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Abstract.—Growth of brown trout Salmo trutta was analyzed based on 3 years of simultaneous
temperature and growth data from seven streams of contrasting chemical and biological character.
A laboratory-based growth model was employed to examine geographical variation in growth
performance among wild populations. A sensitivity analysis of model predictions was also per-
formed based on simulated optimum temperatures for growth within the range of observed tem-
peratures and on the optimum temperature used in the model. In spite of the diverse environmental
conditions, the annual increment in body mass was not significantly different among most pop-
ulations. However, the ratio of the actual growth rate to the maximum growth rate predicted by
the model differed among rivers. A significant negative correlation was found between this ratio
and mean annual water temperature. The growth model thus underestimated growth in the coldest
rivers, suggesting that adaptations to local thermal conditions can occur at a small geographical
scale. Seasonal changes in the fit to the growth model were also different among rivers. Our
simulations showed that, in almost all rivers, the best fit to the model among age-1 trout was
obtained at lower values of optimum temperature in both spring and summer. Our findings suggest
that the parameters of the model may not be identical for all brown trout populations. The dis-
crepancies between observed and predicted growth indicated that temperature alone did not account
for all the spatial and temporal variation in growth rates.

The growth pattern is an important life history
trait (Stearns 1992), especially in organisms with
indefinite growth such as fish, since the energetic
investment in somatic growth depends on and in-
fluences the allocation of resources into reproduc-
tion (Reznick 1983; Hutchings 1993). Further-
more, interpopulation variance in growth rate is a
key factor for explaining variability in life history
features among populations (Roff 1984; Stearns
and Koella 1986). Moreover, body size is probably
the most important life history trait influencing
animal fitness, as many fitness-related aspects
scale with size (Roff 1992; Jonsson et al. 2001).

Water temperature is the most pervasive envi-
ronmental factor affecting fish growth (Wootton
1998), and in brown trout Salmo trutta, growth
takes place within a limited thermal range (Elliott
et al. 1995). Thus, the temperature regime deter-
mines the length of the growth season. Growth of
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individual brown trout may also be affected by
population density (Le Cren 1962, 1965; Crisp
1993; Newman 1993; Jenkins et al. 1999), but this
effect is difficult to observe (Egglishaw and Shack-
ley 1977; Mortensen et al. 1988; Bagliniere and
Maisse 1990; Weatherley et al. 1991), especially
in stream-dwelling populations (Elliott 1994;
Knapp et al. 1998).

Elliott et al. (1995) developed a predictive mod-
el for maximum growth in weight for brown trout
when fed to satiation, expanding on his earlier
growth model (Elliott 1975). The model provides
a baseline from which the magnitude of the effects
of factors other than water temperature and initial
fish size on trout growth can be assessed. The mod-
el has been tested in almost 70 brown trout pop-
ulations in Europe, mostly in northern latitudes
(43-70°N; Mann et al. 1989; I’Abée-Lund et al.
1989; Crisp et al. 1990; Weatherley et al. 1991;
Andersen et al. 1992; Jensen et al. 2000; Laga-
rrigue et al. 2001), as well as in four populations
outside the native range of the species (Allen 1985;
Preall and Ringler 1989).

The brown trout is one of the most important
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Figure 1.—Study area, showing the location of the 18 sampling sites (closed circles) in seven Spanish rivers
surveyed for brown trout every third month from March 1996 to December 1998.

angling species in Spanish waters (Almodévar and
Nicola 1998; Almodévar et al. 2002), and the anal-
ysis of geographical variation in growth may help
improve the management of this species. Elliott
(1994) pointed out the need for comparative work
on contrasting populations of brown trout, so that
intraspecific similarities and differences would be
described and predicted. In spite of their genetic
singularity (Garcia-Marin et al. 1999; Machordom
et al. 2000; Sanz et al. 2000; Suérez et al. 2001),
southern populations of native brown trout (40—
41°N) are less studied than their temperate con-
specifics. Our purpose was to analyze the growth
pattern of wild, resident brown trout subjected to
contrasting environmental conditions, particularly
temperature and other growth-governing factors
such as food availability. Specifically, we hypoth-
esized that the differences in thermal regime
among rivers would produce stream-specific var-
iation in growth. To test this prediction, simulta-
neous temperature and growth data from seven
streams of contrasting chemical and biological
character were used to assess the geographical var-
iation in growth. Growth was expected to be slow
in populations with low water temperature and low
food abundance as compared to populations ex-
periencing more optimal conditions for growth.
The growth model developed by Elliott et al.
(1995) was used to explore growth performance
among these natural populations of brown trout
and to determine the potential mechanisms con-
trolling growth in the study area. By modeling
performance under optimal experimental condi-

tions, we were able to explore whether trout
growth was determined by ambient temperature
regimes rather than by other environmental vari-
ables or by genetic factors.

