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Modern technologies are frequently used in order to deal with new genomic problems. For instance, the
STRUCTURE software is usually employed for breed assignment based on genetic information. However,
standard statistical techniques offer a number of valuable tools which can be successfully used for dealing
with most problems. In this paper, we investigated the capability of microsatellite markers for individual
identification and their potential use for breed assignment of individuals in seventy Lidia breed lines and
breeders. Traditional binomial logistic regression is applied to each line and used to assign one individual
to a particular line. In addition, the area under receiver operating curve (AUC) criterion is used to measure
the capability of the microsatellite-based models to separate the groups. This method allows us to identify
which microsatellite loci are related to each line. Overall, only one subject was misclassified or a 99.94%
correct allocation. The minimum observed AUC was 0.986 with an average of 0.997. These results suggest
that our method is competitive for animal allocation and has some interpretative advantages and a strong
relationship with methods based on SNPs and related techniques.
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1. Introduction

Frequently, sophisticated methodologies are used in order to handle (sometimes huge) datasets
as in -omic studies. These methodologies are commonly based on complex computational algo-
rithms and, sometimes, in some way, there is a loss of the flavor of statistics. Although standard
statistical methods are often left aside, they can provide really interesting results in most contexts.

In this paper, we consider the breed allocation problem i.e., the allocation of individual animals
to their corresponding lines, by using microsatellite markers. Allocation of individual animals to
their corresponding lines may be achieved by analysis of shared genomic patterns. Several meth-
ods have been proposed for assigning anonymous samples to reference populations by making
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2 P Martínez-Camblor et al.

use of hypervariable genetic markers. For instance, Pritchard et al. [14] proposed an unsupervised
Bayesian-based method that provides the posterior probability of each individual originating in
each of a set of ancestral populations. These methods are frequently based on intensive computa-
tions and therefore specific software such as STRUCTURE [5], GeneClass2 [13] or Genepop
[15] is often used to solve these problems. In this work, we deal with this problem by using
standard statistical analysis. This has a connection with methods used in biomedicine to study
diagnostic ability, in particular logistic regression (LR) and the receiver operating-characteristic
(ROC) curve analysis are used for the breed allocation. In addition, an ROC-surface (average
of all involved AUCs) is proposed to measure the global quality of the classification crite-
rion. All analyses were performed by customized but simple, routines in R. In Section 2,
we introduce the particular problem. In Section 3, the employed methodology is described.
Section 4 is devoted to depict the obtained results when these techniques are applied on the
current dataset. Finally, Sections 5 and 6 provide further discussion of the work and our main
conclusions.

2. The fighting bull breed allocation problem

The Lidia bovine or fighting bull breed is reared in France, Portugal, Spain, and several American
countries. It constitutes a racial group that has fragmented into small lines, traditionally called
encastes, with different levels of gene flow among them and different sets of behavioral traits
favored in each one. The more isolated lines may have only a few animals contributing to the
gene pool and thus suffer from a loss of genetic variation and inbreeding depression, and others
might derive from a mixture of ancestral lines [4].

For each of 70 lines, individuals from the same generation were randomly sampled. Fresh
blood was taken from 1811 individuals, with approximately the same number of males and
females. They were genotyped for 24 microsatellite loci scattered over most chromosomes. These
24 microsatellite set used in the study consists of those microsatellites that were available at the
moment and which informativeness was supported by previous experience in the laboratory. The
number is within the usual range for studies based on this kind of genetic markers.

The goal is to use this information to allocate one individual within the adequate line. In
addition, the observed association between the lines and the microsatellite loci could associate
the genotype with some phenotypic features of the particular line.

3. Methodology

First, suppose that we have N subjects; of which n with the studied characteristic (one particular
line/encaste) and N − n without. We also have k variables from which we desire to classify
individuals into their appropriate group. This is a familiar problem in biomedicine where the
study of diagnostic technique is a topic and where the LR [8] is often used.

