffuse (Zellner’s) prior
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Bayesian Vector Autoregressions

Theil mixed estimator

The simplest case is the one in which the error variance is estimated in a
preliminary step and treated as known. Combining the prior β ∼ N(β0,Ω0 ) with
the likelihood:

p(y |β, Σ̂) = (2π)−
TNk
2 |Σ̂⊗ IT |−

1
2

× exp[− (y − (IN ⊗ X )β)′ (Σ̂⊗ IT )−1 (y − (IN ⊗ X )β) /2]

The conditional posterior kernel is:

p(β|y , Σ̂) ∝ p(y |β)× p(β) ∝ exp[− (β− β0)
′Ω−1

0
(β− β0) /2]

× exp[− (y − (IN ⊗ X )β)′ (Σ̂⊗ IT )−1 (y − (IN ⊗ X )β) /2]

∝ exp[− (β− β1)
′Ω−11 (β− β1) /2]

with
Ω−11 = Ω−1

0
+ (IN ⊗ X )′(Σ̂⊗ IT )−1(IN ⊗ X ),

β1 = Ω1

(
Ω−1
0

β0 + (IN ⊗ X )′(Σ̂⊗ IT )−1y
)
.
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Bayesian Vector Autoregressions

Theil mixed estimator

This yields:
β|y ,Σ ∼ N(β1,Ω1)

with:

Ω−11 = Ω−1
0
+ (Σ̂−1 ⊗ X ′X ) = Ω−1

0
+
(
∑T
t=1 X

′
t Σ̂
−1Xt

)−1
β1 = Ω1

(
Ω−1
0

β0 + (Σ̂
−1 ⊗ X ′)y

)
= Ω1

(
Ω−1
0

β0 +
(
∑T
t=1 X

′
t Σ̂
−1yt

)−1)
this is the conditional distribution of β under the independent N-IW prior.

As Ω−1
0
→ 0 the prior information becomes irrelevant:

β1 → (Σ̂−1 ⊗ X ′X )−1(Σ̂−1 ⊗ X ′)y = (IN ⊗ (X ′X )−1X ′)y = β̂
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Bayesian Vector Autoregressions

The Minnesota (Litterman’s) prior

The Minnesota prior in its original implementation is of the Theil mixed
estimation form
Then, the Minnesota prior moments can also be used to specify the moments
of other form of priors (N-IW conjugate and not, Normal-diffuse).
A-priori each variable in the VAR follows a
RW yt = 0+ Iyt−1 + 0yt−2 + ...+ 0yt−p + εt . That is, for k = 0, ..., p,:

E [B(ij )k ] = 1 if i = j , k = 1; E [B(ij )k ] = 0 otherwise.

The uncertainty around such prior mean is given by:

Var [B(ij )k ] = λ1 × λ2(1i 6=j )×
1
kλ3
× σ2i /σ2j , k = 1, ..., p;

λ1 measures the tightness of the prior: when λ1 → 0 the prior is imposed
exactly, while as λ1 → ∞ estimates will approach the OLS estimates.
λ2 controls the standard deviation of the prior on lags of variables other than
the dependent variable. With λ2 = 1 there is no distinction between lags of
the dependent variable and other variables.
λ3 controls the decay over lags
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Bayesian Vector Autoregressions

The Minnesota prior

σi
σj
are scaling parameters. These are estimated from univariate AR

regressions, σ̂2i /σ̂2j

The error variance is estimated in a preliminary step using σ̂2i and assumed
diagonal.

Usually the suggested values for the hyperparameters are:

λ1 = 0.2; λ2 = 1; λ3 = 1 or 2;

but there are ways to choose these optimally (See e.g. Carriero, Clark,
Marcellino 2012 and Giannone, Lenza, Primiceri 2012)

The forecast will be then a weighted average of an OLS and a RW.

