Analyzing features and impacts of mountain breezes at three different mountainous sites

> C. Román-Cascón^{1, 2}, C. Yagüe¹, JA. Arrillaga¹, M. Lothon², F. Lohou², E. Pardyjak³, M. Sastre¹, G. Maqueda¹ and RM. Inclán⁴

EMS 04 September 2018 Budapest

Project context and objectives

ATMOUNT II project

• Obj. 1: Characterization of mountain breezes

- Guadarrama Mountains (Herrería) (Spain)
- Pyrenees (France)

- Salt Lake Valley (US)

• **Obj. 2:** Impacts of mountain breezes in CO₂ (micro-mesoscale interactions)

Mountain breezes detection

DETECTION ALGORITHM*

* Based on criteria in Arrillaga et al. 2018 (QJRMS)

LA HERRERIA (Guadarrama Mountains)

(2017 Example)

- **LARGE SCALE: Synoptic conditions** NCEP: u, v, T, RH
 - Filter 1: Wind at 700 hPa
 - Filter 2: Fronts passage; $\Delta \theta_{e}$
 - Filter 3: Rainfall

- < 9-10 m/s
- > -1.45 K/6 hours
- < 0.2 mm/day

- \rightarrow 365 days analised
- \rightarrow 201 days pass Filter 1
- \rightarrow 193 days pass Filter 1 and 2
- \rightarrow 188 days pass Filter 1, 2 and 3

Mountain breezes detection

DETECTION ALGORITHM*

* Based on criteria in Arrillaga et al. 2018 (QJRMS)

LA HERRERIA (Guadarrama Mountains)

(2017 Example)

- **LARGE SCALE: Synoptic conditions** NCEP: u, v, T, RH
 - Filter 1: Wind at 700 hPa
 - Filter 2: Fronts passage; $\Delta \theta_e$
 - Filter 3: Rainfall

- < 9-10 m/s > -1.45 K/6 hours < 0.2 mm/day
- → 365 days analised
 → 201 days pass Filter 1
 → 193 days pass Filter 1 and 2
 → 188 days pass Filter 1, 2 and 3

- **<u>SMALL SCALE</u>**: Local conditions Wind Direction (WD) from tower
 - Ranges of WD for down (nighttime) / up (daytime) events
 - WD persistence (80% of event) in the appropriate range
 - Minimum duration of events (3 hours min)

 \rightarrow 177 nighttime & 136 daytime events

Mountain breezes events (examples)

<u>Nighttime event</u>

<u>Daytime event</u>

- SH sign change (+ to -) (- to +)
- Sunset / Sunrise

Mountain breezes events (examples)

<u>Nighttime event</u>

<u>Daytime event</u>

Timing / duration of events.

Wind speed & Wind direction (mean and variability).

Impacts on \rightarrow greenhouse gases concentration, fluxes, turbulence and stability...

La Herrería (Guadarrama) - HER

La Herrería (Guadarrama) – HER

La Herrería (Guadarrama) - HER

136 upslope

E (90)

CRA (Pyrenees)

CRA (Pyrenees)

CRA (Pyrenees)

EVENTS NUMBERS: 365 days analysed 112 downslope 56 upslope

Salt Lake Valley (Rocky Mountains) - SLV

Salt Lake Valley (Rocky Mountains) - SLV

Salt Lake Valley (Rocky Mountains) - SLV Downslope Upslope 17% 13.6% 11.2% 10.2% Site 8.4% 6.8% 5.6% (1300 m) Mountains 3.4% 2.8% at 30 km 0% E (90) W (270) W (270) E (90 80 Valley City 2000 - 2500 m Murray Mills Junctio (85) 15 Stansbury Parl West Jordan Wind Speeds in m/s Wind Speeds in m/s South Jordan Sandy S (180) S (180) $W_s \ge 7 7 m/s$ w_s≥7 7 m/s (112) (36) (154) $6 \le W_{S} < 7$ $6 \le W_S < 7$ $5 \le W_{S} < 6$ 5≤W_S<6 $4 \le W_{S} < 5$ 4 ≤ W_S < 5 $3 \le W_{s} < 4$ $3 \le W_S < 4$ $2 \le W_S < 3$ $2 \le W_{\rm S} < 3$ $1 \le W_{s} < 2$ $1 \le W_{s} < 2$ $0 \le W_{s} < 1$ 0≤W_s<1 **EVENTS NUMBERS:**

201 days analysed 30 downslope 31 upslope

Mean WIND SPEED

Nighttime events

Daytime events

Mountain breezes arrival time (regarding sunset)

Nighttime events

Daytime events

Mountain breezes arrival time (regarding sunset)

Nighttime events

Daytime events

Objective 2. CO₂ & mountain breezes

- CO₂ diurnal cycle. What is the influence of the mountain breezes?

CO₂ evolution

PBL dynamics* Degree of turbulence* Advection* Mixing from "above"* Plant activity "Soil" respiration

Objective 2. CO₂ & mountain breezes

Mean CO₂ concentration* during events

MEAN CO₂ during the events??

Mean CO₂ concentration* during events

Mean CO₂ concentration* during events

CO_2^* vs TKE during downslope flows

CO_2^* vs TKE during downslope flows

CO₂* vs TKE during downslope flows

Downslope flows CO₂* concentration for different WD

Conclusions

- Different features of MOUNTAIN BREEZES due to:
 - Type of phenomena (katabatic, mountain-plain, valley-channelled flows)
 - Distance to the mountains, tower location...
- CO₂ modulated by:
 - PBL transitions: stable \iff convective
 - Turbulence
 - Wind direction (advection) in very heterogeneous sites (SLC)

and...

- Mixing from "above" in SBL (Gravity waves? Residual eddies?)
- Soil respiration??
- Plants activity??

Mountain breezes influence CO₂ concentrations

Picture taken close to La Herrería site, looking North. San Lorenzo del Escorial (Madrid, Spain)

2000 Minimules

Thanks!