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Abstract

Anthropogenic environmental change is causing unprecedented rates of population extirpation and altering the setting of
range limits for many species. Significant population declines may occur however before any reduction in range is observed.
Determining and modelling the factors driving population size and trends is consequently critical to predict trajectories of
change and future extinction risk. We tracked during 12 years 51 populations of a cold-water fish species (brown trout
Salmo trutta) living along a temperature gradient at the warmest thermal edge of its range. We developed a carrying
capacity model in which maximum population size is limited by physical habitat conditions and regulated through
territoriality. We first tested whether population numbers were driven by carrying capacity dynamics and then targeted on
establishing (1) the temperature thresholds beyond which population numbers switch from being physical habitat- to
temperature-limited; and (2) the rate at which carrying capacity declines with temperature within limiting thermal ranges.
Carrying capacity along with emergent density-dependent responses explained up to 76% of spatio-temporal density
variability of juveniles and adults but only 50% of young-of-the-year’s. By contrast, young-of-the-year trout were highly
sensitive to thermal conditions, their performance declining with temperature at a higher rate than older life stages, and
disruptions being triggered at lower temperature thresholds. Results suggest that limiting temperature effects were
progressively stronger with increasing anthropogenic disturbance. There was however a critical threshold, matching the
incipient thermal limit for survival, beyond which realized density was always below potential numbers irrespective of
disturbance intensity. We additionally found a lower threshold, matching the thermal limit for feeding, beyond which even
unaltered populations declined. We predict that most of our study populations may become extinct by 2100, depicting the
gloomy fate of thermally-sensitive species occurring at thermal range margins under limited potential for adaptation and
dispersal.
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Introduction

Natural and anthropogenic disturbances are impacting global

ecological systems and causing elevated rates of population

extirpation, so that there is increasing concern that the rate of

environmental change may exceed the capacity of populations to

persist and maintain their range [1]. A population’s extinction risk,

persistence time and duration of its final decline to extinction, as

well as the probability of evolutionary rescue, strongly depend on

initial numbers and population size variability [2–4]. In many

systems, imminent extinction will be signalled early by a

decreasing rate of recovery from small perturbations. This critical

slowing down is typically characterized by an increase in variance

or autocorrelation of fluctuations of the system as a tipping point is

approached [5–6]. In highly stochastic systems, critical transitions

will on the contrary happen far from local tipping points and an

increasing variability will reflect the shift to a contrasting regime

[7]. Improving wildlife’s conservation and management requires

therefore a deep comprehension of not only spatial patterns in

local species abundance but also the way and rate a population’s

size changes through time - its trajectory. Since dynamics are

driven by the interplay of density-dependent and density-

independent aspects of the environment, determining how the

strength of density dependence varies with environmental variance

remains critical for predicting near-term population trajectories

[8–9]; the heart of the matter is then, what limits and regulates the

size of natural populations in a fluctuating world?

Theoretically, there is a limit to the maximum number of

individuals that can be supported by a system over a period of time

for a particular level of resources (i.e., the environment’s carrying

capacity); and most important, population growth must decrease

as the population approaches that limit at a rate dependent on the

functional form of density dependence operating on the system

[10]. This latter notion has been factually the cornerstone of the

management of wildlife populations subject to commercial

exploitation (see [11–12]). In conservationist settings, the proba-

bility of extinction and the persistence time of a population are a

function of the environment’s carrying capacity and the amplitude
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of its fluctuations along time (e.g., [13]). Carrying capacity is

however typically set as a static parameter in predictive population

dynamics models notwithstanding the fact that levels of resources

naturally change through time, and that these changes will be

amplified by climate change in many regions. Mechanistic

behavioural process-based models provide a useful alternative to

simulate carrying capacity dynamics under changing conditions

across multiple spatio-temporal scales, contexts and taxa (e.g., [14–

16]). Yet most models do not account for social interactions even

though the carrying capacity of an environment is greatly

determined by how individuals compete over the available

resources. This is especially relevant for territorial species because

behavioural responses induced by aggressive interactions typically

result in reduced exploitation of the limited resource, so that the

population stability-enhancing effects of territoriality are paid-off

by decreased carrying capacity [17].

In addition to the resources that set the carrying capacity, which

are dynamically consumed and may be hence the object of

competition, there are scenopoetic variables that are not

dynamically affected by the presence of a species but may limit

the species’ final performance in the other way round. As such,

temperature is a primary driver of species’ distribution and

numbers over the long-term, especially in ectotherm organisms, as

their fundamental niche is physiologically bounded by their

thermal niche space [18]. Within the temperature range in which

survival occurs, there are a series of decreasing ranges for different

functions (e.g., feeding, growth, reproduction) so that outside their

limits population performance declines (e.g., [19]). Therefore,

increasing temperatures may first constrain the carrying capacity

of a system for a particular species to a lower thermal capacity and

ultimately drive that organism outside its tolerance window.

Alterations in the realized thermal niche resulting from on-

going anthropogenic global warming is in fact the underlying

cause of the rapid range shifts [20], local and worldwide

extinctions [21], and population declines [22] observed in species

from a wide variety of taxa. Ominously, range sizes and

population numbers of thermally-sensitive species are projected

to keep on shrinking along warmer margins (latitudinal or

altitudinal), with particularly deleterious impacts on peripheral

populations living at the most extreme margins of the species’

realized climatic niche (e.g., [23–25]). There is also increasing

evidence that the amplitude and probability distribution of

environmental variability is changing in response to anthropogenic

impacts [9], with the intensification of weather and climate

extremes linked to anthropogenic climate change at the far-end of

this spectrum (see [26]). This trend can have a substantial

influence on population extinction dynamics since increased

environmental variability can alter a population’s vital rates in

several interrelated ways [9]. Understanding then the way and to

what extent the internal dynamics of a system responds to

temperature fluctuations over time is critical for predicting

trajectories of change under future scenarios.

In this article, we address how the carrying capacity and the

thermal capacity of the system act and interact to drive spatial

patterns and temporal fluctuations in population abundance of

thermally-sensitive species. For this purpose, we tracked during 12

years 51 populations of a cold-water fish species, brown trout Salmo

trutta, living along a temperature gradient at the warmest thermal

edge of its range. In this study, we develop a carrying capacity

model in which maximum population size is limited by

environmentally-driven physical habitat conditions and regulated

through habitat selection and territorial behaviour. We test

whether the spatial and temporal variations in the numbers of

young-of-the-year, juvenile and adult brown trout (1) are

explained by modelled carrying capacities, and (2) are disrupted

by thermal conditions. If so, we target on establishing (3) the

temperature range within which the thermal capacity of the system

is lower than its carrying capacity, and (4) the rate at which

carrying capacity declines with temperature within that limiting

thermal range.

Materials and Methods

Study populations
The study area was situated in the Iberian peninsula between

latitudes 42u299 and 43u169N and longitudes 0u439 and 2u209W.