The LR is appropriate for finding the best-fitting model to describe the relationship between
a dichotomous outcome variable (in the current study, to belong or not to belong to a particular
line) and a set of independent variables (microsatellite loci) also called covariates. The specific
form of the LR model is as follows:

π(x) = [exβ t
] · [1 + ex β t

]−1,

where Y is the dependent variable (taken values 0 and 1 in subjects with and without the
characteristic, respectively), x = (1, x1, . . . , xk) is a vector with fixed values of the independent
variables, π(x) = E[Y | x] stands for the conditional mean of Y given x, and β = (β0, . . . , βk)
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is the vector of parameters. Therefore, applying the logit transformation,

g(x) = log

(
π(x)

1 − π(x)

)
= x · β t. (1)

Of course, the problem is how to estimate β = (β0, . . . , βk) usually based on the maximum
likelihood method. In this case, the estimated coefficient-vector will be the one which maximizes
the expression,

L(β̂) = log

(
N∏

i=1

π(xi)
yi [1 − π(xi)]

1−yi

)

=
N∑

i=1

{yi · log(π(xi)) + (1 − yi) · log(1 − π(xi))}, (2)

where yi’s and xi’s are the values of the dependent and independent variables, respectively (1 ≤
i ≤ N). For each variable in the model, eβj (1 ≤ j ≤ k) can be identified with the odd’s ratio
(OR) associated with this variable and, as usual (the OR is a measure of association commonly
used, especially, in epidemiology) it can be interpreted as how much more likely (or unlikely)
the outcome is when the variable increases by one unit. For qualitative covariates, a reference
group must be fixed (OR = 1) and, rest of ORs (one for group) can be interpreted as how much
more likely (or unlikely), with respect to the reference group, the outcome is within the different
levels of the covariate. Note eβ0 , appeared in the above equation, does not have an obvious
interpretation. However, for each subject (which takes the values x for covariates), g(x) can be
interpreted as a score which measures how likely it is that this particular subject was associated
with the studied characteristic. Categorical variables are included by several dummy variables in
the same model.

For the current problem, in order to compute how likely is that a subject will be from a par-
ticular line, a LR is conducted. The covariates of the LR are related to the microsatellite alleles
as follows. Recall that 0, 1 or 2 copies of a certain allele can be carried by an individual in a
certain microsatellite locus. For each possible allele of each microsatellite, two covariates are
included. The first covariate equals 1 if the individual carries at least one copy of that allele;
0 otherwise, that is, if no such copy is present. The second covariate equals 1 if the individual
carries two copies of that allele; 0 otherwise. Seventy different LRs with a number of covariates
will be performed and consequently, for each subject, 70 punctuations will be obtained. For more
information about the microsatellite loci handling, see, for instance, [3].

Once the K (K = 70 in our study) LRs have been fitted, each animal, Tj,l (with j ∈ 1, . . . , Nl,
Nl stands for the number of animals in the lth line, and with l ∈ 1, . . . , K) will be assigned to
the line which has the greatest punctuation, i.e. which from the available information, is more
plausible. Obviously, if gl(xi) = max1≤l≤K{g1(xi), . . . , gK(xi)} (gl stands for the lth punctuation,
1 ≤ l ≤ K), the classification will be correct.

Note that each model could be used in order to classify an individual as with or without the
characteristic. Consequently, the lth model (1 ≤ l ≤ K) allows one to classify the individuals
in the lth line. The ROC curves, R(·), are a valuable tool in order to describing the intrinsic
accuracy of a model. It is a plot of the sensitivity (SE) of the classification model (i.e. the ability of
the model to detect the condition of interest, the line) versus the complementary of the specificity
(1 − SP) of this model (i.e. the inability of the test to recognize individual from different lines). In
addition, the AUC (area under ROC curve, A = ∫ 1

0 R(t) dt) is often used in order to measure the
quality of binary classifications [6]. There exists a rich literature on both the ROC curves and the
AUC (see, for instance, [20] and references therein) and they have a wide range of applications
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(see [10,11] for recent reviews). In addition, the AUC has also been used as goodness-of-fit
criterion in stepwise model selection (see [12]). In this setting, each particular AUC, Al (1 ≤
l ≤ K), can be understood as the global capacity of the lth LR to identify the animals of the
lth line but not like a general line identification. However, the AUC shows the model capacity
to distinguish the origin of the animals. The ROC-surface volume (joint K-ROC curves) can be
seen as a measure (ranges between 0.5 and 1) of this capability. In the current problem, due to the
great number of possible covariates, a number of them are previously selected. This selection is
based on the ORs out of which the univariate LRs is made. Once fixed the number of covariates
to be selected, V , this procedure is equivalent to computing the P-values of the Fisher’s exact test
between the dependent variable and each independent covariate and then to select the V -variables
with the smallest P-values. Hence, the V most significant covariates are initially included within
the model. New covariates are included in the model only if the increment in the ROC-surface
volume is larger than 0.05.