It works remarkably well in macroeconomic applications

Marginal likelihood available in closed form

One can also impose cointegration and unit roots (sharply or as a prior)
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Bayesian Vector Autoregressions

The Natural conjugate case

An alternative prior is the natural-conjugate:

β|y ,Σ ∼ N(β0,Ω0); Σ ∼ IW (S0, ν0)

where vec(B0) = β0 and where:

Ω0 = Σ⊗Ψ0

Note that the prior for β is specified conditionally on the knowledge of Σ.
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Bayesian Vector Autoregressions

Wishart and Inverse Wishart

We have that
Σ−1 ∼ W (S−10 , ν0)⇔ Σ ∼ IW (S0, ν0)

The Wishart pdf is:

p(Σ−1) ∝ |S−10 |
−ν0/2 |Σ−1 |−(ν0−N−1)/2 exp{−0.5tr(ΣS−10 )}

with mean E [Σ−1 ] = ν0S
−1
0

The Inverse Wishart pdf is:

p(Σ) ∝ |S0 |ν0/2 |Σ|−(ν0−N−1)/2 exp{−0.5tr(Σ−1S0)}

The mean E [Σ] = 1
ν0−N−1S0

This is simply the multivariate version of an inverse gamma
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Bayesian Vector Autoregressions

Drawing from an Inverse Wishart

The "notional data" interpretation of this prior distribution is the information
about precision from ν0 i.i.d. N-variate normal observations with sum of
squares S0.

To draw Σ we can:
1 Draw a matrix A = S−1/2

0
N×N

v1:ν0
N×ν0

of ν0 random vectors from A ∼ N(0, IN );

2 The quantity (AA′) = v ′S−10 v is a random draw from W (υ0, S0)
3 (AA′)−1 = (v ′S−10 v )−1 is a draw from the corresponding Inverse Wishart
IW (υ0, S0).
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Bayesian Vector Autoregressions

Matricvariate Normal

The p × q matrix X is said to have a matricvariate normal distribution:

Z ∼ MN(M,Q,P)

where M is p × q and P and Q are positive definite symmetric matrices of
dimensions p × p and q × q if x = vec(X ) is multivariate normal:

z ∼ N(vec(M),Q ⊗ P)

The density is:

p(X ) = 2π−pq/2 |Q ⊗ P |−1/2

× exp
[
−1
2
(z − vec(M))′ (Q ⊗ P)−1 (z − vec(M))

]
= 2π−pq/2 |Q |−p/2 |P |−q/2 exp

[
−1
2
tr
{
Q−1(Z −M)′P−1(Z −M)

}]
where we used tr(ABCD) = vec(A′)′(D ′ ⊗ B)vec(C ).
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Bayesian Vector Autoregressions

Multivariate regression likelihood

In the case of the multivariate regression we have that:

Y
T×N

= X
T×k

B
k×N

+ V
T×N

V ∼ MN(0, Σ
N×N

, IT )

with likelihood:

p(B,Σ|Y ) = 2π−pq/2 |Σ|−T /2 |Ik |−k/2

exp
[
−1
2
tr
{

Σ−1(Y − XB)′(Y − XB)
}]

∝ |Σ|−(T−k )/2 exp
[
−1
2
tr
{

Σ−1(Y − XB̂)′(Y − XB̂)
}]

|Σ|−k/2 exp
[
−1
2
tr
{

Σ−1(B − B̂)′(B − B̂)
}]

which is in the form of an Σ ∼ IW (Ŝ ,T − k) times a matricvariate normal for B
conditional on Σ
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Bayesian Vector Autoregressions

The Natural conjugate case

This prior yields the following posterior kernel:

p(β, σ2 |Y ) ∝ |Σ|−(T−k )/2 exp
[
−1
2
tr
{

Σ−1Ŝ
}]

|Σ|−(v0+n+1)/2 exp
[
−1
2
tr
{

Σ−1S0
}]

|Σ|−k/2 exp
[
−1
2
tr
{

Σ−1(B − B̂)′(B − B̂)
}]

|Σ|−k/2 exp
[
−1
2
tr
{

Σ−1(B − B0)′Ψ−10 (B − B0)
}]

= |Σ|−(v1+n+1)/2 exp
[
−1
2
tr
{

Σ−1S1
}]

|Σ|−k/2 exp
[
−1
2
tr
{

Σ−1(B − B1)′Ψ−11 (B − B1)
}]
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Bayesian Vector Autoregressions

