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Abstract 

This paper examines the effectiveness of using futures contracts as hedging instruments 

of: (1) alternative models of volatility for estimating conditional variances and 

covariances; (2) alternative currencies; and (3) alternative maturities of futures contracts. 

For this purpose, daily data of futures and spot exchange rates of three major 

international currencies, Euro, British pound and Japanese yen, against the American 

dollar, are used to analyze hedge ratios and hedging effectiveness resulting from using 

two different maturity currency contracts, near-month and next-to-near-month contract. 

Following Chang et al. [17], we estimate four multivariate volatility models (namely 

CCC, VARMA-AGARCH, DCC and BEKK), and calculate optimal portfolio weights 

and optimal hedge ratios to identify appropriate currency hedging strategies. The 

hedging effectiveness index suggests that the best results in terms of reducing the 

variance of the portfolio are for the USD/GBP exchange rate. The empirical results 

show that futures hedging strategies are slightly more effective when the near-month 

future contract is used for the USD/GBP and USD/JPY currencies. Moreover, the CCC 

and AGARCH models provide similar hedging effectiveness, which suggests that 

dynamic asymmetry may not be crucial empirically, although some differences appear 

when the DCC and BEKK models are used. 

 

Keywords: Multivariate GARCH, conditional correlations, exchange rates, optimal 
hedge ratio, optimal portfolio weights, hedging strategies. 
 
JEL Classifications: G32, G11, G17, C53, C22. 
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1. Introduction 

 

With increasing capital market liberalization and globalization, foreign currency 

denominated assets circulate rapidly throughout the world and, with increasing 

internationalization of financial transactions, the foreign exchange market has been 

profoundly transformed, and became more competitive and volatile. This places the 

accurate and reliable measurement of market risks in a critical position for both 

investment decision and hedging strategy designs.   

 

Foreign exchange rate markets are the largest and most liquid of all asset markets. 

Developments in these markets influence national trade and monetary policies, and the 

competitiveness of nations. Foreign exchange markets are also important for the 

increasing number of companies engaged in cross-border trade and investment. Foreign 

exchange markets are naturally risky as they deal primarily in measuring, pricing, and 

managing risk. The success of an institution trading in the foreign exchange market 

depends critically on how well it assesses prices and manages the inherent risk, in its 

ability to limit losses from particular transactions, and to keep its overall exposure under 

control.  

 

A key issue in managing currency risk is to control the volatility of the portfolio. The 

volatility of a portfolio includes variances and covariances of individual positions. 

Significant losses may arise from holding a portfolio without taking account of the time-

varying variance and covariances. If investors can evaluate the interacting dynamics 

among markets in advance, then adjusting and hedging activities can usefully be 

implemented.  

 

The aim of hedging is to use derivatives to reduce a particular risk. A relatively 

inexpensive and reliable strategy for hedging foreign exchange risk involves the use of 

foreign currency futures markets. Hedging with futures contracts is perhaps the simplest 

method for managing market risk arising from adverse movements in the foreign 

exchange market. Hedgers usually short an amount of futures contracts if they hold the 

long position of the underlying currency, and vice-versa. The question is how many 

futures contracts should be held for each unit of the underlying currency, as well as the 

effectiveness measure of that ratio. The hedge ratio provides information on how many 
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futures contracts should be held, whereas its effectiveness evaluates the hedging 

performance and the usefulness of the strategy. In addition, hedgers may use the 

effectiveness measure to compare the benefits of hedging a given position from many 

alternative contracts. 

 

In general, when the market trend is stable, the hedge ratio will become smaller, 

whereas if a big fluctuation of the market takes place, it will increase. Several distinct 

approaches have been developed to estimate the optimal hedge ratio (OHR), also known 

as the minimum-variance hedge ratio. The static hedging model with futures contracts 

(Johnson [32], Stein [56], Ederington, [21]) assumes that the joint distribution of spot 

and futures returns is time-invariant, so that the OHR, defined as the optimal number of 

futures holdings per unit of spot holdings, is constant over time. The minimum variance 

OHR use to be derived form the ordinary least squares (OLS) regression of spot price 

changes on future price changes. There is ample evidence that the simple OLS method 

is inappropriate to estimate hedge ratios as it suffers from the problem of serial 

correlation and heteroscedasticity often encountered in spot and futures price series 

(Herbst et al. [31]).  

 

Therefore, the underlying assumption of the static hedging model of time-invariant asset 

distributions has been changed. The Autoregressive Conditional Heteroscedastic 

(ARCH) framework of Engle [23], and its extension to a generalized ARCH (GARCH) 

structure by Bollerslev [8], have proved to be very successful in modelling asset price 

second-moment movements. Bollerslev [9], Bailie and Bollerslev [3], and Diebold [19] 

have shown that the GARCH (1,1) model is effective in explaining the distribution of 

exchange rate changes. However, Lien et al. [39] compared OLS and constant-

correlation vector generalized autoregressive conditional heteroscedasticity (VGARCH), 

and claimed that the OLS hedge ratio performs better than VGARCH. Chan [16] 

proposed a dynamic hedging strategy based on a bivariate GARCH jump model 

augmented with autoregressive jump intensity to manage currency risk. The collective 

evidence shows that GARCH-based dynamic hedging strategies are empirically 

appropriate, but the risk-reduction improvements over constant hedges vary across 

markets, and may also be sensitive to the sample period used.  
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Regarding foreign currencies, different results seem to hold. Kroner and Sultan [35] 

demonstrated that GARCH hedge ratios produce better hedging effectiveness than 

conventional hedge ratios in currency markets. Chakraborty and Barkoulas [15] 

employed a bivariate GARCH model to estimate the joint distribution of spot and 

futures currency returns, and constructed a sequence of dynamic (time-varying) OHRs 

based on the estimated conditional covariances. The empirical evidence strongly 

supports time-varying OHRs, but the dynamic model provides superior out-of-sample 

hedging performance compared with the static model, but only for the Canadian dollar. 

