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Abstract 

Background 

Consuming moderate amounts of lean red meat as part of a balanced diet valuably contributes 
to intakes of essential nutrients. In this study, we merged phenotypic and genotypic 
information to characterize the variation in lipid profile and sensory parameters and to 
represent the diversity among 15 cattle populations. Correlations between fat content, 
organoleptic characteristics and lipid profiles were also investigated. 

Methods 

A sample of 436 largely unrelated purebred bulls belonging to 15 breeds and reared under 
comparable management conditions was analyzed. Phenotypic data -including fatness score, 
fat percentage, individual fatty acids (FA) profiles and sensory panel tests- and genotypic 
information from 11 polymorphisms was used. 

Results 

The correlation coefficients between muscle total lipid measurements and absolute vs. 
relative amounts of polyunsaturated FA (PUFA) were in opposite directions. Increasing 
carcass fat leads to an increasing amount of FAs in triglycerides, but at the same time the 
relative amount of PUFAs is decreasing, which is in concordance with the negative 
correlation obtained here between the percentage of PUFA and fat measurements, as well as 
the weaker correlation between total phospholipids and total lipid muscle content compared 
with neutral lipids. Concerning organoleptic characteristics, a negative correlation between 
flavour scores and the percentage of total PUFA, particularly to n-6 fraction, was found. The 
correlation between juiciness and texture is higher than with flavour scores. The distribution 
of SNPs plotted by principal components analysis (PCA) mainly reflects their known trait 
associations, although influenced by their specific breed allele frequencies. 

Conclusions 

The results presented here help to understand the phenotypic and genotypic background 
underlying variations in FA composition and sensory parameters between breeds. The wide 
range of traits and breeds studied, along with the genotypic information on polymorphisms 
previously associated with different lipid traits, provide a broad characterization of beef meat, 
which allows giving a better response to the variety of consumers’ preferences. Also, the 
development and implementation of low-density SNP panels with predictive value for 
economically important traits, such as those summarized here, may be used to improve 
production efficiency and meat quality in the beef industry. 
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Background 

Cattle meat provides several nutrients necessary for a balanced diet and for health 
preservation, especially high value proteins, minerals, B-complex vitamins and essential fatty 
acids (FA), and also can have an important role as a dietary source of n-3 FA and conjugated 
linoleic acids (CLA) [1,2]. A number of epidemiological studies have associated red meat 
consumption with increased disease risks [3-5], whereas other authors point out the beneficial 
effects of the moderate consumption of unprocessed red meat -lowers total cholesterol, LDL 
cholesterol and triglycerides (TG) [6,7], as well as blood pressure [8]. However, the isolation 
of the effects of red meat alone is difficult to accomplish [2]. Moreover, the level of 
intramuscular fat content and FA composition are among the main factors determining meat 
palatability and consumers satisfaction [9]. Muscle lipid characteristics determine meat 
flavour and lipid oxidation, which contributes to beef colour, and can be responsible for 
abnormal odours, and influences the juiciness and tenderness of meat [10]. However, meat 
quality traits are very complex, involve many genes and are greatly influenced by a variety of 
environmental factors, such as diet sex, season, age, etc. [11]. Being difficult and expensive 
to measure [12], they are usually not included in selection programs based on phenotypic 
performance, and difficult application of traditional selection methods, as well as the state-of-
the-art Genomic Selection (GS) [13]. 

An alternative approach is to identify genes with an effect on fat composition and include 
these in selection objectives. Thanks to the genomic revolution of the past few years, more 
information and technology are available that can be used to improve meat quality. Many 
studies have identified QTL involved in meat quality related traits in beef cattle (e.g. 
[14,15]); however, the dissection of these QTL has not identified genetic variants explaining 
a large portion of phenotypic variance [16]. More recently, single nucleotide polymorphisms 
(SNP) within candidate genes have been tested for predictive value for carcass traits, and 
some commercial tests to genotype animals based on SNP marker panels are being proposed 
to breeders (see the review in [17]). The significant progress made in characterizing changes 
in tissue FA composition to diet, feeding system and genotype, highlights the potential for 
further progress to be made through genomic or marker-assisted selection in livestock and the 
formulation of diets to exploit the genetic potential [18]. Nevertheless, the full development 
of these technologies greatly depends on the precise identification of the genes and 
polymorphisms that have a measurable effect on muscle physiology and on meat quality, and 
the validation of their effects on different breeds. 