The Natural conjugate case

That is
B |Y ,Σ ∼ MN(B1,Σ,Ψ1); Σ ∼ IW (S1, ν1)

with:
Ω1 = Σ⊗Ψ1

ν1 = ν0 + T ,

S1 = S0 + Y
′Y + B ′0Ψ−10 B0 − B ′1Ψ−11 B1

Ψ1 = (Ψ−10 + X ′X )−1,

B1 = Ψ1(Ψ−10 B0 + X
′Y )

Equivalently for vec(B1) = β1:

β|y ,Σ ∼ N(β1,Σ⊗Ψ1); Σ ∼ IW (S1, ν1)
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The Natural conjugate case : symmetry

This posterior kernel can also be written in the multivariate normal form:

p(β, σ2 |Y )

∝ |Σ|−
T+ν0−1−N

2 exp
[
−1
2
tr(S0Σ−1)

]
|Σ|−

1
2 exp

[
− 12 (y − (IN ⊗ X )β)

′ (Σ⊗ IT )−1 (y − (IN ⊗ X )β)
− 12 (β− β0)

′Ω−1
0
(β− β0)

]
which has a matricvariate representation because Ω−1

0
= Σ−1 ⊗Ψ−10 and

var(v) = Σ⊗ IT .
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Bayesian Vector Autoregressions

The Natural conjugate prior : symmetry

Note that the expression for the posterior variance can be obtained using the
formulas we used before, and exploiting the Kronecker structure:

Ω−11 = Ω−1
0
+ (IN ⊗ X )′(Σ⊗ IT )−1(IN ⊗ X )

= (Σ−1 ⊗Ψ−10 )︸ ︷︷ ︸+
Symmetric Pr ior

(Σ−1 ⊗ X ′X )︸ ︷︷ ︸
Symmetric likelihood

= Σ−1 ⊗ (Ψ−10 + X ′X ) = Σ−1 ⊗Ψ−11

However, to do this we need to assume Ω−1
0
has a Kronecker structure and is

specified under knowledge of Σ!
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Advantages of the natural conjugate prior

Advantages:
1 Simple MC sampling: p(β|Σ, y )p(Σ|y ) = p(β,Σ|y )
2 Computational complexity of order N3 rather than N6 →use
chol(Ψ1) ∗ rand(k ,N) ∗ chol(Σ)′

3 Marginal likelihood exists in closed form: p(y ) = [p(β|Σ)p(Σ)]×p(y |β,Σ)
p(β|Σ,y )p(Σ|y )

4 Implementable with dummy variables

Shortcoming: no asymmetric priors are allowed (also, no asymmetric
likelihoods, e.g. no stochastic volatility)
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Bayesian Vector Autoregressions

Monte Carlo sampling

Simple MC sampling from the joint posterior p(β,Σ|y)
Draw p(Σ|y )
Draw p(β|Σ, y )

To draw Σ we can:
1 Draw a matrix A = S−1/2

0
N×N

v1:ν0
N×ν0

of ν0 random vectors from A ∼ N(0, IN );

2 The quantity (AA′) = v ′S−10 v is a random draw from W (υ0, S0)
3 (AA′)−1 = (v ′S−10 v )−1 is a draw from the corresponding Inverse Wishart
IW (υ0, S0).
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Computational gains

Drawing a sequence of β can be in general rather demanding, but in this case
the matricvariate structure considerably speeds up the computations.

An intuitive way to draw β, conditionally on a draw of the error variance Σ, is:

vec(B) = vec(B1) + chol(Σ⊗Ψ1)× v (3)

where v is a kN × 1 standard Gaussian vector process.
The Choleski decomposition above requires (kN)3 elementary operations.

However by organizing the elements of v in a k ×N matrix V such that
v = vec(V ), one could draw the matrix Φ as follows:

Φ = B1 + chol(Ψ1)× V × chol(Σ)′. (4)

This speeds up the computations by a factor of N3, because the two Choleski
decompositions chol(Ω̄) and chol(Σ) require only k3 +N3 operations
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Bayesian Vector Autoregressions

Marginal Likelihood

The marginal likelihood is matricvariate t:

y = (IN ⊗ X )β+ ε

with ε ∼ N(0,Σ⊗ I ). Since β|Σ ∼ N(β1,Σ⊗Ψ0) then

(IN ⊗ X )β|Σ ∼ N((IN ⊗ X )β0, (IN ⊗ X )(Σ⊗Ψ1)(IN ⊗ X ′)).