4. Results

Twenty-four loci on 1811 animals from 70 different lines were collected. The variability of the
loci alleles ranged between 7 and 22. The Shannon information index [19] (SII = −∑n

i=1[fi ·
log2(fi)], where fi is the frequency of the ith allele and n is the number of different alleles
observed) ranged between 1.30 and 3.27. Figure 1 depicts the different values for both different
number of alleles and the SII order by SII.

The total number of possible (dummy) covariates were 540, which are the results of asking
to the dataset about the presence of a particular allele in each particular loci. The 40 covariates
with the smallest P-values were finally used in order to build the models. Figure 2 depicts the
minimum P-value of each loci in each model. Lines in the extremes of the plot (those labeled
as ‘15’, ‘11’,‘13’, ‘42’, ‘12’, ‘47’, ‘46’ and ‘55’) had a weaker relationship with the Loci infor-
mation (green zones). In general, each Loci had a strong relationship with several lines. Both
the loci and the lines are ordered by clustering based on the Euclidean distance of the original
dataset. Note that, in this context, the Euclidean distance between two individuals will depend
on the number of shared alleles.
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Figure 1. The Shannon information index and number of alleles for different collected loci.
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Microsatellite loci
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Figure 2. Heat map for the relationship between loci and line. The clusters are based on the Euclidean
distances on the original data.

The allocation capacity for the (complete) model was really good. Only one subject was incor-
rectly classified (99.94% were correctly allocated). In particular, one subject which belong to the
line labeled as ‘32’ was allocated within the line ‘61’. These lines are far from each other in the
cluster analysis. The minimum observed AUCs were 0.986 for the line ‘32’ and 0.993 for the
line ‘61’. The remaining AUCs were 1. The ROC surface (average of these AUCs) was 0.997
(95% bootstrap confidence interval of (0.995–1.00)).

The prediction capacity decreases when a leave-one-out cross-validation method is applied.
By using the 40 most significant covariates (from the possible 540), the observed true classifi-
cation rate was 0.791 (0.772–0.810). However, this proportion can be improved by increasing
the number of selected covariates. In particular, when we take the 100 most significant ones
(instead of the 40 ones previously taken), the true classification rate was 0.866 (0.850–0.882).
Finally, when the 250 most significant variables are used, the value of the true-classification rate
achieved 0.879 (0.864–0.894). In the last case, the particular discriminant capacity (to belong
to or not to belong to a particular line) was really good for most of the lines. The minimum
observed AUC was 0.870 (for the line labeled as ‘15’). Fifteen lines achieved an absolutely
correct separation (AUC = 1). The volume under ROC surface was 0.987 (95% bootstrap con-
fidence interval of (0.983–0.991)). Figure 3 depicts the 70 ROC curves. In addition, a box-plot
for the AUC distribution and the 3D ROC surface is also shown. The 3D ROC surface stands
for a three-dimensional figure where all the ROC curves (sorted by the AUC value) are plotted
sequentially on the z-axis. Because the number of curves is high enough, a surface is obtained.
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Figure 3. Upper, 70 ROC curves (left) and box-plot for the AUC distribution (right). Lower, ROC-surface.

When all models are considered jointly and each subject is assigned to its most plausible
line, the observed overall percentage of true classification was 87.9% (95% confidence interval
of (86.4–89.4)). The percentages of true-classification vary greatly with the line. The method
classifies poorly the lines labeled as ‘15’ with only the 22.2% of true classification percentages,
‘12’ with the 41.7%. Both lineages are characterized by a high degree of admixture (data not
shown). The remaining lines have, at less, the 50% of true classification. Sixteen lines were
classified correctly. Figure 4 depicts the punctuation of each animal for each line. In color, the
subjects which really are for the line. Note that, in some lines, subjects can be seen with a really
low punctuation in the model (line) (ojo que quito!) they belong to. Obviously, these subjects
are finally incorrectly classified. In Figure 4, the true-classification rate and a 95% confidence
interval are also shown.