Study Area

We studied brown trout from seven Spanish riv-
ers (Figure 1). Five are tributaries to the River
Tagus (Hoz Seca, Cabrillas, Gallo, Dulce, and Jar-
ama) and two are tributaries to the River Douro
(Cega and Eresma). Two or three sampling sites
were selected in each river. The streams are sig-
nificantly different in physical, chemical, and bi-
ological characteristics (multivariate analysis of
variance [MANOVA], Fq ;5 = 0.13, P < 0.001;
Nicola and Almoddvar 2002) (Table 1). However,
they may be divided into two groups. Streams of
the first type (Jarama, Cega, and Eresma) are soft-
water streams arising from granite and gneiss wa-
tersheds at elevations between 1,100 and 1,300 m
above sea level. The streams primarily originate
from surface drainage, becoming torrential in their
upper reaches as the snow melts in early spring.
In these streams, the flow fluctuations throughout
the year are pronounced, with a marked difference
between winter and summer. The water tempera-
ture is close to 0°C in winter and 12-14°C in sum-
mer. The benthic fauna is quite sparse. Streams of
the second type (Hoz Seca, Cabrillas, Gallo, and
Dulce) have hard, fertile waters arising from lime-
stone catchments at elevations from 850 to 1,400
m above sea level. The geology of the watersheds
and the mild climate provide for an even flow re-
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TABLE 1.—Selected environmental characteristics of the seven rivers from which brown trout were collected. Mean,
mode, and range of annual water temperature (TanNuaL [°Cl), frequency (%) of four annual temperature ranges, and
mean water temperature in spring (Tspring), summer (Tsymmer). and autumn (Tayrumn) are included. Flow data
were obtained from a database maintained by the Spanish Ministry of Environment. Chemical variables were analyzed
according to APHA (1985) methods from samples taken annually under wet and dry weather conditions during 1996—
1998. Benthic macroinvertebrates were sampled every third month from March 1996 to December 1998 in each sampling
point with a Neil cylinder sampler (250-pum-mesh net). Specimens were dried in an oven at 60°C for 24 h and weighed.
Brown trout density was estimated by applying the three-catch removal method (Zippin 1956). More details about the

methodology are given in Nicola and Almodévar (2002).

Variable Dulce Gallo Cabrillas

Mean TANNUAL 13.1 12.0 10.2
Mode TANNUAL 10.0 11.0 15.0
Range TANNUAL 8-19 5-18 5-16

0-5°C frequency (%) 2

5-10°C frequency (%) 20 32 50

10-15°C frequency (%) 50 43 38

15-20°C frequency (%) 30 25 11
Mean = SD TspriNG 138 £ 1.9 129 £ 20 10.1 = 1.7
Mean * SD TSUMMER 17.1 = 1.1 163 = 1.0 149 £ 0.5
Mean = SD TAuTUMN 11.7 £ 1.6 100 = 25 93 *+ 125
Mean annual discharge and range (m3/s) 1.2 (0.5-3.5) 1.4 (1.0-4.0) 1.3 (0.4-4.1)
Mean *= SD conductivity (nS/cm) 602.0 * 76.7 967.0 = 97.0 606.1 = 1354
Mean = SD alkalinity (CaCO3; mg/L) 309.7 £ 5.0 388.4 = 3.7 4125 = 15.1
Mean * SD calcium (Ca2* mg/L) 56.6 * 17.7 85.0 * 22.3 101.3 = 6.3
Mean = SD magnesium (Mg2+ mg/L) 220x29 264 28 334 £ 49
Mean *+ SD benthos dry biomass (g/m?2) 2.75 £ 1.16 6.15 = 1.31 1.72 + 0.42
Mean * SE brown trout density (fish/ha) 1,365.3 * 291.9 851.5 * 2348 1,709 * 379.8

gime throughout the year. Particularly, the River
Hoz Seca receives a substantial proportion of its
flow from limestone springs, and therefore remains
close to 10°C year-round. The rivers Cabrillas,
Gallo, and Dulce show a similar temperature re-
gime, with an annual mean between 10°C and
13°C. The seven streams differ markedly in con-
centrations of common ions (Table 1). Therefore,
benthic macroinvertebrates are more abundant in
the second group of rivers than the first group.
Further details of the study area are given in Nicola
and Almodévar (2002). The brown trout is the only
or the most abundant fish species present in all the
rivers, and the populations differ significantly in
fish density (Table 1).