Brown trout population trajectory was analysed in 37 study sites

located in 22 rivers from three major basins (Aragón, Arga and

Ega river basins) belonging to the Ebro river basin, a Mediter-

ranean drainage; 14 sites located in 12 Atlantic rivers from the Bay

of Biscay drainage were additionally studied. Sampling sites

corresponded to first- to fifth-order rivers and were located at an

altitude ranging from 40 to 895 m above mean sea level (a.s.l.).

Selected sites were chosen to (1) cover the existing variability of

environmental (physical habitat, flow, water temperature) condi-

tions, and (2) represent an anthropogenic multiple-stressor

gradient within the study area. Location and environmental and

physical features of sampling sites can be checked elsewhere (e.g.,

[27–29]). Brown trout is the dominant fish species throughout the

area, and its populations only consist of stream-dwelling individ-

uals.

Brown trout populations were sampled by electrofishing with

multiple successive passes every summer from 1993 to 2004. Prior

to sampling, each site was blocked upstream and downstream with

nets. Trout were placed into holding boxes and were anaesthetised

with tricaine methane-sulphonate (MS-222) to both facilitate their

manipulation and minimize physiological stress. Individuals were

measured (fork length, to the nearest mm) and weighed (to the

nearest g), and scales were taken for age determination. Scales

were removed from the area between posterior edge of dorsal fin

and the lateral line, approximately two scale rows above the lateral

line on the left side of the fish. Scales were removed by gently

scraping against the grain of the scales with the blade of a clean

scalpel or knife. After sampling routines, trout were placed into

different holding boxes to recover, being immediately released

back into the river after recovery. A grand total of 159,563

individuals were sampled during the study. Population density was

used as a measure of population size. Fish density (trout ha21) with

variance was estimated separately for each sampling site by

applying the maximum likelihood method [30] and the corre-

sponding solution proposed by Seber [31] for three removals

assuming constant-capture effort. Population estimates were

carried out separately for each year class.

Ethics statement
The described field study, including electrofishing and all

sampling routines, was approved by the Wildlife Regional Service

of Navarra (Department of Rural Development and the Environ-

ment and Local Administration of the Government of Navarra)

accordingly to the current legislation (Ley Foral 2/1993). The

study did not require any ethical approval from the corresponding

Ethics Committee on Animal Experimentation (Ley Foral 2/1993,

article 9; Real Decreto 1201/2005, articles 2–3). Fish surveys were

carried out by experienced fisheries staff of the Wildlife Regional

Service of Navarra and all sampling procedures complied with the

Spanish and European Union legislation on animal welfare. The

fish were handled with great care throughout this study to

minimize any negative effects. This includes electrofishing and
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sampling routines such as weighing and length measuring and

scale collection. After sampling routines, all fish were returned

alive into the river. The study did not involve field sampling during

the emergence or spawning critical periods, when trout are more

susceptible to undergo potential physiological or behavioural

disruptions. The described field studies did not involve endangered

or protected species.

Carrying capacity modelling
Carrying capacity dynamics was modelled following the

rationale and methodology described in Ayllón et al. [32]. We

define carrying capacity as the maximum density of fish a river can

naturally support during the period of minimum available physical

habitat. In our model, the quantity of suitable physical habitat

available for fish of a given age is estimated as a function of stream

discharge using physical habitat simulations, and the maximum

number of fish that can be sustained is estimated as the area of

suitable physical habitat divided by the expected individual

territory area for the given aged cohort.

Dynamics of stream physical habitat was modelled by means of

the Physical Habitat Simulation system (PHABSIM; [33]).

PHABSIM simulations determine the potentially available phys-

ical habitat for an aquatic species and its life stages as a function of

discharge by coupling a hydraulic model with a Habitat Suitability

Model (HSM). The longitudinal distribution of habitat types

within the stream is described through transects positioned

perpendicular to the channel. Along each transect, measurements

of physical habitat variables are made at regular intervals to

describe their cross-sectional distributions. As a result, the study

site is depicted as a mosaic of cells characterized by their area,

structure (substrate and cover) and hydraulics (water depth and

velocity), which are a function of discharge [34]. For this work,

topographic, hydraulic and channel structure data needed to carry

out the physical habitat simulations were collected at each study

site during the summer of 2004 following survey methods

extensively described for e.g. in Parra et al. [29]. Hydraulic

conditions were simulated following procedures set out in Waddle

[34]. Finally, the suitability of channel structure and simulated

hydraulic conditions for fish is assessed by means of the HSM. In

this study, we used the reach-type specific habitat selection curves

developed for young-of-the-year (YOY, 0+), juvenile (1+) and

adult (.1+) brown trout by Ayllón et al. [27]. Habitat selection

represents habitat preference under the prevailing biotic and

abiotic conditions in any particular system, so these curves can be

seen as operational applications of the realized ecological niche.

The curves that relates the Weighted Usable Area (WUA; m2

WUA ha21, an index combining quality and quantity of available

physical habitat) for each life stage with stream discharge are the

final outputs of PHABSIM simulations.

Importantly, we modelled spatial segregation of cohorts to avoid

an overestimation of available physical suitable habitat. Since

habitat selection patterns overlap among life stages up to a certain

degree (see [27]), there is a potential for intercohort competition in

some areas of the stream. This results in PHABSIM cells where

one life stage has a higher composite suitability index than other

life stage, and other cells where the converse holds. We considered

that younger life stages would not occupy the shared cells where

they are dominated (have less favourable habitat conditions) by

older ones, so that this WUA was not added to their total available

physical habitat.

Discharge time series for the study period (1993–2004) were

obtained at each site from the closest gauging stations. Then,

summer (July-September) physical habitat time series for each life

stage were calculated by coupling WUA-discharge curves with

discharge time series. Mean summer WUA was calculated as the

daily average for each life stage and year. Finally, physical habitat

time series were transformed to carrying capacity time series by

means of an allometric territory size relationship specifically

developed for brown trout [35]: Log10 T = (2.64 – 0.96?age

category)?Log10 L - (2.72 – 0.90?age category), where T (m2 of

WUA) is territory size, L (cm) is length and age category is 0 for YOY

trout or 1 for juvenile and adult trout. Carrying capacity was

estimated for every age class (0+, 1+ and .1+), year and site

through the following ratio: Ki = WUAi/Ti, where Ki is the carrying

capacity of age-class i (trout ha21), WUAi is the mean summer

WUA of age class i (m2 ha21) and Ti is the area of the territory

used by an individual of average body size of age-class i (m2

trout21).