Ku et al. [37] applied the dynamic conditional correlation (DCC) model of Engle [24] 

with error correction terms to investigate the optimal hedge ratios of British and 

Japanese currency futures markets, and compared the DCC and OLS estimates. The 

empirical results show that the DCC model yields the best hedging performance. 

 

Given the distinct theoretical advantages of the dynamic hedging method over the static 

one, several papers have used the multivariate GARCH framework to examine the 

hedging performance for various assets. In order to evaluate the impact of model 

specification on the forecast of conditional correlations, Hakim and McAleer [29] 

analyze whether multivariate GARCH models incorporating volatility spillovers and 

asymmetric effects of negative and positive shocks on the conditional variance provide 

different conditional correlation forecasts. Using three multivariate GARCH models, 

namely CCC (Bollerslev, [10]), VARMA-GARCH (Ling and McAleer, [41]), and 

VARMA-AGARCH (McAleer et.al., [45]) they forecast conditional correlations 

between three classes of international financial assets (stocks, bonds and foreign 

exchange rates). They suggested that incorporating volatility spillovers and asymmetric 

effects of negative and positive shocks on the conditional variance does not affect the 

forecasts of conditional correlations. 

 

In order to estimate time-varying hedge ratios using multivariate conditional volatility 

models, Chang et.al. [17] examined the performance of four models (namely CCC, 

VARMA-GARCH, DCC and BEKK) for the crude oil spot and futures returns of two 

major international crude oil markets (BRENT and WTI). The calculated OHRs from 

each multivariate conditional volatility model suggested time-varying hedge ratios, 

which recommended to short in crude oil futures, with a high portion of one dollar long 
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in crude oil spot. The hedging effectiveness indicated that DCC (BEKK) was the best 

(worst) model for OHR calculation in terms of the variances of portfolio reduction. 

 

This paper applies the Chang et al. [17] methods to currency hedging. In order to 

evaluate the impact of model specification on conditional correlations forecasts, this 

paper calculates and compares the correlations between conditional correlations 

forecasts arising from four different multivariate models (CCC, VARMA-AGARCH, 

DCC and BEKK) to estimate the returns on spot and futures (analyzing two sets of 

futures depending on their maturity) of three currency prices (USD/GBP, USD/EUR 

and USD/JPY). The purpose is to calculate the optimal portfolio weights and OHRs 

ratio from the conditional covariance matrices in order to achieve an optimal portfolio 

design and hedging strategy, and to compare the performance of OHRs from estimated 

multivariate conditional volatility models by applying the hedging effectiveness index. 

One of the main contributions of this paper is that it allows a comparison as to whether 

the results are different depending on the volatility model, currency and maturity of the 

futures contract selected.  

 

The remainder of the paper is organized as follows. In Section 2 we discuss alternative 

multivariate GARCH models, and the derivation of the OHR and hedging effective 

index. In Section 3 the data used for estimation and forecasting, and the descriptive 

statistics, are presented. Section 4 analyses the empirical estimates, and Section 5 

presents the conclusions. 

 

2. Econometric Models 

 

2.1. Multivariate Conditional Volatility Models 

  

This paper closely follows Chang et.al. [17], who analysed dynamic crude oil hedging 

strategies, and considers the CCC model of Bollerslev [10], VARMA-AGARCH model 

of McAleer et al. [45], the DCC model of Engle [24], and BEKK model of Engle and 

Kroner [25] for alternative currencies. Constant conditional correlations are assumed in 

the first two models, while dynamic conditional correlations are specified in the last two 

models. 

 



7 

Consider the CCC multivariate GARCH model of Bollerslev [10]: 

 
  

 
 1 1/ ,t t t t t ty E y F D    

 (1) 

  1var /t t t tF D D     

 

where     1 1,..., , ,...,t t mt t t mty y y       is a sequence of independent and 

identically distributed random vectors, Ft is the past information available at time t, 

 1/ 2 1/ 2
1 ,...,t mD diag h h , and m is the number of assets (see, for example, McAleer [43]                        

and Bauwens et al. [6]). As    1/ ,t t t tE F E 
     where  ij   for i, j = 1,…, 

m, the constant conditional correlation matrix of the unconditional shocks, t , is 

equivalent to the constant conditional covariance matrix of the conditional shocks, ,t  

from (1),  1/2
, ,t t t t t t t tD D D diagQ     and  1/ ,t t t t t tE F Q D D  

    where tQ  is 

the conditional covariance matrix. 

 

The CCC model of Bollerslev [10] assumes that the conditional variance for each 

return, ith , i =1, …, m, follows a univariate GARCH process, that is 

 

 2
, ,

1 1

,
r s

it i ij i t j ij i t j
j j

h h    
 

     (2) 

 

where ij  represents the ARCH effect, or short run persistence of shocks to return i, ij  

represents the GARCH effect, and 
1 1

r s

ij ij
j j

 
 

   denotes the long run persistence of the 

returns shocks. 

 

The CCC model assumes that negative and positive shocks of equal magnitude have 

identical impacts on the conditional variance. McAleer et al. [45] extended the 

VARMA-GARCH model to accommodate the asymmetric impacts of the unconditional 

shocks on the conditional variance, and proposed the VARMA-AGARCH specification 

of the conditional variance as follows: 
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 ,
1 1 1

r r s

t i t i i t i t i j t j
i i j

H W A C I B H    
  

      
 (3) 

 

where Ci are mm matrices for i = 1,…r with typical element ,ij  and 

 1 ,..., ,t t mtI diag I I  is an indictor function, given as 

 

  
0, 0

1, 0
it

it
it

I





 
   

 (4) 

 

If m=1, (3) collapses to the asymmetric GARCH (or GJR) model of Glosten et al. [28]. 