Methods

Electrofishing with a 220-W DC generator took
place at 18 localities every third month from
March 1996 through December 1998. Fish caught
were anesthetized with tricaine methanesulfonate
(MS-222; SANDOZ), and their fork lengths (near-
est mm) and weights (nearest g) were measured.
Scales were taken for age determination. The in-
stantaneous rate of growth in weight (G,,,) was
estimated separately for the dominant year-classes
(age 0 to age 2) as:

Gops = 100 - [(log, W, — log,Wo)/1] ey

where W, and W, are the mean weights (g) of each
year-class at the beginning and the end of ¢ days,
respectively. G, was calculated for spring (March
to June; mean, 92 * 10 d; range, 67-108 d), sum-
mer (June to September; mean, 87 *= 5 d; range,
74-97 d), autumn (September to December; mean,
74 + 12 d; range, 57-105 d), and winter (Decem-
ber to March; mean, 113 * 18 d; range, 75-130
d) of every sampling year. The annual growth rate
was calculated in September because growth in
trout populations virtually ceases by ‘this time of
the year; we used equation (1) to calculate annual
growth for the intervals age 0 to age 1 and age 1
to age 2.

The growth model given by Elliott et al. (1995)
was employed to estimate the maximum growth of
brown trout at excess food rations. According to
this model, the maximum weight (W,) after a pe-
riod of r days is

W, = [W§ + be(T — Tipn)- t/{100(Ty — Tram)}]
)

where T is the observed temperature, T), is the
optimum temperature for growth, and 77y, is the
temperature limit. 77 assumes the value of the
lower or upper temperatures at which the growth
rate is zero (T or Ty) depending on whether T is
higher or lower than Ty, (i.e., Ty = T if T <
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TABLE 1.—Extended.

Variable Hoz Seca Jarama Cega Eresma

Mean TANNUAL 10.2 8.6 6.3 6.5
Mode TANNUAL 10.0 6.0 3.0 3.0
Range TaAnNUAL 8-12 0-18 0-13 0-13

0-5°C frequency (%) 23 46 48

5-10°C frequency (%) 42 38 28 26

10-15°C frequency (%) 58 30 26 26

15-20°C frequency (%) 9
Mean * SD Tspring 102 £ 0.5 8.0 =26 56 25 50 1.7
Mean = SD TsymMmER 11.6 = 0.3 147 £ 1.3 11.5 £ 1.1 11.8 = 1.3
Mean = SD TauTumN 99 * 0.6 67 +32 6.0 = 3.1 7.2+ 33
Mean annual discharge and range (m3/s) 4.9 (0.9-19.7) 7.2 (0.5-27.2) 7.0 (0.4-14.9) 4.0 (0.4-11.2)
Mean *= SD conductivity (pn.S/cm) 611.2 * 82.8 259 £ 538 177 = 54 65.3 = 18.0
Mean * SD alkalinity (CaCO3 mg/L) 366.7 + 78.9 18.1 = 11.7 207 = 3.8 29.6 * 1.1
Mean * SD calcium (Ca2* mg/L) 844 + 46 1.2 £03 28 £ 1.0 31 +03
Mean * SD magnesium (Mg2* mg/L) 25.7 * 4.1 13+ 11 09 £ 05 09 * 0.1
Mean + SD benthos dry biomass (g/m?2) 1.76 £ 0.65 0.49 * 0.03 0.56 * 0.05 047 = 0.13
Mean = SE brown trout density (fish/ha) 5659 = 57.8 1,530.0 = 263.9 2,486.7 *+ 2933 4,894.5 = 441.8

Ty Tum = Ty if T > Ty,). The weight exponent
b is the power transformation of weight that pro-
duces linear growth with time, and c is the growth
rate of a 1-g trout at the optimum temperature. 7,
was estimated at 13.11°C, and T, and T, were es-
timated at 3.56°C and 19.48°C, respectively (El-
liott et al. 1995). The values of the constants b and
c were 0.308 and 2.803, respectively (Elliott et al.
1995). Mean daily water temperatures were used
to estimate growth. The mean daily water tem-
peratures were estimated as the mean of all values
recorded over 24 h by data loggers (Minilog; Vem-
co, Ltd.) placed in each river during 1997 and
1998. For the 1996 data, we used linear regression
analysis to estimate the water temperature from
the air temperatures measured at local meteoro-
logical stations (Elliott 1984; Crisp 1992). Water
temperatures were closely related to air tempera-
tures (mean 2 = 0.88), as has been reported by
other authors (Crisp and Howson 1982; Mohseni
et al. 1998). More than 75% of predictions were
within 1.0°C of the observed values. Estimates
were checked occasionally by direct measure-
ments, especially at low water temperatures.
Maximum growth rates (G,,,,) were calculated
by inserting the weight estimates from equation
(2) into equation (1). The ratio of the actual growth
rate to the maximum growth rate predicted by the
growth model ([G,ps/Gaxl © 100) was then cal-

culated. In order to assess the occurrence of size-
selective mortality within a year-class, which
could give an overestimation of the growth rates,
the coefficient of variation (CV, defined as 100 X
SD/mean) for lengths and weights was calculated.
The CVs remained practically constant during the
growth season, such that size-selective mortality
seemed to be insignificant.