Water temperature modelling
We used the maximum mean water temperature during 7

consecutive days from July to September (Tmax7d-water, uC) to study

potential limiting effects of physiological stress on brown trout

performance. Seven days is the usual standard to estimate thermal

tolerance of fish to short-term exposure (e.g., [19]). We developed

a regional spatial model to predict extreme water temperatures in

the study area during the study period (1993–2004). Since water

temperature data were not available, they were estimated from air

temperature data. At a first stage, we built a regional air

temperature model by regressing annual maximum mean air

temperature during seven consecutive days (Tmax7d-air) to latitude

and altitude for 48 meteorological stations located at altitudes

ranging from 38 to 1344 m a.s.l. Year was included as a random

factor to induce an autocorrelation structure among data within

the same year and account for yearly differences in the relationship

among variables. Tmax7d-air was significantly related to latitude and

altitude following the model: Tmax7d-air (uC) = 323.25 – 6.914?Lat-

itude (decimal degree) - 0.0044?Altitude (m) (R2 = 0.85, P,0.0001).

At a second stage, we fitted a linear mixed-effects regression model

relating Tmax7d-water to Tmax7d-air with river basin as a random factor.

To do this, water temperature was recorded daily at study sites by

means of data-loggers installed from June of 2004 to November of

2005. We employed Tmax7d-air as the independent variable since

weekly averages of stream temperature and air temperatures are

typically better correlated with each other than are daily values

(e.g., [36]). The resulting model was highly significant (R2 = 0.85,

P,0.0001) and the within-basin fitted lines were specified by

Tmax7d-water = 3.372+0.656?Tmax7d-air, 4.688+0.589?Tmax7d-air,

4.171+0.626?Tmax7d-air for Aragón, Arga-Ega and Bay of Biscay

basins, respectively.

Data analyses
Effects of carrying capacity dynamics and competition on

population size. We tested whether spatio-temporal variations

in the number of individuals of a life stage (YOY, juvenile and

adult) were driven by carrying capacity dynamics, levels of

crowdedness (i.e., carrying capacity saturation) experienced by

these individuals the previous year, and levels of crowdedness

experienced by individuals of accompanying life stages. The level

of carrying capacity saturation was measured as the relationship

between observed density and estimated carrying capacity (D/K

ratio) and was used as a proxy for intensity of competition among

individuals. We also examined the effects of previous inter-

seasonal and inter-annual limiting physical habitat bottlenecks on

the performance of a life stage: (1) we used the average discharge

(Qem) and the maximum mean discharge during 7 consecutive days

(Qmax7d) during emergence time (March-April) as proxies of

physical habitat availability during this critical period. Both
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metrics were standardized by dividing by the historical median

daily discharge to make them comparable among rivers signifi-

cantly differing in discharge magnitude; (2) we used the relative

carrying capacity ratio between two consecutive life stages to test

whether the relative proportion of habitats available for a cohort

along its ontogeny limits its performance. Density of life stage x at

year i (Dx,i), as response variable, was therefore regressed against

predictors listed on Table 1. In the case of YOY trout, D0+,i was

regressed against the level of carrying capacity saturation

experienced by adult trout the previous year and the relative

ratio between recruitment and adult stock carrying capacity. We

fitted our regression models through the Random Forest algorithm

(RF, [37]) implemented in the ‘‘randomForest’’ package [38]

within the R environment [39].

RF is a member of Regression Tree Analyses (RTA; [40]). RTA

recursively partitions observations of the response variable into

successive binary splits, each split being based on the value of a

single predictor chosen through an exhaustive search procedure

across all available predictors to minimize the unexplained

variance of the response while maximizing the differences between

the offspring branches. RF models increase prediction accuracy

compared to traditional RTA by introducing random variation by

growing each tree with a bootstrap sample of the training data and

only using a small random sample of the predictors to define the

split at each node. In outline, ntree bootstrap samples are randomly

drawn with replacement from the training data, each containing

2/3 of the data (in-bag). Then, the RF algorithm searches the best

split from a random subset of predictors (mtry variables from the

whole set of variables) to construct the decision tree. Independent

predictions (i.e., independent of the model-fitting procedure) for

each tree are then made for the other 1/3 of the data that were

excluded from the bootstrap sample (out-of-bag, or OOB). These

predictions are averaged over all trees and the prediction error

(OOB error) provides an estimate of the generalization error.

Here, we first chose the optimal values of ntree and mtry that

minimize the OOB error and then we proceeded to develop the

RF model.

We employed RF models because they are free from

distributional assumptions and automatically fit non-linear rela-

tionships and high-order interactions between predictors. Further-

more, as the number of trees increases, the generalization error

always converges, so RF models cannot be over-fitted. Finally, as

the OOB error is an unbiased estimate of the generalization error,

it is not necessary to test the predictive ability of the model on an

external data set [37]. The structure of the RF models can be

examined using importance measures and partial dependence

plots. Predictor Importance was assessed based on how much

worse the OOB predictions can be if the values for that predictor

are permuted randomly. The increase in mean of the error of a

tree (mean square error, MSE) was used to measure the resulting

deterioration of the predictive ability of the model after data

permutation. Increase of MSE was computed for each tree and

averaged over the forest (ntree trees). In addition, partial plots show

the marginal effect of analyzed environmental variables in RF

estimates of population size.

Effects of water temperature on population size. We

deployed quantile regression (QR, [41]) to describe the limiting

effect of water temperature on population size. We used this

method because, contrarily to most regression analyses which

focus exclusively on changes in the mean response, QR estimates

multiple rates of change (slopes) in responses with unequal

variation, so that it is especially suited to detect changes in

heterogeneous distributions where other influencing factors are

unmeasured and unaccounted for [42]. Importantly, QR allows

the estimation of the rates of change near the upper and lower

edges of responses, the parts of the distribution where limiting

effects are typically detected. Therefore, we performed boot-

strapped (1000 repetitions) QR estimates of quantiles using the

‘‘quantreg’’ package [43] within the R environment. We used the

log-transformation of maximum mean water temperature during 7

consecutive days (Tmax7d-water) as the independent predictor of the

residuals from the previously obtained random forest models

[expressed as the log(x+1)-transformation of (observed density-

predicted density)/predicted density], the response variable.

We additionally assessed the effects of water temperature on the

temporal fluctuations of density within each sampling site. To do

this, we fitted linear mixed effects models with the ‘‘lme4’’ package

in R [44], using the same predictor and response variable and

including site as a random factor (random intercept and slope) to

induce a correlation structure between observations within the

same site.

Finally, based on the calculated predictive water temperature

regional model, we mapped Tmax7d-water for the average climate

conditions during the study period using ArcGis 9.2 software

(ESRI Inc., Redlands, CA, USA). We implemented subsequently

the linear mixed effects models previously obtained to map the

spatially-explicit distribution of average population thermal

carrying capacity across the region during the study period. We

eventually projected the amount of thermal suitable habitat

(Tmax7d-water equal or below 19.4uC; see [24]) and the thermal

carrying capacity under warming scenarios based on the air

temperature regional projections for the B2 SRES emission

scenario presented by Brunet et al. [45].

Table 1. Predictors of YOY, juvenile and adult brown trout density used in Random Forest (RF) regression models.