There are subjects which obtain poor punctuations for all the lines i.e., there is no strong evi-
dence that they were from any of the considered lines. It is really difficult to assign, correctly,
these subjects to a particular line. When we only classify the subjects whose maximum punc-
tuations are larger than a fixed value (rest of the subjects would be labeled as undefined), for
instance 0.9 (a total of 1491, 82.3%), the true classification rate was 0.945 (0.933–0.957). This
percentage can be improved by taking a cut-off of 0.99 until the 0.950 (0.938–0.962). In the last
case, the total number of classified subjects was 1415.
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Figure 4. Punctuations of each bullfigther for each line. In color, the subject from the line. Also,
true-classification rate and 95% confidence interval for each line.

5. Discussion

Although the true classification rate of the method performed well (probability = 0.879), it is
still a bit worse than that obtained by the method based on the maximum-likelihood (0.910).
This method described in Cañón et al. [2, Section 2.5.3], correctly classified 30 lines. Besides
overlaps on classification, the two methods are based on different approaches of classification,
and obtain different results. For instance, the proposed method obtained better true classification
rates for the lines labeled as ‘61’, ‘11’ or ‘32’. On the other hand, results obtained by the LR
procedure were quite similar to those obtained from other methods based on more computing
intensive procedures, particularly based on data-mining and machine-learning approaches [7].
Of course, it is possible to improve its performance by making use of information on Mendelian
sampling and relationship between the alleles within the same microsatellite loci [3]. Moreover,
the merits of LR has already been studied. Setakis et al. [18], via simulations, show that, methods
based on LR (i) are flexible, (ii) computationally fast, (iii) easy to implement and (iv) provide
good protection against the effects of cryptic relatedness, even though they do not explicitly
model the population structure.

One of the main issues, as a most interesting topic in the area, is the number of variables to be
used. Similarly to other models, the absolute quality (true classification rate) of each particular
model does not decrease with the number of covariates (measured via pseudo R2). However, the
overall quality of the procedure can decrease when too much covariates are included. We have
observed that each models (70, in this case) must be fitted separately. When there are few posi-
tives (animals from a particular line) in the model, if too many variables are included, the model
turns unstable and the classifications are somewhat spurious. For instance, the true classification
rate for the line labeled as ‘15’ was 0.333 when 100 variables were used and decreased to 0.222
for 250 variables. We think that this is an interesting open problem which requires particular and
more research.

6. Main conclusions

Problems related with the -omic sciences often involve a huge quantity of information. Fre-
quently, the solutions to the main questions are tackled with algorithms specifically developed for
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8 P Martínez-Camblor et al.

this goal. However, standard statistical methods can prove useful for dealing with most problems.
In this paper, well-known multivariate models were used to deal with the allocation problem by
using microsatellite loci information. AUC was also used in order to measure the quality of the
performed classification and the ROC surface was employed as stopping rule for introducing
new variables within the models. The marker information is included in the form of dummy
variables. In particular, for specific loci, each allele is represented by two variables, the response
to the questions: Does almost one parent have this allele? (yes/no) and Do two parents have this
allele? (yes/no). Note that, due to this way of introducing the variables, the relationship with
problems based on SNPs information (usually a huge number of SNPs is available) and other
statistical techniques such as the logic regression (see, for instance [16,17]) or the random forest
(see, for instance, [1] or [9] for software tools) is direct.

The main advantage of the current method lies perhaps in its natural interpretation for non-
geneticists (in particular, statisticians). In addition, each model allows for discriminating each
line and identifying which microsatellite loci are specifically involved. Moreover, multivariate
methods take into account the internal data structures (correlations matrix) therefore they do not
need the independent (between loci) assumption (linkage equilibrium) no independent alelles
within the same locus (Hardy–Weiberg equilibrium).
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