Additionally, a sensitivity analysis of the model
(Brown and Rothery 1993) was carried out by ad-
justing T, to equal the range of temperatures ob-
served in each stream. The lower and upper tem-
peratures for growth, as well as the constants b
and ¢, were assumed to be the same as in Elliott
et al. (1995). Growth was then simulated from ob-
served data by computing predictions with varying
Ty values that represented the range of observed
temperatures in 1°C increments. The simulations
were made for age-1 trout in spring, as well as
age-0 and age-1 trout in summer of each sampling
year.

Data were analyzed with multifactor analyses of
variance (ANOVA), and subsequent Scheffé’s tests
were used for comparison of mean values. As-
sumptions of normality of distributions and ho-
mogeneity of variances were verified through
Shapiro-Wilk and Levene’s tests, respectively.
The significance level « for all statistical tests was
set at 0.05.
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Results

Brown trout growth varied during the year,
peaking between March and September, gradually
decreasing from September onwards, and culmi-
nating in a winter minimum (Figure 2). There were
no significant differences among years in the mean
age-specific weight of brown trout in each river.
Therefore, data for the years 1996-1998 were
pooled. The mean age-specific weight varied sig-
nificantly among populations at the end of the
growth period (two-way ANOVA, with age and
river as classification factors; age X river inter-
action: F5 557, = 7.22, P < 0.001) (Table 2).
Brown trout in the rivers Cega and Eresma were
smaller than those in the other populations (Schef-
fé’s test, P < 0.001). The highest mean weight at
age was found in the River Gallo. However, during
the first year of life (age 0 to age 1), there was no
significant difference in the observed annual
growth rate among populations (ANOVA, Fg,, =
1.94, P > 0.05). The mean observed growth rate
in the first year ranged between 1.51 and 1.88,
while the predicted growth rate varied between
1.62 and 2.75 (Table 2). The ratio between G,
and the predicted G,,,, was significantly different
among populations (ANOVA, Fg,o = 5.54, P <
0.001). The recorded growth rate in the first year
was 60-104% of the corresponding growth rate
estimated from the Elliott et al. (1995) model (Ta-
ble 2). The lowest relative growth rates were found
in the River Gallo and the highest mean ratios were
observed in the rivers Cega and Eresma.

When mean observed and expected weights of
age-0 trout throughout the year were compared,
the best fit to the model was found in the coldest
rivers, Cega and Eresma (Figure 2). However,
these rivers had a presumed poor temperature pro-
file for brown trout growth, since only 66% of
mean daily temperatures were within the range
3.6-19.5°C. All mean daily temperatures in the
remaining rivers fell within this range and sug-
gested a potentially high growth rate for brown
trout, but the fit to the model was worse.

During the second period of growth (age 1 to
age 2), a significant difference was found in G,
among populations (ANOVA, F¢,, = 11.1, P <
0.001), but subsequent comparisons only revealed
significant differences between the River Hoz Seca
and the rivers Gallo and Dulce (Scheffé’s test, P
< 0.05); the latter two streams showed the lowest
growth rates among all populations (Table 2).
Mean G, in the second year varied between 0.72/
d and 1.17/d, whereas G,,,, ranged between 1.10

and 1.84/d. The ratio of G, and G,, was also
significantly different among populations (ANO-
VA, Fg16 = 1091, P < 0.001). The recorded
growth rates constituted 45-88% of the corre-
sponding growth rates computed from the model
(Table 2). The lowest relative growth rate was
found in the River Gallo, and the highest mean
values were observed in the rivers Cega and Er-
esma. A significant negative correlation was found
between the mean G, /G, and the mean annual
water temperature for both periods of growth (age
0 to age 1, Pearson’s r = —0.55, P < 0.01; age 1
to age 2, r = —0.88, P < 0.001).

During spring, G,,, in age-1 brown trout was
significantly different among rivers (range 0.44—
0.99/d; ANOVA, F,, = 3.46, P < 0.05), but sub-
sequent comparisons of means only revealed sig-
nificant differences (Scheffé’s test, P < 0.05) be-
tween the low values of the River Dulce and the
highest means of the rivers Cabrillas and Cega.
The ratio of recorded and predicted growth rates
was significantly different among rivers (ANOVA,
Fgy = 6.35, P < 0.001). G, was always higher
than G,,,, in all the rivers except Dulce and Hoz
Seca (Figure 3). The largest deviations were found
in the rivers Cega and Eresma (G,,/Gp., > 150,
Figure 3). G,,, was not significantly correlated
with mean water temperature during spring (» =
—0.53, P > 0.05).