It follows that

y |Σ ∼ N((IN ⊗ X )β0, (IN ⊗ X )(Σ⊗Ψ0)(IN ⊗ X ′) + (Σ⊗ I ))
= N((IN ⊗ X )β0,Σ⊗ (XΨ0X ′ +⊗I ))

because ε and β are independent when conditioning on σ2.
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Bayesian Vector Autoregressions

Marginal Likelihood

This is a normal, and Σ an inverse Wishart, so integrating this out gives a t:

y ∼ t((IN ⊗ X )β0, (XΨ0X ′ + I ), S0, v0)

which has pdf:

p(Y ) = π
−TN
2 × |(I + XΩ0X

′)−1 | N2 × |S0 |
v0
2 × ΓN (

v0+T
2 )

ΓN (
v0
2 )

× |S0 + (Y − XB0)′(I + XΩ0X
′)−1(Y − XB0)|−

v0+T
2 , (5)

derivation based on theorem A.19 in Bauwens, Lubrano and Richard (1999)
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Bayesian Vector Autoregressions

Marginal Likelihood

Since
S0 + (Y − XB0)′(I + XΩ0X

′)−1(Y − XB0) = S1,
and ∣∣XΩ0X

′ + I
∣∣ = |Ω0 | |Ω1 |−1

this gives:

p(Y ) = π
−TN
2 × ΓN (

v0+T
2 )

ΓN (
v0
2 )

× |Ω1 |−N/2

|Ω0 |−N/2
|S1 |−

v0+T
2

|S0 |−v0/2 (6)

A similar expression can be obtained for the Litterman prior (fixed variance
matrix).
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Hyperparameters (tightness)

The value of the marginal likelihood in (6) is provided by default in some
computer packages such as Eviews.

Del Negro and Schorfheide (2004), Carriero, Kapetanios, and Marcellino
(2012): choose prior tightness by maximizing the marginal data density of
the model

Giannone, Lenza, Primiceri (2016): treat tightness as a coeffi cient and
estimate it.
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How to elicit the prior moments

How to specify the prior moments?

Use very well known stylized fact on macroeconomic time series. Litterman
(1979) and Doan, Litterman, and Sims (1984)

Use beliefs about the long run values of the variables (Villani 2011)

Use economic or finance theory (Ingrahm and Whiteman 1989, Del Negro
and Schorfheide 2004, Carriero 2015)
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Dummy variable implementation of priors

Method 1 (fixed variance).
Model y = (IN ⊗ X )β+ v v ∼ N(0, Σ̂⊗ IT ). We believe
that β ∼ N(β0,Ω0 ), which can be written as:

−u = (β− β0) ∼ N(0,Ω0 )→ β0 = β+ u

and appended to the system:

y ∗[
β0
y

]
=

Z ∗[
I

(IN ⊗ X )

]
β+

[
u
v

]
; Var

([
u
v

])
=

Ω∗[
Ω0 0
0 Σ̂⊗ IT

]
This system can be estimated with GLS (Theil 1971). The GLS estimator
b̄ is:

b̄ =
(
Z ′∗Ω∗−1Z ∗

)−1 (
Z ′∗Ω∗−1y∗

)
Using Ω = Σ⊗ IT we can get back to the formula given before:

b̄ = [Ω−1
0
+ (IN ⊗ X )′(Σ̂⊗ IT )−1(IN ⊗ X )]−1

(Ω−1
0

β0 + (IN ⊗ X )′(Σ̂⊗ IT )−1y) = β1
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Dummy variable implementation of priors

Method 2 (random variance) (e.g. Sims and Zha)
Consider the conjugate N-IW prior, and assume we can write it as follows:

Ω0 =
(
X ′DXD

)−1
;B0 =

(
X ′DXD

)−1
(X ′DYD )

S0 = (YD − XDB0)′ (YD − XDB0) ; v0 = TD

where XD is a TD × k matrix and YD is a TD ×N matrix. Intuitively,
these are the moments of a regression of YD on XD .
For models imposing priors based on known and linear restrictions, one can
find such matrices.
The posterior moments are:

Ω̄−1 = Ω−10 + Z ′Z = X ′DXD + Z
′Z

B̄ = Ω̄(Ω−10 B0 + X
′Y ) = (X ′DXD + X

′X )−1(X ′DYD + X
′Y )
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Dummy variable implementation of priors

Method 3 (random variance, nonlinear) Del Negro and Schorfheide. Close
to Method 2, but can handle cases where the restrictions towards which the
prior shrink can not be easily written using YD and XD , e.g. because they
are nonlinear (and possibly depend hyerarchically on some hyperparameter).

Just add pseudo-observations to the model:[
Y

T×N
Y ∗

T ∗×N

]
=
[

X
T×k
X ∗

T ∗×k

]
B
k×N

+
[

V
T×N
V ∗

T ∗×N

]
; V ∼ N

(
0,

Σ
N×N

0

0 Σ∗

)
The posterior mean will be:([

X ′
T×k

X
′ ∗

T ∗×k

] [ X
T×k
X ∗

T ∗×k

])−1 [
X ′
T×k

X
′ ∗

T ∗×k

] [ Y
T×N
Y ∗

T ∗×N

]
= (X ′X + X ∗′X ∗)−1(X ′Y + X ∗′Y ∗)
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Dummy variable implementation of priors

To remove the stochastic variation, use the population moments.

B0 = (X ′X + E [X ∗′X ∗])−1(X ′Y + E [X ∗′Y ∗])

= (X ′X + Γ[X ∗′X ∗ ](θ))
−1(X ′Y + Γ[X ∗′Y ∗ ](θ))

This means you do not actually need to simulate the artificial data!
Hyerarchical approach: model the hyperparameters θ
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Bayesian Vector Autoregressions

Problems of the conjugate prior

Conjugate prior is restrictive, as highlighted by Rothenberg (1963), Zellner
(1973), Kadiyala and Karlsson (1993, 1997), and Sims and Zha (1998)

There are many situations in which the form Σ⊗Ψ0 can turn out to be
particularly unappealing

First, it prevents permitting any asymmetry in the prior across equations,
because the coeffi cients of each equation feature the same prior variance
matrix Ψ0 (up to a scale factor given by the elements of Σ).
For example, the traditional Minnesota prior in the original Litterman (1986)
implementation can not be cast in such a convenient form, because it
imposes cross-variable shrinkage on lags of variables

Consider the case of a bivariate VAR in the variables y1 and y2 and suppose
that the researcher has a strong prior belief that y2 does not Granger cause
y1, while he has not strong beliefs that y2 itself follows a univariate
stationary process. This system of beliefs would require shrinking strongly
towards zero the coeffi cients attached to y2 in the equation for y1 and not
viceversa.
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Bayesian Vector Autoregressions

Problems of the conjugate prior

Second, the Kronecker structure Σ⊗Ψ0 implies the unappealing
consequence that prior beliefs must be correlated across the equations of the
reduced form representation of the VAR, with a correlation structure
proportional to that of the disturbances (as described by the matrix Σ).
Sims and Zha (1998) discuss in depth this issue, and propose an approach
which allows for a more reasonable structure of the coeffi cient prior variance,
which attains computational gains of order O(N2). Their approach is based
on eliciting a prior featuring independence among the structural equations of
the system, but does not achieve computational gains for an asymmetric prior
on the reduced form equations coeffi cients.
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Bayesian Vector Autoregressions

Sims and Zha approach

In particular, the approach of Sims and Zha (1998) achieves conceptual and
computational gains by

(i) working on the structural representation of the VAR, in which the matrix of
the errors is diagonal
(ii) allowing independence across the coeffi cients belonging to different
structural equations, which amounts to the prior variance of the coeffi cients
being block-diagonal, which is desirable as it breaks the unreasonable
symmetry across equations implied by the conjugate N-IW prior.

These two ingredients ensure that the posterior variance matrix has a
block-diagonal structure, and therefore achieves computational gains of order
N2.