In this study, we merged phenotypic and genotypic information [19-21] to characterize the 
variation in lipid profile and sensory parameters of Longissimus thoracis muscle and to 
represent the diversity among 15 cattle populations, reared under comparable management 
conditions. Correlations between fat content, organoleptic characteristics and lipid profiles 
were also investigated. 

Methods 

Animals and feed system 

A total of 436 muscle samples from unrelated bulls belonging to 15 European cattle breeds 
were studied in the frame of the GeMQual (EC QLK5 – CT2000-0147) European project and 
genotyped. The breeds included specialized beef breeds, dairy breeds, and local beef breeds. 



The whole sample included 31 Jersey (JER), 27 South Devon (SD), 30 Aberdeen Angus 
(AA), and 29 Highland (HIG) from United Kingdom; 29 Holstein (HOL), 29 Danish Red 
(DR), and 20 Simmental (SM), from Denmark; 30 Asturiana de los Valles (AST), 31 
Asturiana de la Montaña (CAS), 30 Avileña-Negra Ibérica (AVI), and 31 Pirenaica (PI) from 
Spain; 30 Piedmontese (PIE), and 28 Marchigiana (MAR) from Italy; and 31 Limousin 
(LIM), and 30 Charolais (CHA) from France. 

Bulls were reared in each country in a unique location and under a uniform beef management 
system representative of those used in the European Union (EU) countries. Feed composition 
and management details are described in [22]. The diet was designed to achieve the slaughter 
weight of 75% of mature weight for each breed within a window of 13 to 17 months. Animals 
from each breed were slaughtered the same day in either commercial or experimental 
abattoirs, depending on the experimental facilities of each country. 

Sampling and phenotype measurements 

Carcass processing after slaughter was described by [22] and [23]. For lipid measurements, 
Longissimus thoracis muscle was excised at 24 h postmortem from the left side of the carcass 
between the 6th and the 13th rib and a sample was taken immediately and frozen for chemical 
analysis including fat concentration. The remainder was stored at +2 °C ±1 °C until 48 h 
post-mortem. Also, samples were taken from the 48 h post-mortem section to determine total 
lipid content. Samples for individual FA analysis were taken from the same position on 
Longissimus thoracis from all animals and vacuum packed, frozen and transported on dry ice 
to University of Bristol (United Kingdom) to determine total lipid content. 

Fatness score (FS) corresponds to the visual fatness cover estimated by UE standard (1 = very 
low, 5 = very high), and fat percentage (FP) is the proportion of subcutaneous and 
intermuscular fat in the rib dissection. Fat was extracted by the method of [24] separated into 
neutral lipid and phospholipid, methylated, separated by gas-liquidchromatography (GLC) 
and the individual peaks identified and quantified as described in detail by [25]. Total lipid 
content was taken as the sum of the neutral lipid (NL) and phospholipid (PL) fractions. Some 
additional phenotypes were set as are saturated FA (SFA), monounsaturated FA (MUFA), 
polyunsaturated FA (PUFA), n-6/n-3 ratios, polyunsaturated to saturated FA (P:S) ratios and 
antithrombotic potential (ATT), which is the ratio between the sum of the antithrombogenic 
FAs eicosatrienoic acid (20:3 n-6) and eicosapentaenoic acid (20:5 n-3), and the 
thrombogenic FA arachidonic acid (20:4 n-6) [(20:3 n-6 + 20:5 n-3)/20:4 n-6] [26]. Sensory 
panel tests assessed meat using an eight-point scale as described in [27]. The criteria assessed 
were flavour, texture and juiciness -the higher scores corresponding to the characteristic 
flavour of beef, and very tender and juicy meat, respectively. See [21] for detailed phenotype 
values per breed. 