In summer, G, of age-0 trout was significantly
different among populations (range 0.94-2.25/d;
ANOVA, Fs5 6 = 4.84, P < 0.01). G of age-1
trout was also significantly different among rivers
(range 0.18-0.67/d; ANOVA, Fs,6 = 3.45, P <
0.05), but a posteriori comparisons only showed
significant differences (Scheffé’s test, P < 0.05)
between the low values of River Gallo and the
highest means of the rivers Eresma, Cega, and Jar-
ama. G, was not significantly correlated with
mean water temperature for age-0 brown trout dur-
ing summer (r = —0.40, P > 0.05), but G, and
mean temperature were correlated for age-1 trout
(r = —0.81, P < 0.05). The ratio between G,
and Gp,, was significantly different among rivers
for both age-0 (ANOVA, Fs s = 4.50, P < 0.01)
and age-1 trout (ANOVA, Fg,5 = 3.28, P < 0.05).
G,ps of age-0 trout was higher than G_,, in all
rivers except in River Cega (Figure 3). G, of age-
1 trout only equaled G,,,, in the River Dulce (Fig-
ure 3). In the remaining rivers, the mean values
ranged from 39% in the River Gallo to 89% in the
River Jarama.

With regard to autumn, G, of age-0 brown trout
from rivers Gallo and Dulce were significantly dif-
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FIGURE 2.—Annual patterns in mean observed (triangles) and simulated (circles) weights of juvenile brown trout
in each study river. The observed values started at age O in September and ended at age 1 in September during
the three study years (1996-1998). The predicted growth curve starts in September, and the initial weight is estimated
as the mean weight of age-0 fish during the sampling years (W, in Table 2). Mean daily temperature (°C; solid
lines) during 1996-1998 is also given to show the annual patterns of temperature in each river.



72 NICOLA AND ALMODOVAR

TABLE 2.—Mean weight (Wy, [g]) = SD of juvenile brown trout at the end of the growth season, sample size, and
mean observed (Gqps) and predicted (Gpax) annual growth rates in year-! = SD in the seven populations studied (1996—
1998), during the first (age-0 to age-1) and second (age-1 to age-2) growth periods. The mean ratio and range (in
parentheses) between observed and predicted growth are also given.

Gobs/Gmax
River Wo N Gobs Gmax ratio (%)
Age 0 to Age 1 -
Dulce 105 = 42 73 1.83 = 0.14 227 £ 0.04 81 (74-88)
Gallo 11.8 =50 57 1.36 = 0.33 2.26 = 0.23 60 (54-66)
Cabrillas 7029 246 1.66 = 0.12 2.28 £ 0.30 75 (59-84)
Hoz Seca 56 =21 90 177 £ 0.22 275 = 0.12 66 (61-73)
Jarama 51 =31 191 1.64 * 0.23 2.17 £ 0.24 75 (71-82)
Cega 3714 179 1.88 + 0.32 1.81 = 0.17 104 (82-121)
Eresma 3315 197 1.51 * 0.30 1.62 + 0.22 94 (72-117)
Age 1 to Age 2
Dulce 65.8 = 209 73 0.72 = 0.11 1.57 = 0.03 46 (41-50)
Gallo 46.3 + 12.6 78 0.74 = 0.01 1.66 = 0.02 45 (44-45)
Cabrillas 354 = 10.1 79 091 * 0.04 1.58 = 0.22 58 (50-66)
Hoz Seca 29.7 =99 59 1.17 = 0.11 1.84 = 0.04 62 (54--68)
Jarama 26.1 = 11.5 202 0.98 = 0.09 1.50 = 0.10 65 (61-72)
Cega 19.0 = 8.1 181 0.97 = 0.07 1.14 = 0.12 86 (76-104)
Eresma 155 =52 344 0.95 * 0.06 1.10 £ 0.13 88 (74-102)

ferent from the G, of the other populations (range
0.03-0.70/d; ANOVA, Fg,; = 9.03, P < 0.001;
Scheffé’s test, P < 0.01). G, of age-1 trout was
not significantly different among rivers (range
0.02-0.21/d; ANOVA, Fy ;5 = 2.29, P > 0.05).
Gos Was much lower than G, in all the rivers
(3-30%), except in age-0 trout from the rivers Gal-
lo and Dulce (mean, 70%) (Figure 3). Some of
these rivers showed water temperatures within the
range 3.8-19.5°C, and temperatures were similar
or even higher to those found in spring, although
the growth pattern was markedly different during
autumn. During winter, there was no growth in
most cases.