If Ci = 0 and Ai and Bj are diagonal matrices for all i and j, then VARMA-AGARCH 

collapses to the CCC model. The structural and statistical properties of the model, 

including necessary and sufficient conditions for stationarity and ergodicity of 

VARMA-AGARCH, are explained in detail in McAleer et al. [45]. The parameters of 

model (1) to (3) are obtained by maximum likelihood estimation (MLE) using joint 

normal. We also estimate the models using the Student t distribution, for which the 

appropriate estimator is QMLE. 

 

The assumption that the conditional correlations are constant are not likely to be 

realistic so, in order to make the conditional correlation matrix time dependent, Engle 

[24] proposed a dynamic conditional correlation (DCC) model, which is defined as 

 
 1 (0, ), 1, 2,...,t t ty Q t n   (5) 

 
 ,t t t tQ D D   (6) 

 

where  1/ 2 1/ 2
1 ,...,t mD diag h h  is a diagonal matrix of conditional variances, and t  is 

the information set available at time t. The conditional variance, hit, can be defined as a 

univariate GARCH model, as follows: 

 

 , ,
1 1

p q

it ik i t k il i t l
k l

h h    
 

     (7) 
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If t  is a vector of i.i.d. random variables, with zero mean and unit variance, Qt in (8) is 

the conditional covariance matrix (after standardization, /it it ity h  ). The it  are 

used to estimate the dynamic conditional correlations, as follows: 

 

    1/ 2 1/ 2( ( ) ( ( )t t t tdiag Q Q diag Q    (8) 

 

where the kk symmetric positive definitive matrix Qt is given by 

 

  1 2 1 1 1 2 11 ,t t t tQ Q Q            (9) 

 
in which θ1  and θ2 are scalar parameters to capture the effects of previous shocks and 

previous dynamic conditional correlations on the current dynamic conditional 

correlation, and θ1  and θ2 are non-negative scalar parameters. When 1 2 0,Q    in 

(9) is equivalent to CCC. As Qt  is conditional on the vector of standardized residuals, 

(9) is a conditional covariance matrix, and Q  is the kk unconditional variance matrix 

of t . DCC is not linear, but may be estimated in EViews by using a two-step method 

based on the likelihood function, the first step being a series of univariate GARCH 

estimates and the second step being the correlation estimates. 

 

An alternative dynamic conditional model is BEKK, which has the attractive property 

that the conditional covariance matrices are positive definite. However, BEKK suffers 

from the so-called “curse of dimensionality” (see McAleer et al. [45] for a comparison 

of the number of parameters in various multivariate conditional volatility models). The 

BEKK model for multivariate GARCH (1,1) is given as: 

  
 ' '

1 1 1 ,       t H H t t tH C C A A B H B  (10) 

 

where the individual element for the matrices CH, A and B matrices are given as 

 

 11 12 11 12 11 12

21 22 21 22 21 22

, ,
     

       
     

H

a a b b c c
A B C

a a b b c c
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The conditional variances are functions of their own lagged values and own lagged 

returns shocks, while the conditional covariances are functions of the lagged 

covariances and lagged cross-products of the corresponding returns shocks. The BEKK 

formulation guarantees Ht to be positive definite almost surely for all t. A critical 

comparison between BEKK and DCC is given in Caporin and McAleer [12], where the 

scalar, diagonal and full versions of BEKK are also discussed. 

 

2.2 Optimal Hedge Ratios and Optimal Portfolio Weights 

Market participants in futures markets choose a hedging strategy that reflects their 

attitudes toward risk and their individual goals. Adapting the crude oil hedging 

strategies discussed in Chang et al. [17] for currencies, consider the case of exchange 

rates, where the return on the portfolio of spot and futures position can be denoted as: 

  
 , , , ,H t S t F tR R R   (11) 

 

In equation (11), RH,t is the return on holding the portfolio between t-1 and t, RS,t and 

RF,t are the returns on holding spot and futures positions between t and t-1, and γ is the 

hedge ratio, that is, the number of futures contracts that the hedger must sell for each 

unit of spot commodity on which price risk is borne. 

 

According to Johnson [32], the variance of the returns of the hedged portfolio, 

conditional on the information set available at time t-1 is given by 

  

        2
, 1 , 1 , , 1 , 1var var 2 cov , var ,H t t S t t S t F t t t F t tR R R R R            (12) 

 

where  , 1var ,S t tR   , 1var F t tR  , and  , , 1cov ,S t F t tR R   are the conditional 

variance and covariance of the spot and futures returns, respectively. The OHRs are 

defined as the value of γt which minimizes the conditional variance (risk) of the hedged 

portfolio returns, that is  , 1min var
t H t tR    . Taking the partial derivate of (12) with 

respect to γt, setting it to zero, and solving for γt, yields the OHRt conditional on the 

information available at t-1 (see, for example, Baillie and Myers [4]): 
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 
 

, , 1*
1

, 1

cov ,

var
S t F t t

t t

F t t

R R

R
 





 


 (13) 

 

where returns are defined as the logarithmic differences of spot and futures prices. 

 

From the multivariate conditional volatility model, the conditional covariance matrix is 

obtained, such that the OHR is given as: 

  

 ,*
1

,

,SF t
t t

F t

h

h
    (14) 

 

where hSF,t  is the conditional covariance between spot and futures returns, and hF,t  is 

the conditional variance of futures returns. 

 

In order to compare the performance of OHRs obtained from different multivariate 

conditional volatility models, Ku et al. [37] suggest that a more accurate model of 

conditional volatility should also be superior in terms of hedging effectiveness, as 

measured by the variance reduction for any hedged portfolio compared with the 

unhedged portfolio. Thus, a hedging effective index (HE) is given as: 

  

 
var var

,
var

unhedged hedged

unhedged

HE
 

  
  

 (15) 

 

where the variances of the hedge portfolio are obtained from the variance of the rate of 

return, RH,t, and the variance of the unhedged portfolio is the variance of spot returns 

(see, for example, Ripple and Moosa [50]). A higher HE indicates a higher hedging 

effectiveness and larger risk reduction, such that hedging method with a higher HE is 

regarded as a superior hedging strategy. 