Marker selection 

The allele frequencies of 11 polymorphisms found to be associated with different lipid traits 
across breeds and causing increases in traits ranging between 3.3% and 19% for one 
homozygous genotype compared to the other homozygous genotype (Table 1) [19,20], were 
used for a principal components analysis (PCA) to represent the diversity among the 15 cattle 
populations: calpastatin (CAST) g.2959G < A [20]; cofilin 1 (CFL1) ss77831721 [19]; EP300 
interacting inhibitor of differentiation 1 (CRI1) ss778332128 [19]; myostatin (GDF8) 
ss77831865 [20]; insulin-like growth factor 2 receptor (IGF2R) ss77831885 [19]; lipoprotein 



lipase (LPL) ss65478732 [20]; matrix metalloproteinase 1 (MMP1) ss77831916, ss77831924 
[19]; myozenin 1 (MYOZ1) ss77831945 [20]; phospholipid transfer protein (PLTP) 
ss77832104 [19]; peroxisome proliferator activated receptor γ (PPARG) ss62850198 [20]. 
The six SNPs from [19] were genotyped by Kbioscience using the proprietary Kaspar© 
methodology; the five SNPs from [20] were genotyped by SNP multiplex and Primer 
Extension amplification. 



Table 1 Allele frequencies per breed of 11 polymorphisms with effects ranging between 3.3% and 19% on different lipid traits based on 
results from [19,20] 
Locus 
symbol 

dbSNP1 Alleles2 Effect of the 
homozygous 

genotype for the 
bold allele 

Frequency of bold allele 
JER3 

(n = 30) 
SD3 

(n = 27) 
AA3 

(n = 30) 
HIG 3 

(n = 29) 
HOL 3 

(n = 29) 
DR3 

(n = 29) 
SM3 

(n = 20) 
LIM 3 

(n = 31) 
CHA3 

(n = 31) 
PIE3 

(n = 30) 
MAR 3 

(n = 28) 
AST3 

(n = 30) 
CAS3 

(n = 31) 
AVI 3 

(n = 30) 
PI3 

(n = 31) 

CAST* g.2959G < A A/G ↑ 5% FS4 0.77 0.83 0.88 0.94 0.69 0.66 0.78 0.68 0.65 0.7 0.64 0.73 0.84 0.85 0.65 
CFL1* ss77831721 C/T ↑ 8% 18:2/18:3 0.48 0.02 0.12 0.09 0.14 0.43 0.29 0.47 0.61 0.47 0.59 0.39 0.29 0.14 0.22 
CRI1* ss77832128 G/T ↑ 13.4% N 22:4n-65 0.95 1 1 0.67 0.75 1 0.75 0.9 0.91 0.75 0.92 0.96 0.89 0.72 0.9 
GDF8* ss77831865 G/del ↑ 15% FS 1 0.65 1 1 1 1 1 1 1 1 1 0.32 0.98 1 0.89 
IGF2R* ss77831885 A/G ↑ 4.4% Flavour 0.04 0.44 0.32 0.52 0.06 0.33 0.3 0.18 0.44 0.18 0.09 0.13 0.1 0.2 0.22 
LPL* ss65478732 T/C ↑ N n-66 0 0 0.06 0 0.1 0.05 0.06 0 0.1 0.05 0 0 0.08 0.09 0.02 
MMP1* ss77831916 A/G ↑ 3.3% CLA 1 0.95 0.79 0.76 0.82 0.85 1 0.97 0.95 0.95 0.74 0.85 0.98 0.91 0.91 
MMP1b ss77831924 T/C ↑ 14% 22:6n-3 0.5 0.37 0.55 0.44 0.5 0.5 0.5 0.5 0.48 0.47 0.54 0.47 0.5 0.52 0.5 
MYOZ1* ss77831945 C/T ↑ 8% 18:2/18:3 0.48 0.94 1 0.44 0.63 0.83 0.91 0.8 0.91 0.87 0.82 0.83 0.92 0.92 0.94 
PLTP* ss77832104 G/A ↑ 8% n-6/n-3 0.5 0.33 0.58 0.25 0.27 0.2 0.38 0.71 0.4 0.63 0.7 0.57 0.08 0.56 0.5 
PPARG* ss62850198 G/A ↑ n-37 0.13 0.21 0.28 0.04 0.12 0.19 0.14 0.18 0.25 0.12 0.11 0.1 0.1 0.06 0.16 
* Genes for which allele frequencies are statistically different among breeds (P < 0.0001). 
1 dbSNPs accession number of SNPs found to be associated with different production traits by [19,20]. 
2 In bold, favourable allele, i.e. allele which improves animal performance and/or meat quality by diminishing n-6 and/or n-6:n-3 ratio, by increasing n-3, or by improving 
organoleptic characteristics. 
3 Complete breed names: Jersey (JER), South Devon (SD), Aberdeen Angus (AA), Highland (HIG), Holstein (HOL), Danish Red (DR), Simmental (SM), Limousin (LIM), 
Charolais (CHA), Piedmontese (PIE), Marchigiana (MAR), Asturiana de los Valles (AST), Asturiana de la Montaña (CAS), Avileña-Negra Ibérica (AVI), Pirenaica (PI). 
Between brackets: maximum n. 
4 Fatness score. 
5 N: neutral fatty acid. 
6 ↑ 16% neutral 20:3 n-6; ↑ 19% neutral 20:4 n-6. 
7 ↑ 9% 22:5 n-3; ↑ 15% 20:5 n-3; ↑ 18% 22:6 n-3. 