Generic predictor Predictors Description

Kx,i Kyoy, Kjuv, Kadu Carrying capacity of life stage x at year i

Dx-1,i-1/Kx-1,i-1 Past D/Kyoy, D/Kjuv, D/Kadu Level of carrying capacity saturation experienced by individuals of age x on year i-1
when they were age x-1

Dy,i/Ky,i D/Kyoy, D/Kjuv, D/Kadu Level of carrying capacity saturation experienced by accompanying life stage y at year i

Kx,i/Kx-1,i-1 Kyoy/Kadu, Kjuv/Kyoy, Kadu/Kjuv Relative carrying capacity ratio experienced by individuals of age x across years i-1 and i

Qem,i Qem Average discharge during emergence at year i

Qmax7d,i Qmax7d Maximum mean discharge during 7 consecutive days during emergence at year i

doi:10.1371/journal.pone.0081354.t001
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Results

Effects of carrying capacity dynamics and competition on
population size

The out-of-bag estimates of the error rate (OOB error) were

used to select the optimum Random Forest parameters (mtry = 3,

ntree = 600 for all models). Compared to older life stages, RF

performance was subordinate for YOY trout, in which the model

only explained 50% (P,0.001) of the observed density variance

(Fig. 1). The RF algorithm performed better for juvenile and adult

life stages with the models explaining 75% and 76% (P,0.001) of

total density variance. OOB predictions seemed to be in proper

scale (regression slopes ranging from 0.96 to 1.05,1) with slight

deviations from observed data (Fig. 1).

Carrying capacity (K) ranked first in importance for all life

stages, its contribution to the prediction accuracy of the models

being disproportionately higher than the rest of predictors (Fig. 2).

Carrying capacity saturation experienced the previous year (past

D/K ratio) was an important predictor of density for all life stages.

It had considerable importance for juveniles, but appeared less

important for YOY trout, whose density variations were strongly

driven by carrying capacity (Fig. 2; note also the marked

differences in the range of predicted density values across

predictors shown in Figure 3). Density of a life stage increased

with increasing past D/K ratio up to a threshold where further

increases in D/K ratio have either deleterious or no effects on

density (Fig. 3). YOY and juvenile trout interacted in an

antagonistic manner as density of either life stage decreased with

increasing D/K ratio of the other one (Fig. 3). Intercohort

interactions did not contribute noticeably to adult trout density

though, since neither D/Kyoy nor D/Kjuv ranked among its three

most important predictors (Fig. 2). By contrast, the relative ratio

between adult and juvenile K was a top-three determinant of adult

density (Fig. 2), with maximum performance at a relative ratio

close to one and a sharp drop at values greater than two (Fig. 3).

Interestingly, Qmax7d was only important for YOY trout (Fig. 2),

density falling sharply when Qmax7d exceeded the historical median

daily discharge and the highest negative effects being observed

during strong flow events when Qmax7d values were over ten times

this historical median daily discharge (plot not shown).

Effects of water temperature on population size
Regression quantiles for YOY trout were significant up to the

Q95, negative deviation from RF model’s predicted values

increasing with increasing Tmax7d-water throughout the whole range

of quantiles (Fig. 4A). Slope of the regression quantiles significantly

differed across quantiles, lower quantiles having increasingly

greater negative slopes (Fig. 4B). By contrast, regression quantiles

for juveniles and adults were only significant up to the Q75 and

regression slopes were not significantly different down to the Q25

where negative steepness of slopes significantly increased with

lower quantiles (Fig. 4B). Regression slopes for YOY were

significantly steeper for any quantile compared to juvenile and

adult models (Fig. 4B). All statistical outputs from quantile

regressions can be checked in Appendix S1.We observed the

existence of a critical temperature threshold (CTT) beyond which

no positive residuals existed, and this threshold increased with age,

from 1.318 (20.8uC) for YOY to 1.330 (21.4uC) for adult trout

(Fig. 4A). Further analyses of the residuals’ distribution revealed

that most of the data linked to the lowest quantiles (Q5–Q25)

belonged to the sampling sites having also the lowest mean K

(lower than the 25th percentile of the K distribution across the

whole population of sites) (Fig. 4A). Finally, residuals from the

most limiting quantile (Q5) were significantly related to anthropo-

genic disturbance metrics (Appendix S2).

Focusing on temporal trends, we observed that regression lines

between temperature and YOY density in sites whose temperature

range did not include values beyond the CTT could adopt

different patterns, having either positive, negative or no slope

(Fig. 5). Nevertheless, there was always a negative relationship

between temperature and density in sites where temperature was

over the CTT at least at one year during the study period. This

pattern was accurately described through a piecewise linear

mixed-effects regression model, comprising a non-significant line

with a population slope of 21.12 (N = 509, t = 20.68, P = 0.50)

and significant random variation across sites (SD = 3.89), plus a

highly significant negative line with a population slope of 212.80

(N = 509, t = 25.22, P,0.001) allowing for high random variation

around it (SD = 9.21) (Fig. 5). This pattern was less marked for

juveniles and adult trout. The slope of the juvenile’s regression

model after the breakpoint was not significant (slope = 21.28,

SD = 9.17; N = 509, t = 21.28, P = 0.20), while adult’s one was in

the boundary of significance (slope = 22.94, SD = 2.39; N = 509,

t = 22.11, P = 0.035) (Fig. 5). Interestingly, the breakpoint was

almost the same for the three models (around 19.4uC). When

aggregating all life stages together (population model), total

population density was not significantly related to temperature

(slope = 1.27, SD = 2.87; N = 509, t = 1.39, P = 0.16) up to 19.42uC
when it significantly declined at a rate of 24.11 (N = 509,

t = 22.51, P = 0.016) with high random variation in regression

slopes across sites (SD = 6.86).

Spatial simulations based on the piecewise regression population

model and temperatures averaged for the study period showed

that the thermal capacity of the environment was permanently

lower than its habitat capacity (up to a 36%) in a significant area of

the study region (Fig. 6). Projected suitable thermal habitat will

decrease down to 7% of total study area by the year 2100 under

the B2 SRES emission scenario. By that time and emission

scenario, population thermal capacity will be on average

39.9610.0% (range 1.5–68.1) lower than its habitat capacity,

but YOY maximum potential density will be reduced on average a

61.3619.1% (range 2.4–93.1).