However, such strategy still implies that the beliefs about the reduced form
coeffi cients are correlated across equations in a way that depends on the
covariance of the reduced form errors of the model, and gains are not
attainable if one wants to impose an asymmetric prior on these reduced form
coeffi cients
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The Jeffrey’s prior

This is the limiting case of the conjugate.

It is specified as:
p(β,Σ) ∝ |Σ|− N+12

It delivers:
β|y ,Σ ∼ N(β1,Σ⊗Ψ1); Σ ∼ IW (S1, ν1)

with:

Ψ1 = (X ′X )−1; ν1 = T

B1 = (X ′X )−1(X ′Y ) = B̂OLS
S1 = Y ′Y − B ′1Ψ−11 B1 = Y

′Y − Y ′X (X ′X )−1X ′Y = Ê ′Ê

where Ê is the matrix of OLS residuals.

Andrea Carriero (QMUL) Bayesian VARs January 2018 54 / 69



Bayesian Vector Autoregressions

The independent N-IW prior

In this case:
β ∼ N(β0,Ω0 ); Σ ∼ IW (υ0, S0)

The conditional posterior of β is

β|y ,Σ ∼ N(β1,Ω1) (7)

with
Ω1 = (Ω−10 + (Σ−1 ⊗ X ′X ))−1

β1 = Ω1

(
Ω−1
0

β0 + (Σ
−1 ⊗ X ′)y

)
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The independent N-IW prior

The conditional posterior of Σ is

Σ|y , β ∼ IW (S1 = S0 + S , ν1 = ν0 + T )

where
S = (y − (IN ⊗ X )β)′(y − (IN ⊗ X )β)

The joint posterior p(β,Σ|y) and the marginals can be obtained by drawing
in turn from the conditionals using Gibbs sampling.

There is no closed form solution for the marginal likelihood.
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The independent N-IW prior

Computational time can be taxing: Consider drawing m = 1, ...,M draws
from the posterior of β. To perform a draw βm from (7), one needs to draw
a N(Np + 1)−dimensional random vector (distributed as a standard
Gaussian), denoted rand, and to compute:

βm1 = Ω1

(
Ω−1
0

β0 + (Σ
−1 ⊗ X ′)y

)
+ chol(Ω1)× rand, (8)

where Xt = [1, y ′t−1, ..., y
′
t−p ]

′ is the (Np + 1)-dimensional vector collecting
the regressors

The calculation above involves computations of the order of 4O(N6).
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The independent N-IW prior

Compute:

βm = Ω1

(
Ω−1
0

β0 + (Σ
−1 ⊗ X ′)y

)
+ chol(Ω1)× rand, (9)

Indeed, it is necessary to compute:

i) the matrix Ω1 by inverting

Ω−11 = Ω−1
0
+ (Σ−1 ⊗ X ′X ); (10)

ii) its Cholesky factor chol(Ω1);
iii) multiply the matrices obtained in i) and ii) by the vector in the curly
brackets of (8) and the vector rand respectively.

Since each of these operations requires O(N6) elementary operations, the
total computational complexity to compute a draw Πm is 4×O(N6).
Also computation of Ω−1Π vec(µ

Π
) requires O(N6) operations but this is fixed

across repetitions so it needs to be computed just once.
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The independent N-IW prior

Some speed improvements can be obtained as follows.

Define Ω−11 = C ′C where C is an upper triangular matrix and C ′ is therefore
the Cholesky factor of Ω−11 . It follows that Ω1 = C−1C ′−1 with C−1 upper
triangular.

Clearly, draws from C−1 × rand will have variance Ω1 so we can use
C−1 × rand rather than chol(Ω1)× rand.
Moreover we can substitute Ω1 = C−1C ′−1 in (8) and take C−1 as common
factor to obtain:

βm = C−1
[
C−1′

{
Ω−1
0

β0 + (Σ
−1 ⊗ X ′)y

}
+ rand

]
. (11)
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The independent N-IW prior

In the above expression C is triangular so its inversion is less expensive, in
particular one can simply use the command for backward solution of a linear
system as suggested by Chan (2015) instead of inverting the matrices:

βm = C\
[
C ′\

{
Ω−1
0

β0 + (Σ
−1 ⊗ X ′)y

}
+ rand

]
, (12)

where X = C\B is the matrix division of C into B, which is roughly the same
as C−1B , except it is computed as the solution of the equation CX = B.