Statistical analysis 

Spearman correlations were determined between fatness score, fat percentage, flavour, 
juiciness, texture, and different lipid profiles of Longissimus thoracis muscle in 15 European 
cattle breeds using the CORR procedure of SAS and considering the whole set of data on all 
animals. Allele frequency data were subjected to ANOVA, using the PROC GLM procedure 
of SAS and considering breed as independent variable. A PCA procedure was performed 
using the mean of phenotypic measurements by breed and allelic frequencies from 11 
polymorphisms to determine the main traits and SNPs that explained most of the variation 
among the 15 cattle populations. The frequency of the allele showing a positive correlation 
with the trait was used (bold allele in Table 1). All these statistical analyses were carried out 
using the SAS statistical package v. 9.1.3 [28]. 

Results 

Trait correlations 

Table 2 shows the main correlations between FS, FP, flavour, juiciness, texture, and different 
lipid profiles of Longissimus thoracis. FS correlated positively with FP (r = 0.62, P < 0.001), 
and both of them with absolute amounts of lipids in muscle, including total PL and NL, SFA, 
MUFA, PUFA, n-3 and n-6 content, as well as with flavour score. However, both of them 
displayed a negative correlation to P:S ratios -explained by their higher correlations with SFA 
content (FS r = 0.4, P < 0.001; FP r = 0.68, P < 0.001) than to PUFA (FS r = 0.17, P < 0.001; 
FP r = 0.44, P < 0.001)-, and to n-6/n-3 ratios -because of their lower correlations to n-6 (FS r 
= 0.13, P < 0.01; FP r = 0.37, P < 0.001) compared to n-3 (FS r = 0.28, P < 0.001; FP r = 
0.56, P < 0.001)-. The correlation between total PL and FS (r = 0.11, P < 0.05) and FP (r = 
0.44, P < 0.001) is lower than between total NL and these traits (FS r = 0.44, P < 0.001; FP r 
= 0.78, P < 0.001). Similar correlation coefficients were also observed between PL and total 
lipid (r = 0.7, P < 0.001) and SFA (r = 0.66, P < 0.001), compared to NL with both total lipid 
and SFA (r = 0.99, P < 0.001). The correlation between SFA and MUFA (r = 0.99, P < 0.001) 
was higher than between SFA and PUFA (r = 0.7, P < 0.001). The proportion of 18:2 n-6 
declines in muscle as fat deposition increases (correlations with FP r = −0.77, P < 0.001, total 
lipid r = −0.86, P < 0.001, and SFA r = −0.88, P < 0.001). 