Figure 1. Random Forest performance on density of each life
stage. Observed vs. predicted density of YOY, juvenile and adult brown
trout. Dotted lines represent fitted linear models (YOY: y = 13.15+0.96?x,
R2 = 0.50, P,0.001; Juvenile: y = 283.37+1.04?x, R2 = 0.75, P,0.001;
Adult: y = 256.56+1.06?x, R2 = 0.76, P,0.001) while solid line shows
perfect match between observed and predicted.
doi:10.1371/journal.pone.0081354.g001
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Figure 2. Predictor importance on density of each life stage. The plots show predictor importance measured as the increased mean square
error (%), which represents the deterioration of the predictive ability of the model when the data of a predictor are randomly permuted. Higher
Increased MSE indicates greater predictor importance. Note that axes are not constant across plots.
doi:10.1371/journal.pone.0081354.g002

Figure 3. Marginal contribution of most important predictors on density of each life stage. Partial plots representing the marginal
contribution of the three most important predictors in the RF models to density of each life stage while averaging out the effect of all the other
predictors. Note that in a partial plot of marginal effects, only the range of values (and not the absolute values) can be compared between plots of
different predictors.
doi:10.1371/journal.pone.0081354.g003
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Figure 4. Limiting effects of water temperature on density of each life stage. (A) Quantile Regression (QR) estimates of the 5th, 10th, 25th,
50th, 75th, 90th and 95th quantiles (Q5, Q10, Q25, Q50, Q75, Q90 and Q95) of log(x+1)-transformed residuals from RF models vs. log-transformed
maximum mean water temperature during 7 consecutive days. Horizontal dotted lines show perfect match between observed and predicted density
from RF models. Vertical dotted lines indicate the critical temperature threshold (CTT) beyond which no positive residuals exist. Red data belong to
sampling sites having the lowest mean carrying capacity (below the 25th percentile of the whole distribution); (B) Intercept and slope coefficient
estimates with associated confidence intervals for QR across varying quantiles. Mean and confidence interval of the mean are represented in red.
doi:10.1371/journal.pone.0081354.g004
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Discussion

Recent human-induced species’ extinction rates are overwhelm-

ingly greater than at any other time in human history [46] and

number of species at the verge of imminent extinction is also

increasing at an unparalleled speed [47]; meanwhile, current rates

of population extirpation are at least three orders of magnitude

higher than species extinction rates [48]. This latter is made

evident by the fact that species are shifting their ranges two or

three times faster than previously reported [20], especially

freshwater fish, which may be responding to global warming at

higher rates than terrestrial organism [49]. However, significant

population declines of species of high conservation concern may

occur before any reduction in range is observed, so that

determining and modelling the factors driving population size

and trends is crucial to predict their future extinction risk [50]. In

our study, distribution and dynamics of carrying capacity along

with emergent density-dependent responses explained up to 76%

of spatio-temporal density variability of juvenile and adult brown

trout, but only 50% of YOY’s. By contrast, YOY trout were highly

sensitive to thermal conditions, their performance declining with

increasing temperature at a higher rate than older life stages, and

disruptions being triggered at lower temperature thresholds.

Carrying capacity (K), primarily based on quantity and quality

of available physical habitat, was the strongest and most consistent

contributor to density of any life stage; by contrast, most of

analyzed habitat and competition predictors just qualified final

numbers within narrow ranges around set carrying capacity. This

provides empirical support to the theoretical prediction that

density-independent factors should predominate over density-

dependent ones in setting population numbers when environmen-

tal conditions are harsh - such as the ones experienced in

distributional margins - [51]. Not only present physical habitat

conditions but also previous habitat bottlenecks limited density

though. Strong flow events during emergence depressed summer

recruitment. Such disturbance events drastically reduce the

quantity and quality of suitable physical habitat, which results in

high YOY mortality through both direct downstream displace-

ment of subordinate individuals without shelter (e.g., [52]) and

delayed carry-over effects on individuals occupying low-quality

habitats that affect their performance in the following season (see

[53]). We also observed that juvenile physical habitat can limit

subsequent adult abundance. Halpern et al. [54] showed that, in

stage-structured species, juvenile habitat availability limits adult

abundance in a relatively small region of parameter space

compared with the regions where recruitment and adult K are

limiting. This notion appears to apply for our populations since

limitations in adult abundance by juvenile physical habitat seemed

to be critical only in populations with low adult K.

Physical habitat quality and quantity is also a resource that, by

limiting K, clearly stimulates the operation of density dependence.

Intracohort density dependence was the second most important

and consistent density predictor, having a large effect on final

numbers. The annual realized density of a cohort relative to its K

increased with increasing level of K saturation experienced by the

cohort the previous year (or by adult stock in the case of YOY).

This is in accordance with many model systems which suggest that

individuals are strongly affected by both current and past

environments, even when the past environments may be in

previous generations (reviewed by Benton et al. [8]). This

intracohort response is non-linear so that beyond a saturation

level further increases in cohort crowdedness have deleterious or

no effects on cohort numbers next year. The saturation threshold

is well over 100%, indicating that a large proportion of individuals

may remain in the stream as non-territorial or floaters. This is

consistent with the idea that most animal populations spend more

time above than below carrying capacity since population

regulation is generally the result of a concave relationship between

a population’s growth rate and its size [10] (but see [55]). The

intracohort density dependence also implies that density disrup-

tions can be transmitted through generations so that constant

pressures (either natural or anthropogenic) over time on a

population may substantially depress its growth rate, and thus its

density at equilibrium, turning the population more prone to

become extinct through stochastic events [3]. Furthermore, we

found that YOY and juvenile densities were mutually affected by

the level of crowdedness experienced by the competing cohort,

suggesting a negative density-dependent regulation of each life

stage over the other. In stage-structured populations, density-

dependent interactions between life stages can affect population

Figure 5. Regression lines for site-specific water temperature
vs. density temporal relationships. Red/blue lines are fitted models
for sites whose temperature range did include/not include values over
the critical temperature threshold (CTT; vertical dotted lines). Piecewise
linear mixed-effects regression models for the whole population of
sampling sites are shown in black.
doi:10.1371/journal.pone.0081354.g005
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trajectories and lead to natural selection operating within

populations and across life stages (see [56] and references therein).

Density-dependent processes may interact in fact with density-

independent factors (for e.g., K dynamics) in shaping adaptive

landscapes, potentially leading to strong non-additivity in the

development of vital rates driving population dynamics [57].

Distribution and abundance of species reflect their specific traits

that allow them to pass through multiple environmental filters at

hierarchical spatial scales, so that species lacking traits suitable for

passing through a large scale filter are limited in abundance at all

lower scales [58]. In our study, high summer temperatures

restricted or reduced brown trout habitat use from certain areas of

study basins where the physical microhabitat was otherwise

suitable (see Fig. 6). Our quantile regression models showed that

water temperature had a limiting effect on density, this limitation

being significantly stronger for YOY trout. This was expected as

small fish are more sensitive to temperature fluctuations than

larger fish (see [19] for details of underlying mechanisms).

Importantly, regression slopes significantly changed across quan-

tiles, the steepest slopes being associated to the lowest quantiles.

This means that rising temperatures had an increasingly higher

negative effect on density performance as density departs from the

maximum potential numbers set by K and density-dependent

dynamics. There is a gradual shift from physical habitat to

temperature being the active environmental limiting factor.