 

Alternatively, in order to construct an optimal portfolio design that minimizes risk 

without lowering expected returns, and applying the methods of Kroner and Ng [33] 

and Hammoudeh et al. [30], the optimal portfolio weight of exchange rate spot/futures 

holding is given by: 
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 , ,
,

, , ,2
F t SF t

SF t
S t SF t F t

h h
w

h h h




 
 (16) 

 

and 

  

 
SF,t

*
, , SF,t

SF,t

0,  w 0

,  0<w 1

1,  w 1
SF t SF t

if

w w if

if

 
 
 

 (17) 

 

where  *
SF,t SF,tw 1-w is the weight of the spot (futures) in a one dollar portfolio of 

exchange rates spot/futures at time t. 

  

3. Data  

 

We used daily closing prices of spot (S) and futures for three major international foreign 

exchange rate series, the value of the US dollar to one European Euro (USD/EUR), one 

British Pound (USD/GBP), or one Japanese Yen (USD/JPY). Futures prices rather than 

forward prices are used because of the higher data frequency of the former and also 

because futures data represent two different maturity currency contracts, namely near-

month and next-to-near-month contracts.  

 

The 3,006 observations from 3 January 2000 to 11 July 2011 are obtained from the 

Thomson Reuters-Ecowin Financial Database. The perpetual series of futures prices 

derived from individual futures contracts. These contracts call for a delivery of a 

specified quantity of a specified currency, or a cash settlement, during the months of 

March, June, September and December (the “March quarterly cycle”). Selected 

contracts are available with two future position continuous series. The futures price 

series for First Position Future (FUT1) is the price of the near-month delivery contract 

and the Second Position Future (FUT2) is the price of the next-to-near-month delivery 

contract. For example, in 1 February 2011, FUT 1 is the price of the contract that 

expires in March 2011, while FUT 2 is the price of the contract that expires in June 

2011. 
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[Insert Tables 1-3] 

 

The returns of currency i at time t are calculated as   , , , 1log /i t i t i tr P P  , where Pi,t and 

Pi,t-1 are the closing prices of currency i for days t and t-1 respectively. In Tables 1, 2 

and 3 we show the descriptive statistics for the return series of EUR, GBP and JPY. The 

mean is close to zero in all cases. For the EUR and JPY currencies the standard 

deviation of the futures returns is larger than that of the spot returns, indicating the 

futures market is more volatile than the spot market for these currencies. The exchange 

rate return series display high kurtosis and heavy tails. Most of them, except EUR, 

present negative skewness statistics that signify increased presence of extreme losses 

than extreme gains (longer left tails). The Jarque-Bera Lagrange Multiplier test rejects 

the null hypothesis of normally distributed returns for every exchange rate series. 

 

[Insert Figure 1] 

 

Figure 1 presents the plot of spot and futures daily returns for each currency. Extremely 

high positive and negative returns are evident from September 2008 onward, and have 

continued well into 2009. Therefore, an increase in volatility during the financial crisis 

is perceived, however, is lower than in other assets (see, for example, McAleer et al. 

[46]). In the same way, the plots indicate volatility clustering. Spot and futures returns 

move in the same pattern suggesting a high correlation (the highest one is between 

FUT1 and FUT2 for all currencies). Correlations between the returns in European 

markets (EUR and GBP) are higher than the correlations between these and JPY which 

is hardly surprising. 

 

[Insert Figure 2] 

 

The volatilities of exchange rate returns are showed in figure 2. These volatilities are 

calculated as the square of the estimated returns and seem to support the stated above. 

The plots are similar in all returns and the volatility of the series appears to be high 

during the early 2000s, followed by a quiet period from 2003 to the beginning of 2007. 
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Volatility increases dramatically after August 2008, due in large part to the worsening 

global credit environment.  

 

4.- Empirical Results 

 

4.1 Estimation Results 

 

We estimate four multivariate models (namely CCC, VARMA-AGARCH, DCC and 

BEKK) for each error distribution, currency and different futures maturities. The 

estimated parameters are reported in Tables 4-7. Table 4 shows the estimates for the 

CCC model. The volatility persistence, as measure by the sum of ,   in either spot 

or futures markets for each currency is quite high, ranging from 0.978 to 0.998. All 

markets satisfy the second moment and log moment condition, which is a sufficient 

condition for the QMLE to be consistent and asymptotically normal (see McAleer et.al. 

[44]) The ARCH and GARCH estimates of the conditional variance are statistically 

significant. The ARCH estimates are generally small (less than 0.04) and the GARCH 

effects are generally close to one. The estimates are generally smaller for JPY for both 

spot and futures prices (0.949 and 0.944 against 0.961 and 0.962 for the EUR). There 

are not large differences among the constant conditional correlation estimates, ranging 

from 0.799 for EUR to 0.811 for JPY.  

 

[Insert Tables 4-5] 

 

Table 5 reports the estimates of the conditional means and variances for the AGARCH 

models. The ARCH and GARCH effects are statistically significant in all markets, and 

are quite similar to the estimates for the CCC model without asymmetric effects. The 

asymmetric impacts of the unconditional shocks on the conditional variance estimates, 

,  are reasonably weak for the three currencies and, in particular, are not statistically 

significant for JPY.  