Table 2 Correlations between fatness score, fat percentage, flavour, juiciness, texture, 
and different lipid profiles of  Longissimus thoracis muscle in 15 European cattle breeds 
 FS1 FP2 Flavour Juiciness Texture Total Lipid  SFA 
FP 0.62***        
Flavour 0.12* 0.31***       
Juiciness 0.07 0.01 0.21***      
Texture 0.06 0.01 0.16***  0.57***     
Total Lipid 0.43***  0.77***  0.3***  −0.04 −0.02   
SFA3 0.4***  0.68***  0.3***  −0.01 0.06 0.95***   
MUFA4 0.41***  0.67***  0.28***  −0.02 0.06 0.99***  0.99***  
PUFA5 0.17***  0.44***  0.27***  −0.1* −0.02 0.73***  0.7***  
% PUFA −0.51***  −0.77***  −0.25***  −0.01 −0.02 −0.9***  −0.92***  
% 18:2 n-6 −0.53***  −0.77***  −0.25***  −0.01 −0.02 −0.86***  −0.88***  
Total PL 0.11* 0.44***  0.26***  −0.13** −0.06 0.7***  0.66***  
Total NL 0.44***  0.78***  0.3***  −0.03 −0.01 0.99***  0.99***  
n-3 PUFA6 0.28***  0.56***  0.42***  0.07 −0.02 0.63***  0.62***  
% n-3PUFA −0.24***  −0.34***  −0.01 0.08 −0.06 −0.62***  −0.62***  
n-6 PUFA7 0.13** 0.37***  0.21***  −0.13** −0.02 0.68***  0.64***  
% n-6PUFA −0.53***  −0.79***  −0.27***  −0.02 −0.02 −0.9***  −0.91***  
P:S18 −0.44***  −0.68***  −0.16***  −0.01 −0.02 −0.85***  −0.87***  
P:S29 −0.44***  −0.69***  −0.18***  −0.01 −0.01 −0.9***  −0.92***  
n-6/n-3 −0.28***  −0.47***  −0.24***  −0.08 0.04 −0.26***  −0.27***  
18:2/18:3 −0.38***  −0.67***  −0.28***  −0.02 0.04 −0.6***  −0.61***  
22:6/18:3 0.04 −0.29***  −0.26***  −0.06 −0.03 −0.38***  −0.38***  
ATT10 0.35***  0.44***  0.22***  0.13** 0.01 0.06 0.2***  

Level of significance: *** (P < 0.001), ** (P < 0.01), * (P < 0.05). 
1 Fatness score: visual fatness cover estimated by UE standard. 
2 Fatness percentage: proportion of fat (subcutaneous and intermuscular) in the rib 
Dissection. 
3 12:0 + 14:0 + 16:0 + 18:0. 
4 16:1 + t18:1 + 9c18:1+ 11c18:1 + 20:1. 
5 18:2n-6 + 18:3n-3 + 20:3n-6 + 20:4n-6 + 20:5n-3 + 22:4n-6 + 22:5n-3 + 22:6n-3. 
6 18:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3. 
7 18:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6. 
8 (18:2n-6 + 18:3n-3) / (12:0 + 14:0 + 16:0 + 18:0). 
9 (18:2n-6 + 18:3n-3 + 20:3n-6 + 20:4n-6 + 20:5n-3 + 22:4n-6 + 22:5n-3 + 22:6n-3) / (12:0 + 
14:0 + 16:0 + 18:0). 
10 (20:3n-6 + 20:5n-3)/20:4n-6. 

Flavour correlated positively with the organoleptic characteristics juiciness (r = 0.21, P < 
0.001) and texture (r = 0.16, P < 0.001). A higher positive correlation was found between 
juiciness and texture (r = 0.57, P < 0.001). Finally, beef juiciness showed a small negative 
correlation to the amount of PL (r = −0.13, P < 0.01) and PUFA (r = −0.1, P < 0.05), 
particularly to n-6 content (r = −0.13, P < 0.01). 

Apart from results in Table 2, it is worth highlighting the positive correlation between 18:1 
trans-vaccenic FA (t18:1) and CLA cis-9,trans-11 (r = 0.62, P < 0.001). 

