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Summary The formulae for computing the so-called Sib Index using codominant alleles for (1) full-

sib and (2) half-sib parentage are given. Hypothesis testing is based on the distribution

of conditional likelihood ratio or Bayes’ factor. Thresholds for rejecting the null

hypothesis and P-values were obtained in function of the number of alleles and their

frequency distributions. Simulations showed that a relatively low number of marker

systems (e.g. 20) are enough to accept the hypothesis of sib parentage with a rea-

sonable power for usual significance levels, but that a higher number would be nec-

essary if full-sib against half-sib parentage is the contrast to be carried out. The effect of

sampling variation on the allele frequencies on power calculations is also analysed.
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Introduction

There is a need to check the correct paternity relationships

to be used for predicting the genetic merit of the individuals

included in the breeding programme through the numera-

tor relationship matrix (Henderson 1976), especially for

farmed animal species. It is well known that errors in

paternity assignment delay genetic progress, whose mag-

nitude under certain circumstances reaches that of the

amount of paternity errors in the pedigree (Ron et al. 1996).

While in these farmed species paternity testing is generally

concerned with the exclusion of paternity, in others the

requirement is to establish family relationships for legal,

social or medical reasons (Pena & Chakraborty 1994).

Exclusions of paternity are irrefutable and the power of a set

of genetic markers to exclude is systematically computed

into the exclusion probability, which depends on allelic

frequencies in the population (Jamieson 1994; Jamieson &

Taylor 1997). The availability for most domestic and many

wild animal species of a large number of highly informative

DNA markers and their utility for checking parentage have

increased the possibilities (Goodnight & Queller 1999; Rit-

land 2000; Fiumera & Asmussen 2001). In particular,

showing whether two individuals are sibs when no parental

information is accessible is one of the most frequent ques-

tions asked for at animal genetic services or forensic labo-

ratories. It is clear that under the situation, in which

exclusion of paternity is the goal, the acceptance of the

exclusion is irrefutable because, assuming no mutations and

no laboratory errors, a descendent must carry parental

alleles. However, proof of sib-ships depends on statistical

inference. This paper presents formulae to compute Sib and

Half-sib Indexes using codominant markers when parent

information is unknown and their distributions under dif-

ferent amounts of marker information.

The conditional likelihood ratio

The conditional likelihood ratio (LR) or Bayes factor has

traditionally been considered as the way to evaluate the

evidence in paternity disputes (Aitken 1997). It is the ratio

of two probabilities, the probability of G (the genotype of the

individuals) when S (both individuals are sib related) is true

[Pr(G/S)] and the probability of G when �SS is false [Pr(G/�SS)].

The likelihood ratio takes values between 0 and ¥, while its

logarithm, which receives the name of the weight of the

evidence (Good 1950), takes values on ()¥, ¥). It has been
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argued in favour of the use of the logarithm of the likelihood

ratio that the results it produces are in accordance with the

weighing of evidence in the scale of justice.

The hypotheses that we wish to test are: (a) S, both

individuals are sibs, (b) I, the individuals are unrelated

random individuals from the referenced population, (c) HS,

both individuals are half-sibs. Individuals are genotyped and

the result is G. Large LR values argue in favour of sib-ships,

whereas small values argue against it.

In the context of this paper the probability ratio is called

Sib Index or Half-sib Index.

Calculation of the Sib Index for full-sib
testing

Formally, our interest is to calculate the joint probability of

two genotypes conditioned to the fact that the individuals

carrying them are sibs, and compare it with the probability

of those genotypes when the individuals are not sibs. In

order to do that, and assuming that we are dealing with

several loci, we will show first how to do it with a particular

locus.

For a given locus A, let AiAj and AkAl be the genotypes for

A of the two individuals, and denote by s the event of them

being indeed whole sibs.

We can define the Sib Index for locus A as

SIA ¼ PbAiAj ^ AkAljsc
P AiAj ^ AkAlj:s½ � :

The probability in the denominator equals, under Hardy–

Weinberg equilibrium (2 ) dij)(2 ) dkl)pipjpkpl, where pm

stands for the frequency of allele m in the population,

m = 1,…,n, n being the number of alleles in locus A, and

dmn is the well-known Kronecker Delta, which equals 1 if

m = n and 0 otherwise. This result is obvious because both

individuals are independent in this situation.

To obtain the probability in the numerator, we need

a little algebra. We know that P AiAj ^ AkAljs½ � ¼
P AkAljs ^ AiAj½ �P AiAjjs½ �. Now, s gives no information for

the calculus of P[AiAj], hence P[AiAj|s] = (2 ) dij)pipj )
remember we are assuming HW equilibrium.

We are therefore interested in obtaining the probability of

the genotype of one sib conditioned to the fact that it is

indeed a sib of the other and to the genotype of the latter.

Now,

P AkAljs^AiAj½ � ¼
Xn

a;b;c;d¼1

P AkAl ^GP½ ¼ AaAb 	AcAd
� �

js^AiAj�;

where GP is the genotype of a hypothetical parental mating.