 

[Insert Table 6] 
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The DCC model is used to capture dynamic conditional correlations. Table 6 summaries 

the results of the DCC estimates for all spot and futures markets. Regarding the 

conditional variance, the estimates are statistically significant and satisfy the second 

moment condition. The estimated DCC parameters, 1̂ and 2̂ , are statistically 

significant for all currencies, which suggests that the conditional correlations are not 

constant over time. The short run persistence of shocks on the dynamic conditional 

correlation is greater for JPY at 0.051, although it shows the lower long run persistence 

of shocks to the conditional correlation 0.913 (0.051+0.862). The EUR shows the 

lowest short run persistence (0.024) and the greatest long run persistence 0.986 

(0.024+0.962). The time-varying conditional correlations between spot and futures 

returns are given in Figure 3. An apparent change in the conditional correlation 

appeared upon the bankruptcy of Lehman Brothers in New York on 15 September 2008. 

Due to an increase in the volatility of spot and futures exchange rates, the conditional 

correlations seem to change in all the currencies. The GFC caused an apparent decline 

in the conditional correlations between spot prices and both FUT1 an FUT2. 

 

[Insert Table 7] 

 

Table 7 reports the estimates for the BEKK model. We have restricted the bivariate 

BEKK model to the reduced form of the diagonal BEKK. The elements of the 

covariance matrix depend only on past own squared residuals, and the covariances 

depend only on past own cross products of residuals. The estimates of mean returns are 

not statistically significant. The elements of the diagonal matrices, A and B, are 

statistically significant. From the empirical results, we conclude there is time-varying 

market risk, strong evidence of GARCH effects, and the presence of weak ARCH 

effects. The results for the covariances are similar, indicating that there is a statistically 

significant time-varying covariation in shocks, which depends more on own lags than 

on past innovations. These empirical results show that market shocks are influenced by 

information which is common to spot and future markets.  

 

4.2 Hedging Performance  
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With the estimated underlying parameters in the models, we first generate in-sample 

daily time series of variances and covariances of the spot and futures returns for each 

currency. Subsequently, we calculate the OHRs and optimal portfolios weights given by 

equations (14) and (16), respectively.  

 

[Insert Table 8A-8C] 

 

Tables 8A-8C report the average OHR values, the hedge effectiveness, the variance of 

the portfolio, the hedging effectiveness along with the average value of the optimal 

portfolio weights for the three currencies using FUT1 and FUT2 contracts when both 

the Student t and normal error distributions are assumed. We show the results for the 

four multivariate volatility models.  

 

Tables 8A-8C show that hedging is effective in reducing the risks for every model, 

currency and maturity. In particular, we find that the average OHR using FUT2 

contracts are slightly higher than when FUT1 contracts are used, except for GBP. The 

highest average OHR value is 0.854 for USD/JPY when FUT2 contracts are used, 

meaning that, in order to minimize risk, a long (buy) position of one dollar in such a 

currency should be hedged by a short (sell) position of $0.854 in JPYFUT2 contracts. 

Additionally, when using the Gaussian error distribution, Tables 8A-8C report lower 

average OHR values for the three currencies analyzed. The average OHRs from each 

model are not particularly different, slightly smaller for the DCC and BEKK models 

when the Student t is used, but larger for GBP and JPY when using the Gaussian 

distribution. The average OHR values are higher for the USD/JPY exchange rate. On 

the contrary, hedging effectiveness is higher for the DCC and BEKK models. 

 

For GBP and JPY, we notice that hedging effectiveness is slightly higher when a FUT1 

contract is used, as opposed to showing a higher hedging effectiveness when the 

EURFUT2 contract is used. We find that hedging effectiveness lies between a 

maximum of 66.3% for USD/GBP, and a minimum of 62.5% for USD/EUR. It seems 

that hedging effectiveness is slightly higher for the USD/GBP currency.  

 

[Insert Figures 3-4] 

 



17 

Figure 3 shows the DCC estimates between spot and futures exchange rates for both 

future contracts. The volatility of the dynamic correlations increases during GFC and, as 

expected, during turbulent periods correlations decreases. This is why OHR volatility 

increases during the GFC. Figure 4 represents the calculated time-varying OHRs from 

every multivariate conditional volatility model. There are clearly time-varying ratios. It 

is interesting to examine the optimal hedging ratios during the GFC for all the models, 

but DCC optimal hedging ratios seem to increase in average.  

 

As shown in the optimal portfolio weight columns in Tables 8A-8C, there are not big 

differences among the models. For example, the largest average value corresponds to a 

portfolio including the JPYFUT1 contract, for which the spot currency weight is 

calculated using the DCC model assuming a normal error distribution. The value 0.566 

would imply that investors should have more spot currency than futures contracts in 

their portfolio in order to minimize risk without lowering expected returns. In particular, 

the optimal holding of one USD/JPY spot/future portfolio is 56.6 cents for spot and 43.4 

cents for futures. When the Gaussian distribution is used, we find higher optimal 

portfolio weights. For both USD/EUR and USD/JPY spot/futures portfolios the optimal 

holding of spot currencies is higher when hedging with FUT1 contracts than when 

FUT2 are used. This is the opposite of what happens for USD/GBP spot/futures 

portfolios. The estimates suggest holding spot more than GBPFUT1, whereas they 

suggest holding spot less than GBPFUT2 on one dollar spot/future portfolio.  

 

[Insert Table 9A-9C] 

 

The correlations of the dynamic patterns in Tables 8A-8C are given in Tables 9A-9C. It 

is clear that, across all currencies and both error densities, the OHRs are most similar 

between CCC and VARMA-AGARCH, which suggests that dynamic asymmetry may 

not be crucial empirically, and also between DCC and BEKK. 

 

In summary, the estimates based on both OHR and optimal weight values recommend 

holding more FUT2 than FUT1 contracts for USD/EUR and USD/JPY spot/futures 

portfolios, meaning that we should increase the percentage of futures contracts for 

longer term portfolios when these currencies are used.   
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5.  Conclusions 

 

This paper sheds light on the importance of measuring conditional variances and 

covariances when hedging daily currency risk using futures. The findings are of 

importance to currency hedgers who require taking futures positions in order to 

adequately reduce the risk. In this paper, we use four multivariate GARCH models, 

namely CCC, VARMA-AGARCH, DCC and BEKK, to examine the conditional 

volatilities among spot and two distinct futures maturities, namely near-month and next-

to-near-month contracts. The estimated conditional covariances matrices from these 

models were used to calculate the optimal portfolios weights and optimal hedge ratios. 