Phenotype and genotype variation among breeds 

The plot of factor pattern of the 15 cattle breeds showing the correlations to lipid traits and 
genotypic data from 11 polymorphisms with the two principal components is shown in Figure 
1. The first two dimensions (Factor 1, 42.2%; Factor 2, 16.6%) explained 58.8% of the 



variation among breeds (Figure 1). When considering the different lipid traits, the first 
dimension was mainly influenced by total lipid measurements and flavour score, whereas on 
the opposite side muscle percentages of PUFA and of n-6, as well as P:S1, P:S2 and 
18:2/18:3 ratios are plotted . The second dimension was mainly influenced by the ATT index, 
n-3,% n-3, and juiciness. Therefore, AA, HIG, HOL, DR and JER breeds, which displayed 
higher fatness [21], appeared in the positive area of the first dimension and split into two 
groups by the influence of the higher n-3 muscle content and flavour scores of AA and HIG 
breeds, and by the higher n-6 and MUFA content of HOL and DR dairy breeds. In contrast, 
lean breeds with high proportion of PUFAs, and high P:S and n-6 to n-3 ratios, such as PIE 
and AST [21], appeared at the bottom of the plot (Figure 1). Finally, SD breed stands out 
because of its highest ATT ratio and percentage of n-3 in muscle (Figure 1). 

Figure 1 Plot of factor pattern for factors 1 and 2 of 15 European breeds showing the 
correlations to lipid traits (in black) and genotypic data (in green) from 11 
polymorphisms with the two principal components. Abbreviations: TL total lipids, NL 
neutral lipids, PL phospholipids, FP fatness percentage, FS fatness score, Fla flavour, Tex 
texture, Jui juiciness, JER Jersey, SD South Devon, AA Aberdeen Angus, HIG Highland, 
HOL Holstein, DR Danish Red, SM Simmental, LIM Limousin, CHA Charolais, PIE 
Piedmontese, MAR Marchigiana, AST Asturiana de los Valles, CAS Asturiana de la 
Montaña, AVI Avileña-Negra Ibérica, PI Pirenaica. 

Concerning SNPs distribution, they plotted mainly according to their previous trait 
associations, although also influenced by their allele frequencies per breed (Table 1). 

Discussion 

All animals included in this project (GeMQual QLK5 – CT2000-0147) were fed a similar diet 
and reared intensively under comparable management conditions between countries. The 
effects of all factors other than breed (country, diet, slaughter) were controlled to minimize 
differences and were confounded with the breed effect. Inevitably, some variations might 
have occurred but special emphasis has been put to respect the diet composition in the 
different countries. The higher absolute n-3 PUFA muscle content found in the UK breeds, 
especially in the Aberdeen Angus breed, cannot be due to a grass-based diet generally used in 
UK [29] inexistent in this study, but rather to a specific characteristic of this fat breed. 

Trait correlations 

The correlation coefficients between total muscle lipid measurements (FS, FP, total lipids, 
SFA), and absolute vs. proportional (%) amounts of PUFA, n-6 and n-3 FAs were in opposite 
directions [30,31]. For example, the sum of n-3 FA showed a positive relation to FS (r = 
0.28), FP (r = 0.56), total lipids (r = 0.63) and SFA (r = 0.62) for absolute amounts, but there 
were negative correlations between those traits and n-3 relative proportion (FS r = −0.24, FP r 
= −0.34, total lipids r = −0.62, SFA r = −0.62) (Table 2). In particular, the negative 
correlation obtained here between the percentage of 18:2 n-6 and fat measurements, as well 
as the weaker correlation between total PL and FS, FP, total lipid and SFA muscle content 
compared with NL (Table 2) [32], is in accordance with the expected proportions of PL vs. 
NL as animal fattens. Long chain PUFAs are mainly stored in muscle PL in cattle, which is 
an essential component of cell membranes and its amount remains fairly constant as the 
animal fattens, whereas NL increases in overall FA composition. SFA and MUFA are mainly 



stored in the NL fraction in triglycerides. This means increasing carcass fat leads to an 
increasing amount of FAs in triglycerides, but at the same time the relative amount of PUFAs 
is decreasing [32], which is in concordance with the negative correlation obtained here 
between the percentage of PUFA and fat measurements, as well as the weaker correlation 
between total PL and total lipid (r = 0.7) muscle content compared with NL (r = 0.99) (Table 
2). 

In agreement also with previous studies [33,34], we found a positive correlation between 
t18:1 and CLA (r = 0.62, P < 0.001), explained by the metabolic relationships between both 
FA –in ruminants the SCD enzyme forms also CLA from t18:1 in adipose tissue [29,32]. 