For all the rivers, the best correlation between
recorded and predicted growth of age-1 brown
trout in spring was found when the optimum tem-
perature for growth (7)) was simulated to be
smaller than that reported by Elliott et al. (1995),
except for the River Hoz Seca, where the best fit
was obtained at 13°C (Table 3). In summer, the
best correlation between recorded and predicted
growth of age-0 trout for the rivers Dulce, Gallo,
and Cabrillas was found when the optimum tem-
perature for growth was simulated to be higher
than the value reported by Elliott et al. (1995),
whereas the best correlation for the remaining riv-
ers was found when the optimum temperature was
simulated to be smaller (Table 3). For all the rivers,
the best correlation for age-1 brown trout in sum-
mer was found when the optimum temperature for
growth was simulated to be smaller than that re-
ported by Elliott et al. (1995) (Table 3), except for

the River Dulce, where the best fit was obtained
at around 13°C. The sensitivity of the model to
simulated variations in T, was different among
rivers and between seasons. The change in T, val-
ue seemed to affect the outcome of the model very
much in some cases, which indicates that the mod-
el might need to be reconsidered.

Discussion

Brown trout growth in the study rivers followed
the general pattern described for this species in
several European populations (e.g., Egglishaw and
Shackley 1977; Mortensen 1982; Mann et al. 1989;
Bagliniere and Maisse 1990). In spite of the di-
verse environmental conditions, the annual incre-
ment in body mass was not significantly different
among most populations. However, the ratio of
observed to predicted growth significantly differed
among rivers. The best fit to the model of Elliott
et al. (1995) was found in rivers with low water
temperature and low food availability (rivers Cega
and Eresma), a finding that confirmed the perva-
sive role of temperature in trout growth in these
rivers. In the rest of the populations, observed
growth deviated from the model, equaling between
60% and 80% of predicted growth. Edwards et al.
(1979) found similar results in 25 localities in Brit-
ain, ranging from limestone streams in southern
England to mountainous Scottish rivers. These au-
thors observed that the most temperate and pro-
ductive rivers showed an observed growth equal
to about 70% of predicted values, whereas in cold-
er and less fertile rivers, growth was almost 80%
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FiGure 3.—Comparison between mean observed
(Goys) and mean maximum (Gp,,) instantaneous growth
rates (/d) of age-O (open squares) and age-1 (closed
squares) brown trout in the seven populations studied
(rivers Dulce [DU], Gallo [GA], Cabrillas [CA], Hoz
Seca [HS], Jarama [JA], Cega [CE], and Eresma [ER])
during (A) spring, (B) summer, and (C) autumn of 1996—
1998. ‘

of predicted values. Likewise, Jensen and Johnsen
(1984) in Norway, Preall and Ringler (1989) in
the USA, and Weatherley et al. (1991) in Wales
obtained similar results to that of Edwards et al.
(1979) and the present work. The most extensive
use of Elliott’s growth model is the recent study
by Jensen et al. (2000), based on 42 European
populations of brown trout. These authors found
that most of the variation in annual growth rate
(80%) was related to environmental variability.
However, the model strongly underestimated
growth in some of the coldest rivers, and a sig-
nificant relationship was found between annual
growth and temperature. The same findings have
been obtained in the present work, albeit at a small-
er geographical scale. At first, this suggests local
thermal adaptations in the coldest rivers, but there
are alternative explanations that we will discuss
below.

A more detailed analysis of growth showed a
marked effect of both season and river in the fit
to the model. Thus, mean observed growth rate
during spring equaled and even surpassed pre-
dicted values in most rivers, as has been reported
for other populations (e.g., Mortensen et al. 1988;
Jensen 1990; Elliott 1994; Lobdén-Cervia and Rin-
cén 1998; Lagarrigue et al. 2001). Therefore, at
temperatures below 13°C, brown trout in some
populations were able to grow at least as fast or
faster than British trout of the same size at the
same temperature, fed to satiation under experi-
mental conditions (Elliott et al. 1995). However,
the ratio of recorded and predicted growth signif-
icantly varied among populations, although there
were no significant differences in observed growth
among most rivers. The actual growth consider-
ably exceeded the maximum predicted growth in
the rivers Cega and Eresma. However, during
spring, mean water temperature in these rivers
(~5°C) was lower than the optimum temperature
for trout growth at excess rations (13.1°C; Elliott
et al. 1995), and food abundance was low (mean
dry biomass, 0.51 = 0.01 g/m?). Allen (1985) also
found a higher observed than predicted growth of
trout (110-140%) with water temperatures below
13°C in the River Horokiwi in New Zealand. Like-
wise, Jensen (1990) found a significantly higher
observed growth (115-172%) in four Norwegian
rivers with low temperature and low water pro-
ductivity. Previous studies on brown trout have
shown that, if food consumption is reduced, the
optimal temperature for growth also decreases (El-
liott 1994). Certainly, the fit to the model in the
rivers Cega and Eresma greatly improved during



74

NICOLA AND ALMODOVAR

TABLE 3.—Mean (+SD) ratio between observed and maximum growth (Ggps/Gmax, €Xpressed as a percent) found in
the best fits to the model of Elliott et al. (1995) based on alternative values of optimum temperature for growth (Tyy).
Predictions of the model were computed with simulated values of optimum temperature covering the range of temper-
atures observed in each stream at intervals of 1°C. The mean 73 = SD at which the best fit was found is also indicated.