 

The empirical results in this paper reveal that there are not big effectiveness differences 

when either the near-moth or the next-to-near-month contract is used for hedging spot 

position on currencies. They also reveal that hedging ratios are lower for near-month 

contract when the USD/EUR and USD/JPY exchange rates are analyzed. This result is 

explained in terms of the higher correlation between spot prices and the next-to-near-

month futures prices than that with near-month contract and additionally because of the 

lower volatility of the long maturity futures.  

 

Finally, across all currencies and error densities, the CCC and VARMA-AGARCH 

models provide similar results in terms of hedging ratios, portfolio variance reduction 

and hedging effectiveness, which suggests that dynamic asymmetry may not be crucial 

empirically. Some differences appear when the DCC and BEKK models are used. 

Hedging ratios seem to decrease during the GFC as opposed to increasing ratios when 

the CCC and VARMA-AGARH models are consider for calculating the conditional 

covariances. Future research will investigate the effects of the GFC on the conditional 

correlations between spot and futures contracts, as well as its impact on hedging 

effectiveness. 
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Figure 1. Spot and futures daily returns 
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Figure 2. Estimated Conditional Volatilities of Returns  
USD/EUR USD/GBP USD/JPY 
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Figure 3. DCC Estimates 
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Figure 4. Optimal Hedge Ratios 
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Table 1. EUR Descriptive Statistics 

 

 Returns EUROS EUROFUT1 EUROFUT2 

 Mean  0.0107  0.0101  0.0098 
 Maximum  4.6174  3.1184  3.1007 
 Minimum -3.8445 -3.0568 -3.0620 
 Std. Dev.  0.6485  0.6552  0.6532 
 Skewness  0.1477 -0.0939 -0.0962 
 Kurtosis  5.6389  4.3878  4.3556 
 Jarque-Bera  882.87  245.58  234.73 

 

 

Table 2. GPB Descriptive Statistics 

 

 Returns GBPS GBPFUT1 GBPFUT2 

 Mean -0.0007 -0.0010 -0.0011 
 Maximum  4.4745  3.3542  3.3147 
 Minimum -3.9182 -5.1703 -5.1326 
 Std. Dev.  0.6103  0.6010  0.6021 
 Skewness -0.0552 -0.3793 -0.3560 
 Kurtosis  7.3609  6.7628  6.5791 
 Jarque-Bera  2382.7  1844.9  1667.4 

 

Table 3. JPY Descriptive Statistics 

 

 Returns JPYS JPYFUT1 JPYFUT2 

 Mean -0.0077 -0.0075 -0.0070 
 Maximum  3.0770  4.0082  4.0187 
 Minimum -4.6098 -5.1906 -5.2289 
 Std. Dev.  0.6594  0.6642  0.6594 
 Skewness -0.4246 -0.3285 -0.3020 
 Kurtosis  6.5503  6.9307  6.9282 
 Jarque-Bera  1668.5  1988.5  1977.8 
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Table 4. CCC Estimates 
 

Panel a: EURS_EURFUT1 

Returns C ω α β α + β 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

EURS 0.025532 
(0.0165) 

0.001324 
(0.1455) 

0.036873 
(0.0000) 

0.960795 
(0.0000) 

0.997668 0.798867 
(0.0000) 

-4105.754 2.738605 

EURFUT1 0.022376 
(0.0454) 

0.001886 
(0.0329) 

0.034411 
0.0000 

0.962024 
0.0000 

0.996435    

 
Panel b: GBPS_GBPFUT1 

Returns C ω α β α + β 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

GBPS 0.014299 
(0.1479) 

0.002229 
(0.0086) 

0.030472 
(0.0000) 

0.962650 
(0.0000) 

0.993122 0.812791 
(0.0000) 

-3367.432 2.247209 

GBPFUT1 0.012066 
(0.2202) 

0.002608 
(0.0055) 

0.028671 
(0.0000) 

0.963302 
(0.0000) 

0.991973    

 
Panel c: JPYS_JPYFUT1 

Returns C ω α β α + β 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

JPYS 0.003894 
(0.7283) 

0.006035 
(0.0269) 

0.037076 
(0.0000) 

0.948975 
(0.0000) 

0.986051 0.811211 
(0.0000) 

-4239.943 2.827915 

JPYFUT1 0.005502 
(0.6230) 

0.009677 
(0.0205) 

0.033193 
(0.0055) 

0.944285 
(0.0000) 

0.977478    

Note: The p-values are given in parentheses.  
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Table 5. VARMA-AGARCH Estimates 

Panel a: EURS_EURFUT1 

Returns C ω α β γ α+β+γ 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

EURS 0.016007 
(0.1350) 

0.001446 
(0.1021) 

0.025002 
(0.0027) 

0.962974 
(0.0000) 

0.018713 
(0.0489) 

1.006689 0.799869 
(0.0000) 

-4098.227 2.734926 

EURFUT1 0.011699 
(0.2921) 

0.002113 
(0.0135) 

0.020336 
(0.0105) 

0.964626 
(0.0000) 

0.021366 
(0.0483) 

1.006328    

 

Panel b: GBPS_GBPFUT1 

Returns C ω α β γ α+β+γ 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

GBPS 0.004260 
(0.6588) 

0.002587 
(0.0021) 

0.014752 
(0.0446) 

0.963269 
(0.0000) 

0.027465 
(0.0117) 

1.005486 0.813575 
(0.0000) 

-3356.194 2.241061 

GBPFUT1 0.001990 
(0.8368) 

0.002791 
(0.0021) 

0.016439 
(0.0301) 

0.964716 
(0.0000) 

0.020035 
(0.0644) 

1.00119    

 

Panel c: JPYS_JPYFUT1 

Returns C ω α β γ α+β+γ 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

JPYS 0.004648 
(0.6808) 

0.006036 
(0.0315) 

0.038539 
(0.0006) 

0.949630 
(0.0000) 

-0.004651 
(0.7528) 

0.983518 0.811191 
(0.0000) 

-4239.519 2.828964 

JPYFUT1 0.005544 
(0.6287) 

0.009533 
(0.0208) 

0.032053 
(0.0331) 

0.944463 
(0.0000) 

0.002810 
(0.8728) 

0.979326    

Note: The p-values are given in parentheses. 