Although high levels of long chain n-3 PUFA have been described as having an impact on 
flavour to produce a ‘grass fed’ taste [35,36], and [37] found no correlation between n-6 
PUFA and flavour in two beef breeds, here there was only a negative correlation to the 
percentage of total PUFA, particularly to n-6 fraction, whereas the percentage of n-3 in 
muscle did not seem to influence meat flavour in cattle not fed with a grass-based diet. 

As expected, the correlation between juiciness and texture is higher than with flavour scores 
given that juiciness depends mainly on the meat water-binding capacity and plays a key role 
in meat texture [38-40], contributing to its variability [41], whereas flavour is mainly 
influenced by FA composition and marbling [42], as reflected by its positive correlations with 
all absolute fat content measurements obtained here (Table 2). Although texturel and 
juiciness properties also are dependent on other characteristics of meat, including fat content 
[40], both of them showed few or no correlation with muscle fat content or FA profile (Table 
2). 

Phenotype and genotype variation among breeds 

The distribution of breeds plotted by PCA analysis fell into three main groups (Figure 1): one 
group defined as having a high absolute fat content, which splits into two blocks –AA and 
HIG breeds on one hand, characterized by higher n-3 muscle content and flavour scores, and 
in the other hand HOL and DR dairy breeds, which displayed higher values of MUFA and n-
6-; a second group with lower fat content and higher proportion of PUFAs, as well as PUFA 
vs. SFA ratios (healthier meat) -PIE and AST-; and a large group gathering the rest of breeds 
with intermediate fat content, among which it is worth highlighting SD because of its highest 
ATT ratio (index higher values better for health) and percentage of n-3 in muscle. 

Regarding SNPs distribution, most of them plotted according to their previous trait 
associations and also influenced by their allele frequencies per breed (Table 1, Figure 1): 
PPARG, which influences the amount of 22:5 n-3, 20:5 n-3 and 22:6 n-3 in muscle [20], 
appeared near n-3 and ATT ratio -calculated as (20:3 n-6 + 20:5 n-3)/20:4 n-6- factor 
patterns, as well as almost equidistant to the three breeds with higher allele frequencies for 
the A allele –AA, CHA and SD-; CFL1, PLTP and MYOZ1, which were associated with n-6 
to n-3 ratio [19], correlated with 18:2 n-6/18:3 n-3 and specially with n-6/n-3 ratio in Factor 
1; IGF2R, previously linked to an increase in flavour [19], shared Factor 2 pattern with 
flavour and was placed almost equidistant to the three breeds with higher allele frequencies 
for the G allele –HIG, CHA and SD-; CAST was associated with an increase in FS and 
appeared closely related to the two breeds with higher allele frequencies for the A allele –AA 
and HIG-, sharing also Factor 1 pattern with FS; LPL, associated with the increase of several 
neutral n-6 [20], plotted in the same Factor 2 pattern than n-6 content, but closer to and 



almost equidistant from the three breeds with higher allele frequencies for the T allele –HOL, 
AVI and CAS-; and, as expected, GDF8 SNP was placed near the trait FS [20]. 

Finally, there were no relationships between the two SNPs in the MMP1 gene and the SNP in 
CRI1 neither with their main trait associations –CLA, 22:6 n-3 and 22:4 n-6, respectively 
[19]-, nor with breed allele frequencies, which may be caused by the other trait associations 
of this SNPs with lower or unknown effects [19]. 

Conclusions 

The wide range of traits and breeds studied, along with the genotypic information on 
polymorphisms previously associated with different lipid traits, provide a broad 
characterization of the phenotypic and genotypic background underlying variations in FA 
composition and sensory parameters between breeds, which allows giving a better response 
to the variety of consumers’ preferences. Also, the development and implementation of low-
density SNP panels with predictive value for economically important traits, such as those 
summarized here, may be used to improve production efficiency and meat quality in the beef 
industry as a molecular signature of GTTdelGCACCAA for CAST (g.2959G < A), CFL1 
(ss77831721), CRI1 (ss77832128), GDF8 (ss77831865), IGF2R (ss77831885), LPL 
(ss65478732), MMP1 (ss77831916, ss77831924), MYOZ1 (ss77831945), PLTP 
(ss77832104), and PPARG (ss62850198), respectively, which would correspond to the “most 
favourable” allele combination. 
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