The reasons of the shift could be two-fold. First, such changes in

regression slopes indicate strong interactions of temperature with

unmeasured factors while results reported in Appendix S2 reveal

complex synergies among temperature and multiple anthropo-

genic drivers and stressors. The tight significant relationship

between the density-carrying capacity ratio and levels of anthro-

pogenic disturbance previously observed in most of the study

populations [28] suggests that the degree of mismatch between

densities observed and predicted from random forest models (RF)

would be driven by disturbance intensity. In such a case,

increasing disturbance would result in physical habitat conditions

being no longer an active limiting factor so that density dynamics

may get decoupled from K dynamics. On the contrary, the

negative effects of increasing temperatures are stronger in

populations already disrupted by anthropogenic stressors. Further,

temperature impacts on density would be synergistically amplified

by disturbance intensity since the predominant anthropogenic

drivers in the study area (agricultural land uses and damming)

typically imply both a local increase in water temperature and a

decrease in energy inputs [59–61], which would affect accordingly

fish energy budgets. Second, our data indicate that there is a

critical temperature threshold (CTT) beyond which observed

Figure 6. Spatial patterns of density reduction set by the thermal capacity of the environment. Spatially-explicit temperature-driven
decrease in potential population numbers predicted by RF model. Effects of temperature on density are estimated from the piecewise linear mixed-
effects regression models for the whole population of sampling sites. Dots represent sampling sites, while red dots represent those sites having the
lowest mean carrying capacity (below the 25th percentile of the whole distribution: K,2700 trout ha21).
doi:10.1371/journal.pone.0081354.g006
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density is always lower than predicted by RFs irrespective of

disturbance intensity. This CTT, beyond which the thermal

capacity of the environment is always lower than its habitat

capacity, decreases with age and roughly matches the incipient

thermal limit for survival estimated for the different brown trout

life stages (see [19]). This CTT is likely to diminish with increasing

levels of anthropogenic disturbance, a clear example of how

synergies among stressors form self-reinforcing mechanisms that

hasten the dynamics of population extinction [2].

The analysis of temporal trends within sampling sites was

consistent with such a picture. There is a thermal range within

which there are strong spatial variations across populations in the

functional relationship between temperature and density fluctua-

tions, the sign of the relationship being dependent on anthropo-

genic disturbance intensity. However, there is a point beyond

which density performance always decline with increasing

temperature and at a faster rate than before. This pattern is

especially patent in YOY trout, but less marked in older life stages.

The breakpoint is however fairly constant across life stages (around

19.4uC), matching the upper thermal limit for feeding, where the

starvation zone begins for brown trout (see [19]). This differen-

tiation is important since it entails that population decline may

start well below the CTT. In general, individuals without

territories may survive either adopting a high-return/high-cost

strategy, attempting to maximize energy intake at a cost of

increasing interactions with territorial individuals, or a low-return/

low-cost strategy, occupying poor feeding positions but minimizing

energy costs by avoiding competition [62]. Within the starvation

zone, the high-return/high-cost strategy rapidly fails and with

increasing temperatures the low-return/low-cost strategy is no

longer energetically feasible either. Over the CTT, mortality of

individuals holding a territory in high-quality habitat patches

could not be buffered by the floater population anymore, so that

the population may turn unstable over time.

Two natural compensatory responses are possible against

anthropogenic global warming. Given enough time and dispersal

capabilities, species may shift to more favourable thermal

environments, or they may track climate change through

adaptation to avoid demographic collapse and extinction [21].

However, the probability of evolutionary rescue seems to be

contingent on low rates of environmental deterioration [63] and

there is no empirical evidence of thermal adaptation at the upper

temperature limits for either survival or feeding in salmonids

[19,64]. We have also provided evidence that anthropogenic

disturbances may fasten the rate of population decline under

warming, while the vast network of dams in our study basins (see

[28]) would additionally prevent upward dispersal to find suitable

thermal conditions. Based on our temperature models, we predict

that the 93% of our study area would be thermally unsuitable for

brown trout and the thermal capacity of the environment for

recruitment could be on average 61% lower than its carrying

capacity by 2100 under the ecologically friendly B2 SRES

emission scenario. In that case, recruitment disruptions would

have long-term amplifying downstream effects through density-

dependent processes. This is dramatic as populations with the

lowest K are located in areas where thermal constraints are

predicted to be highest (Fig. 6), so that they are likely to become

extinct well before 2100. It is worth noticing that this modelling

exercise is somehow burdened by uncertainties inherent to both

habitat suitability and climate envelope models (for e.g., see [65–

66] for further discussion). Notwithstanding possible uncertainties,

for marginal salmonid populations constrained to linear networks,

temperature is destiny in a warming world [67]. Drastic reductions

of distributional ranges are projected even in core areas [68]. By

contrast, Piou and Prévost [69] model predicts that rising river

temperatures alone should not lead open anadromous populations

to extinction and that such river warming may even bumper the

synergistic negative effects of flow regime alteration and ocean

conditions deterioration on population persistence.

We acknowledge that this is an oversimplified picture as

population trajectories of individual species cannot be scrutinized

in isolation considering that climate change can alter multitrophic

level interactions so strongly that entire food webs can undergo

radical restructuring [70–71]. Warming should lead to a decrease

in K and/or a decrease in the mean body mass (to buffer the

potential decrease in K) if altered conditions cannot concurrently

increase the supply rate of a species’ feeding resources [72].

Nevertheless, notwithstanding that our predicted numbers are

certainly uncertain, they roughly portray the gloomy fate of

thermally-sensitive species occurring at contracting range margins

under limited potential for adaptation and/or dispersal.
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27. Ayllón D, Almodóvar A, Nicola GG, Elvira B (2010) Ontogenetic and spatial

variations in brown trout habitat selection. Ecol Freshw Fish 19: 420–432.
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66. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–

climate impact models under climate change. Glob Change Biol 11: 1504–1513.

67. Isaak DJ, Rieman BE (2013) Stream isotherm shifts from climate change and

implications for distributions of ectothermic organisms. Glob Change Biol 19:

742–751.

68. Filipe AF, Markovic D, Pletterbauer F, Tisseuil C, De Wever A, et al. (2013)

Forecasting fish distribution along stream networks: brown trout (Salmo trutta) in

Europe. Divers Distrib 19: 1059–1071.

69. Piou C, Prévost E (2013) Contrasting effects of climate change in continental vs.

oceanic environments on population persistence and microevolution of Atlantic

salmon. Glob Change Biol 19: 711–723.

70. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution

and abundance responses to climate change: why it is essential to include biotic

interactions across trophic levels. Philos Trans R Soc B 365: 2025–2034.

71. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater

ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B

365: 2093–2106.

72. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the

small in aquatic ecosystems. Proc Natl Acad Sci USA 106: 12788–12793.

Thermal Carrying Capacity at Range Margins

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e81354



1 

Thermal carrying capacity for a thermally-sensitive species at the warmest 

edge of its range 

 

ONLINE SUPPLEMENTARY MATERIAL 

Appendix S1: Quantile regressions statistical output 

 

Table S1. Quantile Regression estimates of log(x+1)-transformed residuals from RF 

models vs. log-transformed maximum mean water temperature during 7 consecutive 

days. Estimates of regression slopes (standard error) and their probabilities (ns = non-

significant, *P<0.05, **P <0.01, ***P <0.001) are shown.  