30 

 

Table 6. DCC Estimates 

 

Panel a: EURS_EURFUT1 

Returns C ω α β α + β 1  2  Log-
likelihood 

AIC 

EURS 0.020377 
(0.0532) 

0.004386 
(0.0022) 

0.027374 
(0.0000) 

0.961108 
(0.0000) 

0.988482 0.023709 
(0.0000) 

0.961618 
(0.0000) 

-4077.809 2.721337 

EURFUT1 0.018240 
(0.0910) 

0.006484 
(0.0002) 

0.034551 
(0.0000) 

0.949876 
(0.0000) 

0.984427     

 

Panel b: GBPS_GBPFUT1 

Returns C ω α β α + β 1  2  Log-
likelihood 

AIC 

GBPS 0.010971 
(0.2487) 

0.004841 
(0.0001) 

0.038697 
(0.0000) 

0.946627 
(0.0000) 

0.985324 0.041639 
(0.0000) 

0.936892 
(0.0000) 

-3303.009 2.205663 

GBPFUT1 0.009160 
(0.3353) 

0.006684 
(0.0001) 

0.049814 
(0.0000) 

0.930739 
(0.0000) 

0.980553     

 

Panel c: JPYS_JPYFUT1 

Returns C ω α β α + β 1  2  Log-
likelihood 

AIC 

JPYS 0.003990 
(0.7237) 

0.019263 
(0.0000) 

0.043614 
(0.0000) 

0.911911 
(0.0000) 

0.955525 0.050768 
(0.0000) 

0.862159 
(0.0000) 

-4173.424 2.784974 

JPYFUT1 0.005513 
(0.6364) 

0.048472 
(0.0000) 

0.069140 
(0.0001) 

0.824529 
(0.0000) 

0.893669     

Note: The p-values are given in parentheses. 
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Table 7. BEKK Estimates 

Panel a: EURS_EURFUT1 

Returns C CH A B 
Log-

likelihood 
AIC 

EURS 0.020559 
(0.0488) 

0.003112 
(0.0001) 

 0.163463 
(0.0000) 

0.000000 0.982880 
(0.0000) 

0.000000 -4101.786 2.735964 

EURFUT1 0.019446 
(0.0664) 

0.004368 
(0.0001) 

0.006801 
(0.0003) 

0.000000 0.213424 
(0.0000) 

0.000000 0.969448 
(0.0000) 

  

 

Panel a: GBPS_GBPFUT1 

Returns C CH A B 
Log-

likelihood 
AIC 

GBPS 0.009175 
(0.3332) 

0.003862 
(0.0000) 

 0.195416 
(0.0000) 

0.000000 0.975276 
(0.0000) 

0.000000 -3315.017 2.212324 

GBPFUT1 0.007995 
(0.3992) 

0.004889 
(0.0000) 

0.007320 
(0.0001) 

0.000000 0.238545 
(0.0000) 

0.000000 0.960766 
(0.0000) 

  

 

Panel a: JPYS_JPYFUT1 

Returns C CH A B 
Log-

likelihood 
AIC 

JPYS 0.001488 
(0.8959) 

0.022401 
(0.0000) 

 0.215503 
(0.0000) 

0.000000 0.950569 
(0.0000) 

0.000000 -4181.067 2.788730 

JPYFUT1 0.001963 
(0.8719) 

0.046133 
(0.0000) 

0.083282 
(0.0000) 

0.000000 0.298570 
(0.0000) 

0.000000 0.855350 
(0.0000) 

  

Note: The p-values are given in parentheses.  
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  Table 8A. Alternative hedging strategies (USD/EUR) 

  MODEL OHR Var. PF HE 
Var. 

UnHed
OPT. W

  Student-t error distribution 

FU
T1

  CCC 0.805 0.158 62.5% 0.420 0.536 

VARMA-AGARCH 0.805 0.157 62.7% 0.420 0.536 

DCC 0.794 0.157 62.7% 0.420 0.542 

BEKK 0.802 0.157 62.6% 0.420 0.542 

        

FU
T2

  CCC 0.808 0.157 62.7% 0.420 0.532 

VARMA-AGARCH 0.808 0.156 62.9% 0.420 0.532 

DCC 0.797 0.156 62.9% 0.420 0.535 

BEKK 0.804 0.156 62.8% 0.420 0.537 

Normal Gaussian error Distribution 

FU
T1

  CCC 0.792 0.158 62.5% 0.420 0.544 

VARMA-AGARCH 0.792 0.157 62.7% 0.420 0.545 

DCC 0.784 0.157 62.7% 0.420 0.554 

BEKK 0.792 0.157 62.6% 0.420 0.550 

        

FU
T2

  CCC 0.799 0.157 62.7% 0.420 0.532 

VARMA-AGARCH 0.799 0.156 62.9% 0.420 0.533 

DCC 0.791 0.156 62.9% 0.420 0.538 

BEKK 0.798 0.156 62.8% 0.420 0.537 
Notes: Optimal Hedging Ratio (OHR), Variance of Portfolios (Var. PF), Hedging Effective Index (HE), Variance of 
ungedged portfolio (Var. UnHed) and Optimal Portfolio Weights (OPT. W).  FUT1 is when the near-month delivery 
contract is used for hedging and FUT2 implies that is the next-to-near-month delivery contract the one used for hedging. For 
each error distribution and future contract, results for the four multivariate variance models, CCC, VARMA-AGARCH, 
DCC and BEKK are shown. 
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Table 8B. Alternative hedging strategies (USD/GBP) 

MODEL OHR Var. PF HE 
Var. 