A draw in this case still requires the computation of the Cholesky factor of
Ω̄−1Π and its inversion, but the multiplications are avoided. Using (12) to
perform a draw requires only 2O(N6).

While this is twice as fast as using (8), it is just a linear improvement and it
is not suffi cient to solve the bottleneck in estimation of large systems
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Triangularization

Carriero, Clark, Marcellino (2016) introduce an estimation method that
solves the problems we discussed above.

It does so simply by blocking the conditional posterior distribution in N
different blocks.

Recall that in the step of the Gibbs sampler that involves drawing βm , all of
the remaining model coeffi cients are given, and consider the decomposition
Σ = A−1ΛA−1′, which gives:

vt = A−1Λ0.5εt
v1,t
v2,t
...
vN ,t

 =


1 0 ... 0
a∗2,1 1 ...

... 1 0
a∗N ,1 ... a∗N ,N−1 1




λ0.51 0 ... 0
0 λ0.52 ...
... ... 0
0 ... 0 λ0.5N




ε1,t
ε2,t
...

εN ,t

 ,
where a∗j ,i and λ0.5i are available under knowledge of Σ.
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Triangularization

We will also denote by β(i ) the vector of coeffi cients for equation i contained
in row i of B, for the intercept and coeffi cients on lagged yt . The VAR can
be written as:

y1,t = β
(0)
1 +

N

∑
i=1

p

∑
l=1

β
(i )
1,lyi ,t−l + λ0.51,t ε1,t

y2,t = β
(0)
2 +

N

∑
i=1

p

∑
l=1

β
(i )
2,lyi ,t−l + a

∗
2,1λ0.51,t ε1,t + λ0.52,t ε2,t

...

yN ,t = β
(0)
N +

N

∑
i=1

p

∑
l=1

β
(i )
N ,lyi ,t−l + a

∗
N ,1λ0.51,t ε1,t + · · ·

+a∗N ,N−1λ0.5N−1,tεN−1,t + λ0.5N ,tεN ,t ,

Consider estimating these equations in order from j = 1 to j = N. When
estimating the generic equation j the term on the left hand side is known
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Triangularization

Therefore, we can define:

y∗j ,t = yj ,t − (a∗j ,1λ0.51,t ε1,t + ...+ a
∗
j ,,j−1λ0.5j−1,tεj−1,t ), (13)

The generic equation for variable j is:

y∗j ,t = β
(0)
j +

N

∑
i=1

p

∑
l=1

β
(i )
j ,l yi ,t−l + λj ,tεj ,t . (14)

and equation (14) becomes a standard generalized linear regression model for
the variables in equation (13), with independent Gaussian disturbances with
mean 0 and variance λj ,t .
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Posterior triangularization

The distribution (7) can be factorized as:

p(B |A,ΛT , y) = p(β(N )|β(N−1), β(N−2), . . . , β(1),A,ΛT , y)

×p(β(N−1)|β(N−2), . . . , β(1),A,ΛT , y)
...

×p(β(1)|A,Λ, y), (15)

with generic element:

p(β(j )|β(j−1), β(j−2), . . . , β(1),A,Λ, y)

= p(B{j}|B{1:j−1},A,Φ,Λ, y)

∝ p(y |B{j},B{1:j−1},A,Λ)p(B{j}|B{1:j−1}),

where B{j} = β(j )
′
denotes the (transposed of the) j-th row of the matrix

B, and B{1:j−1} all of the previous 1, ..., j − 1 rows (transposed).
The term p(y |B{j},B{1:j−1},A,Λ) is the likelihood of equation j
The term p(B{j}|B{1:j−1}) is the prior on the coeffi cients of the j-th
equation, conditionally on the previous equations.
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Posterior moments

It follows that using the factorization in (15) together with the model in (14)
allows one to draw the coeffi cients of the matrix B in separate blocks
B{j} which can be obtained from:

B{j}|B{1:j−1},A,Λ, y ∼ N(µ̄B {j} ,ΩB {j}) (16)

with

µ̄B {j} = ΩB {j}

{
Ω−1
B {j}

µ
B {j}

+
T

∑
t=1

Xj ,tλ
−1
j ,t y

∗′
j ,t

}
(17)