Summer
Spring (age-1) Age-0 Age-1
River Gobs/Gmax Ty Gobs/Gmax Ty Gobs/Gmax Ty
Dulce 100.7 = 14 11.6 = 0.7 1073 = 7.3 170 £ 1.5 102.6 = 2.1 126 £ 2.8
Gallo 103.7 £ 0.8 10.6 = 1.8 1059 = 8.1 149 = 1.9 822 + 18.5 52 +03
Cabrillas 108.1 = 10.8 87 *x 18 103.6 = 4.6 144 = 1.0 90.0 * 16.6 83+ 135
Hoz Seca 86.2 x 15.1 13.0 = 0.3 100.8 = 0.8 124 £ 04 89.7 £ 17.7 83 *+03
Jarama 990 =15 10.7 = 19 1109 = 8.5 124 19 997 = 2.8 114 £33
Cega 106.7 = 14.0 84 + 1.8 999 x 1.1 12.1 = 0.7 844 * 189 61 x15
Eresma 100.1 = 0.7 8.1=*18 — — 942 +99 59 1.0

spring at a simulated T, of approximately 8°C. In
contrast, the fit to the model in the other rivers
was hardly enhanced when varying T,,, though the
best fits were obtained when T), was simulated to
be smaller. Alternatively, Allen (1985) pointed out
that trout used in experiments may not reach their
maximum growth scope, and Forseth and Jonsson
(1994) suggested that food rations could be higher
in the wild than that considered by Elliott (1975)
as maximum. In addition, Spigarelli et al. (1982)
observed better feeding and higher growth in a
thermocyclic regime than at a constant tempera-
ture, which agrees with observations by Hokanson
et al. (1977) and Biette and Green (1980) in other
salmonid species. However, Elliott (1975) tested
the viability of the model in the wild, finding a
similar growth than that of trout in captivity. Ad-
ditionally, fish from the coldest rivers may have a
compensatory growth response during spring, as
has been broadly described in salmonids (e.g.,
Miglavs and Jobling 1989; Reimers et al. 1993;
Nicieza and Metcalfe 1997). This would lead to
annual growth rates similar to the other rivers and
sometimes higher than predicted from the model.

During summer, mean observed growth rates of
age-1 trout were lower than predicted values in
most rivers, as reported for other populations
(Preall and Ringler 1989; Jensen 1990; Lagarrigue
et al. 2001). It is important to emphasize the de-
crease of this ratio in the rivers Cega and Eresma,
although mean water temperature was higher than
in spring (11-12°C). In the rivers Cabrillas, Gallo,
Dulce, and Jarama, the mean water temperature
exceeded 13°C in summer (14.4-16.7°C). In al-
most all study rivers, the best fit to the model
among age-1 trout was found when T, was sim-
ulated to be smaller (T), = 5-11°C). Higher sum-
mer temperatures may be responsible for the de-
crease in summer growth rates through increasing

metabolic rates (Elliott 1994), but variations in
stream temperature are accounted for in the model.
Growth during summer may also decrease due to
limited food availability, as the model assumes no
food limitation and does not take into account
changes in food availability (Elliott and Hurley
2001). However, mean dry biomass of bottom fau-
na during summer (1.99 g/m?, range 0.51-6.45 g/
m?) was similar to that found during spring (2.14
g/m?, range 0.44-7.49 g/m?). A more likely ex-
planation is given by the onset of gonad maturation
during summer (Nicola 1999), provided there is a
tradeoff between maturity and growth (Stearns
1992). However, in all rivers, females matured at
age 2 as opposed to age 1 or 2 for males (Nicola
and Almodévar 2002). Therefore, other factors are
likely limiting summer growth in age-1 trout in
the studied rivers.