Quantile YOY Juvenile Adult 

Q5 Slope=-15.18 (2.85), t=-5.31 *** Slope=-10.97 (4.66), t=-2.35 * Slope=-11.52 (3.34), t=-3.45 *** 

Q15 Slope=-13.01 (2.01), t=-5.37 *** Slope=-4.72 (1.78), t=-2.46 ** Slope=-5.52 (1.67), t=-3.17 ** 

Q25 Slope=-8.92 (1.86), t=-4.79 *** Slope=-2.54 (1.11), t=-2.64 ** Slope=-2.42 (0.94), t=-2.77 ** 

Q35 Slope=-6.27 (1.51), t=-4.14 *** Slope=-2.42 (0.81), t=-3.12 ** Slope=-1.47 (0.69), t=-2.39 * 

Q50 Slope=-4.66 (0.98), t=-5.31 *** Slope=-1.54 (0.61), t=-2.49 * Slope=-1.36 (0.55), t=-2.48 * 

Q65 Slope=-3.43 (0.92), t=-3.69 *** Slope=-1.20 (0.54), t=-2.23 * Slope=-1.27 (0.44), t=-2.28 * 

Q75 Slope=-2.97 (0.85), t=-2.50 * Slope=-0.99 (0.41), t=-2.10 * Slope=-1.06 (0.60), t=-1.60 ns 

Q85 Slope=-2.52 (1.15), t=-2.9 * Slope=-0.64 (0.77), t=-0.57 ns Slope=-0.81 (0.78), t=-1.03 ns 

Q95 Slope=-1.25 (1.44), t=-0.86 ns Slope=-0.79 (0.49), t=-1.25 ns Slope=-0.01 (0.43), t=-0.03 ns 

 

Table S2. Test for equality of slopes for fitted regression quantiles (ANOVA: ns = non-

significant, *P<0.05, **P <0.01, ***P <0.001).  

Quantile range  F value P 

YOY  

Q5-Q95 F8,4510=3.47 <0.001 ***

  

Juvenile  

Q25-Q95 F6,3487=0.83 0.55 ns

Q5-Q25 F2,1495=3.20 0.041 *

  

Adult  

Q35-Q95 F5,3049=1.23 0.29 ns

Q5-Q35 F3,2033=5.17 0.001 **

  

 



2 

Table S3. Test for equality of slopes for fitted regression quantiles across life stages 

(two-tailed t-test: ns = non-significant, *P<0.05, **P <0.01, ***P <0.001).  

Quantile YOY vs. Juvenile YOY vs. Adult Juvenile vs. Adult 

Q5 t=0.78, P= 0.44 ns t=0.84, P= 0.40 ns t=-0.10, P= 0.92 ns 

Q15 t=3.08, P= 0.002 ** t=2.87, P= 0.004 ** t=-0.33, P= 0.74 ns 

Q25 t=2.97, P= 0.003 ** t=3.11, P= 0.002 ** t=0.08, P= 0.94 ns 

Q35 t=2.24, P= 0.025 * t=2.89, P= 0.004 ** t=0.90, P= 0.37 ns 

Q50 t=2.65, P= 0.008 ** t=2.88, P= 0.004 ** t=0.21, P= 0.83 ns 

Q65 t=2.08, P= 0.038 * t=2.12, P= 0.034 * t=-0.10, P= 0.92 ns 

Q75 t=2.31, P= 0.021 * t=1.99, P= 0.047 * t=-0.10, P= 0.92 ns 

Q85 t=1.37, P= 0.17 ns t=1.23, P= 0.22 ns t=-0.15, P= 0.88 ns 

Q95 t=0.31, P= 0.76 ns t=0.82, P= 0.41 ns t=0.71, P= 0.48 ns 
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Thermal carrying capacity for a thermally-sensitive species at the warmest 

edge of its range 

 

ONLINE SUPPLEMENTARY MATERIAL 

Appendix S2: Effects of anthropogenic stressors on population size 

 

Objectives in Appendix S2 

A major result from quantile regression analyses was that regression slopes significantly 

changed across quantiles, the steepest slopes being associated to the lowest quantiles. 

This means that increasing temperatures have a stronger negative effect on density 

performance as density deviates from the maximum potential numbers predicted by 

random forest (RF) models. Such changes in regression slopes indicate strong 

interactions of temperature with factors which were not taken into account in the 

analyses. We hypothesize that temperature effects on population performance would be 

stronger in populations already weakened by anthropogenic stressors. If so, residuals 

from regression quantiles must be significantly correlated to disturbance metrics. 

The “greater temperature effects on populations already disrupted” pattern must be also 

reflected in the temporal dimension, that is, when analysing temporal trends in 

population size within sites. If the pattern is true, the negative slope of the relationship 

between temperature and residuals from RF models must be steeper in populations 

showing lower performance (higher deviation from densities predicted by RF models). 

 

Methods in Appendix S2 

Anthropogenic stressors 

We measured a total of 24 metrics to quantify the degradation levels derived from 

different human activities operating at diverse spatial scales (Table S4 in Appendix S2). 

Two approaches were used in this characterization: (1) in situ measures to describe local 

characteristics at each sampling site; and (2) remotely collected data, using geographic 

information systems (GIS) to describe attributes at larger spatial scales. Hence, 

degradation metrics measured at the watershed and segment spatial scales were 

calculated by means of ArcGis 9.2 software (ESRI Inc., Redlands, CA) from digital data 

provided by regional agencies. Land use metrics were measured at three spatial scales: 
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local restricted to the riparian zone (defined as a 100 m buffer at each river side), 

complete river network restricted to the riparian zone, and watershed (within the whole 

catchment area). Water quality data were obtained from regional datasets. Angling 

statistics were calculated from data derived from creel-surveys conducted by regional 

agencies during the fishing season (March-August) along the study period. The invasive 

fish species richness index, which combines abundance and number of invasive species, 

was reckoned from sampling data collected by regional agencies.  

 

Table S4. Anthropogenic degradation metrics used to characterize the sampling sites. 