Ω−1B {j} = Ω−1
B {j}

+
T

∑
t=1

Xj ,tλ
−1
j ,t X

′
j ,t , (18)

where y∗j ,t is defined in (13) and where Ω−1
B {j}

and µ
B {j}

denote the prior
moments on the j-th equation, given by the j-th column of µ

B
and the j-th

block on the diagonal of Ω−1B .
Note we have implicitly assumed here that the matrix Ω−1B is block diagonal.
This assumption can be easily relaxed
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MC sampling of B

The joint posterior distribution of B can be simulated recursively in separate
blocks B{1},B{2}|B{1},B{3}|B{1:2}, ...,B{N}|B{1:N−1} using (16).

This amounts to simple Monte Carlo simulation

This MC will produce draws numerically identical to those that would be
obtained using system-wide estimation

Any difference in the simulated posterior draws will be due to random
variation (which eventually vanishes) and rounding numerical errors.

The total computational complexity of this estimation algorithm is O(N4).
This is considerably smaller than the complexity of O(N6) implied by the
standard estimation algorithm, with a gain of N2.
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Prior dependence

There might be cases in which a researcher wishes to specify priors which
feature correlations across coeffi cients belonging to different equations.
For this case, the general form of the posterior can be obtained easily using a
similar triangularization argument on the joint prior distribution, and equation
(16) generalizes to:

B{j}|B{1:j−1},A,Λ, y ∼ N(µ̄B {j |1:j−1} ,ΩB {j |1:j−1})

with

µ̄B {j |1:j−1} = ΩB {j |1:j−1}

{
T

∑
t=1

Xj ,tλ
−1
j ,t y

∗′
j ,t +Ω−1

B {j |1:j−1}µB {j |1:j−1}

}

Ω−1B {j |1:j−1} = Ω−1
B {j |1:j−1} +

T

∑
t=1

Xj ,tλ
−1
j ,t X

′
j ,t ,

where µ
B {j |1:j−1} and ΩB {j |1:j−1} are the moments of

B{j}|B{1:j−1} ∼ N(µ
B {j |1:j−1} ,ΩB {j |1:j−1}), i.e. the conditional priors (for

equation j conditional on all of the previous equations) implied by the joint
prior specification.
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Prior dependence

The conditional prior moments can be obtained recursively using (??) and
standard results on multivariate Gaussian distributions:

µ
B {j |1:j−1} = µ

B {j}
+ΩB {[j ][1:j−1]}Ω−1B {[1:j−1][1:j−1]}(B

{1:j−1} − µ
B{1:j−1}),

ΩB {j |1:j−1} = ΩB {j} −ΩB {[j ][1:j−1]}Ω−1B {[1:j−1][1:j−1]}Ω
′
B {[j ][1:j−1]}

where ΩB {j} denotes the block of ΩB corresponding to equation j ,
ΩB {[1:j−1][1:j−1]} denotes all the blocks on the main block-diagonal, north-west
of ΩB {j} , and ΩB {[j ][1:j−1]} denotes all the blocks to the left of ΩB {j} .

The computational cost of deriving these conditional prior moments is
negligible as they need to be computed only once outside the main MCMC
sampler.

Clearly in case of a prior independent across equations ΩB {[j ][1:j−1]} is a zero
matrix and these expressions simplify to µ

B {j |1:j−1} = µ
B {j}

and ΩB {j |1:j−1} = ΩB {j} , yielding (17) and (18).
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The Normal-diffuse (Zellner’s) prior

In this case:
β ∼ N(β0,Ω0 ); p(Σ) ∝ |Σ|− N+12

The posteriors are:

β|y ,Σ ∼ N(β1,Ω1)

Σ|y , β ∼ IW (S ,T )

where β1,Ω1 and S are:

Ω1 = (Ω−10 + (Σ−1 ⊗ X ′X ))−1

β1 = Ω1

(
Ω−1
0

β0 + (Σ
−1 ⊗ X ′)y

)
S = (y − (IN ⊗ X )β)′(y − (IN ⊗ X )β)
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