A widespread reduction in growth took place
during autumn in all the populations, even though
mean water temperature in the rivers was suitable
for brown trout growth. Hence, observed values
were much smaller than predicted, except for age-
0 brown trout in the rivers Dulce and Gallo, which
supported approximately 70% of predicted growth.
This means that food may be a limiting factor with-
in this period, as suggested by Mortensen (1985)
and Mortensen et al. (1988) in Denmark, and El-
liott (1985) and Mann et al. (1989) in Britain, all
of whom found comparable patterns. However, El-
liott (1989) obtained a similar result with age-0
trout under experimental conditions with unlimited
food. Furthermore, the mean biomass of benthic
invertebrates during autumn in the rivers studied
(1.96 g/m?, range 0.48-5.84 g/m?) was similar to
that found during the growth period. Elliott (1989)
suggested that this pattern could be related to sea-
sonal rhythms in feeding motivation, with a loss
of appetite as autumn begins and water tempera-
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tures start to decrease, similar to the phenomenon
observed in Atlantic salmon Salmo salar (e.g.,
Metcalfe et al. 1986; Metcalfe and Thorpe 1992;
Simpson et al. 1996). Besides the change in feed-
ing activity, the observed seasonal changes could
also be influenced by photoperiod. The progressive
increment of day length may stimulate growth in
spring, whereas the shortening of days in autumn
may diminish growth (see Boeuf and Le Bail
[1999] for a review). Consequently, although the
fit to the model was considerably high during the
growing season in the rivers studied, the retarded
growth in autumn and winter resulted in annual
growth rates usually below the estimated growth.

The ratio of observed to predicted growth
showed no clear pattern among streams when T),
was 13.11°C. However, when alternative values of
optimal temperature were used in our simulations,
the fit to the model was similar among populations,
although the simulated T, value that gave the best
fit varied considerably. Our results suggest that the
parameters of the model may not be identical for
all brown trout populations, as noted by other au-
thors (Allen 1985; Crisp et al. 1990; Lob6n-Cervid
and Rincén 1998). Accordingly, in experiments
that use alternative mathematical functions, the es-
timated optimal temperature for growth of brown
trout was found to be between 14°C and 17°C in
Norway (Forseth and Jonsson 1994) and 16.9°C
in Spain (Ojanguren et al. 2001). Further, Jensen
(1990) found a better fit to the original model of
Elliott (1975) at T, values equal to 14.9°C in a
Norwegian population of brown trout. Allen
(1985) and I’ Abee-Lund et al. (1989) also noted
that the temperature for optimal growth in wild
populations of brown trout seemed to be higher
than that recorded by Elliott (1975) for experi-
mental fish. Therefore, the thermal responses of
brown trout populations seem to be different from
those used to develop the model. There is still little
support for the hypothesis of adaptation to local
thermal conditions proposed by several authors
(e.g., Allen 1985; Weatherley et al. 1991; Lobén-
Cervid and Rincén 1998; Jensen et al. 2000). How-
ever, the geographical variability in the fit to the
model observed in the present work could be re-
lated to genetic differences among populations.
Further, Nicieza et al. (1994) found genetically-
based differences in the digestive performance of
Atlantic salmon in a high-latitude population, sug-
gesting that this population may have developed
certain mechanisms to compensate for presumably
more restricted conditions for growth. Further, sev-
eral workers have pointed out the relationship be-

tween the genetic variability of some metabolic
enzymes of salmonids and the growth rate (e.g.,
Jordan and Youngson 1991; Torrisen et al. 1994).
Another factor that might be partially responsible
for the observed discrepancies is the feeding re-
gime. Recently, Elliott and Hurley (2000) have
demonstrated that a change in diet from inverte-
brates to fish, and hence in the energy available
for growth, can increase the optimum temperature
for trout growth to 17°C. Finally, recent studies
indicate that intraspecific competition is an im-
portant factor for explaining variation in growth
in stream-dwelling brown trout (Jenkins et al.
1999; Nordwall et al. 2001; Bohlin et al. 2002;
Vegllestad et al. 2002). However, in the study riv-
ers, density-dependent effects on growth rate may
be minimal, as a significant positive correlation
was found between the ratio G, /G, and mean
brown trout density (Spearman’s » = 0.82, P <
0.05).

In summary, the populations studied showed lit-
tle variation in growth rate, in spite of being sub-
jected to a wide range of environmental conditions.
However, some discrepancies were found between
observed and predicted growth, which indicates
that temperature alone did not account for all the
spatial and temporal variation in growth rates. In
addition, the ratio of observed to predicted growth
increased with decreasing water temperature. The
growth model thus underestimated growth in the
coldest rivers, suggesting that adaptations to local
thermal conditions can occur. The studied popu-
lations show genetic differences, especially be-
tween the Tagus and Douro river basins (Machor-
dom et al. 1999, 2000; Sudrez et al. 2001), but
common-environment or reciprocal transplant ex-
periments are required in order to find some sup-
port for the local thermal adaptation hypothesis.
Some other factors, such as feeding behavior,
could also cause the observed discrepancies. Fi-
nally, controlled experiments are needed to esti-
mate the parameters critical to the model for the
study populations before alternative explanations
can be suggested.
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