Spatial scale Variable Description (units) 

Watershed UrbanN 
% of urban land use within the riparian zone along the complete river network 
upstream the study site 

 CultivatedN 
% of cultivated land within the riparian zone along the complete river network 
upstream the study site 

 PastureN 
% of pastures within the riparian zone along the complete river network 
upstream the study site 

 UrbanW % of urban land use within the watershed upstream the study site 

 CultivatedW % of cultivated land within the watershed upstream the study site 

 PastureW % of pastures within the watershed upstream the study site 

 Quarries Number of quarries within the watershed upstream the study site (n 1000 ha-1) 

 Mines Number of mines within the watershed upstream the study site (n 1000 ha-1) 

 Industrial premises 
Number of industrial premises within the watershed upstream the study site (n 
1000 ha-1) 

 Upstream dams Number of dams upstream the study site  

 Impassable upstream dams Number of impassable dams upstream the study site  

 Downstream dams Number of dams downstream the study site  

Segment UrbanL % of urban land use within the riparian zone along the study segment 

 CultivatedL % of cultivated land within the riparian zone along the study segment 

 PastureL % of pastures within the riparian zone along the study segment 

 Altered flow % of the study segment presenting an altered flow regime 

Site Dissolved oxygen Concentration (O2, mg l-1) 

 pH pH value  

 Nitrites Concentration (NO2
-, mg l-1)  

 Ammonia Concentration (NH4
+, mg l-1) 

 Phosphate Concentration (PO4
3-, mg l-1) 

 Annual harvest Angling annual harvest (Trout ha-1 year-1)  

 Exploitation rate Angling exploitation rate (%) 

 Invasive fish species richness 
Index combining number and abundance of invasive fish species present at the 
study site along the study period 
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Data analyses 

We tested whether the spatial variance in population size unexplained by environmental 

factors was correlated to anthropogenic degradation metrics. To do this, we first 

averaged per sampling site the residuals from the most limiting regression quantile 

(Q5), which was used as the dependent variable. We then fitted linear mixed effects 

models with the “nlme” package in R (Pinheiro et al. 2011). Prior to regression 

analyses, we performed correlation analyses to eliminate highly correlated (r>|0.7|) 

degradation metrics in order to avoid multicollinearity. We included basin as a random 

factor to induce a correlation structure between observations within the same basin, 

since sources and levels of degradation varied among basins. We first tried to find the 

optimal random structure and then looked for the optimal fixed structure by performing 

sequential removal of non-significant fixed effects and subsequent model comparisons 

using log-likelihood ratios according to the procedure recommended by Zuur et al. 

(2009).  

Secondly, we tested whether the slope of the regression line between temperature and 

residuals from RF models was significantly related to the position of the line within the 

cloud of points. To do this, we fitted a General Regression Model (GRM), for each life 

stage, with the slope of the regression line as the response variable and residuals from 

the RF model (averaged for the whole study period) and maximum Tmax7d-water 

experienced during the whole study period as predictors. Predictors were log-

transformed. The significance level for all statistical tests was set at α = 0.05. 

 

Results in Appendix S2 

The best explaining model for YOY trout had a random structure comprising a random 

intercept and random slopes for nitrites and cultivated land, while fixed effects were 

nitrites, cultivated land, pastures and upstream dams (Table S5 in Appendix S2). 

Examination of parameter coefficients showed that negative effects of nitrites and 

cultivated land on density were only significant at specific basins. Best-supported 

models for juveniles and adults presented the same random structure, including a 

random intercept and random slopes for cultivated land and upstream dams, and fixed 

structure, consisting of cultivated land, upstream dams and exploitation rate (Table S5 

in Appendix S2). As observed with YOY trout, the population slope for cultivated land 
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was not significantly different from zero so that increasing proportion of land used for 

cultivation impacted density only at specific basins. The same pattern was observed for 

juvenile trout regarding number of upstream dams. Note that all stressors are negatively 

related to mean residuals because these are referred to the lowest (and most limiting) 

temperature quantile, so that increasing residuals indicate better density performance at 

a given temperature. 

 

Table S5. Parameter estimates from the linear mixed effects models with basin as a 

random effect (intercept and slope) that best explain variation in mean residuals from 

the most limiting regression quantile (Q5) by life stages. 

Response variable  Parameters  Coefficients (SE) t 

Mean Residuals YOY (Random intercept) 0.028 (0.248)* 

 (Random slope Nitrites) 0.066 (0.248)* 

 (Random slope CultivatedN) 0.112 (0.248)* 

 Intercept 0.868 (0.040) 21.89

 Nitrites -0.027 (0.025) -1.05

 CultivatedN -0.088 (0.081) -1.08

 PastureN -0.097 (0.039) -2.50

 Upstream dams -0.179 (0.038) -4.74

Mean Residuals Juvenile (Random intercept) 0.036 (0.162)* 

 (Random slope CultivatedN) 0.122 (0.162)* 

 (Random slope Upstream dams) 0.107 (0.162)* 

 Intercept 0.596 (0.034) 17.35

 CultivatedN -0.094 (0.077) -1.23

 Upstream dams -0.089 (0.076) -1.18

 Exploitation rate -0.054 (0.026) -1.92

Mean Residuals Adult (Random intercept) 0.178 (0.214)* 

 (Random slope CultivatedN) 0.010 (0.214)* 

 (Random slope Upstream dams) 0.175 (0.214)* 

 Intercept 0.593 (0.107) 5.53

 CultivatedN -0.033 (0.036) -1.37

 Upstream dams -0.221 (0.107) -1.98

 Exploitation rate -0.075 (0.034) -2.01

* Estimated coefficients for intercepts and slopes are SD of the random parameters, with SD of residual 
variation given in parentheses 

Note: Only significant parameters are included in the final models 
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The slope of the regression line between maximum temperature and residuals from RF 

models for all life stages was significantly related to maximum Tmax7d-water experienced 

during the whole study period, residuals from the RF model (averaged for the whole 

study period) and their interaction (Table S6 in Appendix S2). According to the models, 

the negative effects of temperature on population performance increased with increasing 

population disruption. There is a strong interaction between both predictors. When the 

range of temperature fluctuations is within the tolerance window (low maximum 

temperatures), increasing temperatures would have a positive effect on population 

performance in healthy populations (low deviation from maximum potential numbers 

set by RF models). This is true up to a threshold. After such threshold, rising maximum 

temperatures will have increasingly negative effects even in healthy populations. Since 

the effect of temperature is qualified by population disruption, such threshold will 

diminish as populations depart from maximum numbers predicted by RF models (the 

departure is governed by the interaction term of the model). Finally, if population 

disruption is high, regression lines will have strong negative slopes even at low 

temperatures. 

 

Table S6. Summary of the best general regression models explaining variations in the 

slope of the regression line between maximum temperature and residuals from RF 

models by life stages. 

Response variable Model summary Predictors Coefficients P 

Slope YOY R2 = 0.46; F = 13.5;  Intercept 138.6 0.24 ns 

 d.f. = 47; P < 0.001 Max Tmax7d-water -105.1 0.025 * 

  Mean Residuals 396.5 0.034 * 

  Interaction term -290.0 0.040 * 

Slope Juvenile R2 = 0.53; F = 17.4; Intercept -81.1 0.07 ns 

 d.f. = 47; P < 0.001 Max Tmax7d-water 62.1 0.049 * 

  Mean Residuals 269.9 0.024 * 

  Interaction term -195.0 0.030 * 

Slope Adult R2 = 0.57; F = 31.1; Intercept 42.4 0.17 ns 

 d.f. = 48; P < 0.001 Max Tmax7d-water -39.9 0.017 * 

  Mean Residuals 182.5 0.015 * 

  Interaction term -129.5 0.017 * 
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