UnHed
OPT. W

  Student-t error distribution 

FU
T1

  CCC 0.829 0.126 66.2% 0.372 0.496 

VARMA-AGARCH 0.830 0.125 66.3% 0.372 0.498 

DCC 0.822 0.126 66.2% 0.372 0.497 

BEKK 0.826 0.126 66.2% 0.372 0.490 

             

FU
T2

  CCC 0.826 0.127 65.9% 0.372 0.510 

VARMA-AGARCH 0.826 0.126 66.1% 0.372 0.512 

DCC 0.817 0.127 65.9% 0.372 0.511 

BEKK 0.821 0.127 65.9% 0.372 0.505 

  Normal Gaussian error Distribution 

FU
T1

  CCC 0.816 0.126 66.2% 0.372 0.499 

VARMA-AGARCH 0.815 0.125 66.3% 0.372 0.503 

DCC 0.818 0.126 66.1% 0.372 0.500 

BEKK 0.822 0.127 66.0% 0.372 0.495 

             

FU
T2

  CCC 0.812 0.127 65.9% 0.372 0.510 

VARMA-AGARCH 0.812 0.126 66.1% 0.372 0.513 

DCC 0.813 0.127 65.8% 0.372 0.513 

BEKK 0.817 0.128 65.7% 0.372 0.508 
Notes: Optimal Hedging Ratio (OHR), Variance of Portfolios (Var. PF), Hedging Effective Index (HE), Variance of 
ungedged portfolio (Var. UnHed) and Optimal Portfolio Weights (OPT. W).  FUT1 is when the near-month delivery 
contract is used for hedging and FUT2 implies that is the next-to-near-month delivery contract the one used for hedging. For 
each error distribution and future contract, results for the four multivariate variance models, CCC, VARMA-AGARCH, 
DCC and BEKK are shown. 
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  Table 8C. Alternative hedging strategies (USD/JPY) 

MODEL OHR Var. PF HE 
Var. 

UnHed
OPT. W

  Student-t error distribution 

FU
T1

  CCC 0.849 0.153 64.8% 0.435 0.463 

VARMA-AGARCH 0.849 0.153 64.8% 0.435 0.464 

DCC 0.845 0.153 64.8% 0.435 0.475 

BEKK 0.849 0.154 64.7% 0.435 0.474 

        

FU
T2

  CCC 0.853 0.154 64.6% 0.435 0.450 

VARMA-AGARCH 0.853 0.154 64.6% 0.435 0.450 

DCC 0.850 0.154 64.7% 0.435 0.464 

BEKK 0.854 0.154 64.6% 0.435 0.468 

  Normal Gaussian error Distribution 

FU
T1

  CCC 0.803 0.152 65.0% 0.435 0.535 

VARMA-AGARCH 0.802 0.152 65.0% 0.435 0.537 

DCC 0.812 0.153 64.8% 0.435 0.566 

BEKK 0.817 0.153 64.7% 0.435 0.570 

        

FU
T2

  CCC 0.810 0.153 64.8% 0.435 0.514 

VARMA-AGARCH 0.809 0.153 64.8% 0.435 0.515 

DCC 0.818 0.154 64.6% 0.435 0.549 

BEKK 0.823 0.154 64.5% 0.435 0.555 
Notes: Optimal Hedging Ratio (OHR), Variance of Portfolios (Var. PF), Hedging Effective Index (HE), Variance of 
ungedged portfolio (Var. UnHed) and Optimal Portfolio Weights (OPT. W).  FUT1 is when the near-month delivery 
contract is used for hedging and FUT2 implies that is the next-to-near-month delivery contract the one used for hedging. For 
each error distribution and future contract, results for the four multivariate variance models, CCC, VARMA-AGARCH, 
DCC and BEKK are shown. 
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Table 9A. Correlations between OHRs (USD/EUR) 

CCC VARMA-AGARCH DCC BEKK 

Student-t error distribution 

CCC 1.00 

VARMA-AGARCH 0.99 1.00 

DCC 0.66 0.65 1.00 

BEKK 0.65 0.65 0.96 1.00 

Normal Gaussian error Distribution 

CCC 1.00 

VARMA-AGARCH 0.99 1.00 

DCC 0.66 0.65 1.00 

BEKK 0.67 0.67 0.96 1.00 

 
Table 9B. Correlations between OHRs (USD/GBP) 

CCC VARMA-AGARCH DCC BEKK 

Student-t error distribution 

CCC 1.00 0.97 0.59 0.64 

VARMA-AGARCH 0.97 1.00 0.59 0.63 

DCC 0.59 0.59 1.00 0.97 

BEKK 0.64 0.63 0.97 1.00 

Normal Gaussian error Distribution 

CCC 1.00 

VARMA-AGARCH 0.97 1.00 

DCC 0.59 0.59 1.00 

BEKK 0.64 0.62 0.97 1.00 
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Table 9C. Correlations between OHRs (JPY/USD) 

CCC VARMA-AGARCH DCC BEKK 

Student-t error distribution 

CCC 1.00 

VARMA-AGARCH 0.99 1.00 

DCC 0.55 0.55 1.00 

BEKK 0.55 0.55 0.96 1.00 

Normal Gaussian error Distribution 

CCC 1.00 

VARMA-AGARCH 0.99 1.00 

DCC 0.59 0.59 1.00 

BEKK 0.54 0.54 0.93 1.00 

 
 