But

Xn

a;b;c;d¼1

P AkAl ^ GP ¼ AaAb 	 AcAd
� �

js ^ AiAj

� �

¼
Xn

a;b;c;d¼1

P AkAljGP ¼ AaAb 	 AcAd
� �

^ s ^ AiAj

� �

P GP ¼ AaAb 	 AcAd
� �

js ^ AiAj

� �
:

The sum is taken through all the possible matings for a

locus with n alleles, but, as PbGP ¼ AaAb 	 AcAd
� �

js
^AiAjc 6¼ 0 only for those matings in which one parent

carries at least one Ai allele and the other carries at least one

Aj allele, it reduces to

Xn

a;b¼1

P AkAljGP ¼ AiAa 	 AbAj

� �
^ s ^ AiAj

� �

P GP ¼ AiAa 	 AbAj

� �
js ^ AiAj

� �
:

Now, once the alleles Ai and Aj are fixed in the genotypes of

the parents, the only stochastic variation is due to Aa and

Ab, so

PbGP ¼ AiAa 	 AbAj

� �
js ^ AiAjc ¼ papb;

and therefore

P AkAljs ^ AiAj½ �

¼
Xn

a;b¼1

papbP AkAljGP½ ¼ AiAa 	 AbAj

� �
^ s ^ AiAj�:

For example, consider a locus A with three alleles A1, A2

and A3, and suppose that the reference individual is A1A2,

his putative sib A1A3 and the alleles have frequencies of p1,

p2 and p3. Then the possible matings to originate an A1A2

individual are

A1A1

A1A2

A1A3

	
A1A2

A2A2

A3A2

and thus

P A1A3js ^ A1A2½ � ¼ 0:5p1p3 þ 0:25p3p2 þ 0:25p2
3

þ 0:25p1p3

¼ 0:5p1p3 þ 0:25p3 p1 þ p2 þ p3ð Þ
¼ 0:5p1p3 þ 0:25p3:

It can be easily shown that, in general,

P AkAljs ^ AiAjð Þ ¼ 0:25 2 � dklð Þpkpl þ dik 1 þ dijð Þplð
þ djl 1 � dijð Þpk þ dikdjlÞ

" i, j, k, l ˛ {1,…, n}, n being the number of alleles in the

locus.

This formula was obtained by trying to provide a unique

expression for the explicit, separate formulae deduced for
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each sibs’ genotype combination, depicted in Table 1, for

computer programming purposes. It is important to note

that, in case of being implemented in a programme, the

genotypes to be the input in the formula have to be stored in

the right way, as denoted in Table 1. For example, to

compute, P AjAijs ^ AiAjð Þ, the haplotype AjAi has to be

input as AiAj. Otherwise the formula will not work properly.

Of course it is possible to generalize a step beyond, but the

expression thereby obtained is far more obtuse.

Note that, as expected, the sum of the probabilities along

the rows equals 1.

The Sib Index for locus A would thus be

SIA ¼ 2 � dklð Þpkpl þ dik 1 þ dijð Þpl þ djl 1 � dijð Þpk þ dikdjl

4 2 � dklð Þpkpl
:

When considering multiple independent loci, as usually

happens in the situations in which this procedures are

useful, the joint Sib Index would be the product of the dif-

ferent indexes. Hence, SI ¼
QM

m¼1 SIm:

Note that although this rationale is based on the calcu-

lation of a conditional probability on the genotype of one of

the putative sibs in order to obtain the joint probability of

the two putative sibs’ genotype, the choice of the genotype

upon which the probability is to be conditioned has no

influence on the final result.

Calculation of the Sib Index for half-sib
testing

Although with some variations that we will discuss later on,

the situation is fairly analogous to the full-sib case. Assuming

the same locus notation as in the previous section, we look for

the value of the quotient
PbAiAj^AkAl jhsc
P AiAj^AkAlj:hs½ �, which will be called

the Half-sib Index for locus A, and denoted as HSIA, and

where hs denotes the event of the two individuals being half-

sibs. For the same reasons as above, we can restrict ourselves

to calculate pbAkAljhs ^ AiAjc. Now, instead of expanding

this probability by intersecting with the genotypes of the

parents, we will do it only with the genotype of the father,

denoted as GF, because both individuals share the same

father, but not necessarily the same mother. Therefore,

P AkAljhs ^ AiAj½ � ¼
Xn

a;b¼1

P AkAl ^ GF ¼ AaAbjhs ^ AiAj

� �
:

Now,

Xn

a¼1
b�a

P AkAl^GF¼AaAbjhs^AiAj

� �

¼
Xn

a¼1
b�a

P AkAljGF¼AaAb^hs^AiAj

� �
P GF¼AaAbjhs^AiAj

� �

¼
Xn

a¼1

P AkAljGF¼AiAa^hs^AiAj½ �½ P½GF¼AjAajhs^AiAj�

þ 1�dijð ÞPbAkAljGF¼AjAa^hs^AiAjc
PbGF¼AjAajhs^AiAjcc

¼
Xn

a¼1

0:5 1þdijð Þpa P AkAljGF¼AiAa^hs^AiAj½ �½

þ 1�dijÞPbAkAljGF¼AjAa^hs^AiAj:ccð

Consider the simplest example, in which one individual

bears genotype A1A2, and the other A3A4, all the alleles

Table 1 The nine possible cases for P AkAljs ^ AiAj

� �
. In rows the possibilities for the individual in the condition; in columns the possibilities for

the individual whose genotype’s probability is calculated.

Homozygous

sharing two

alleles (AiAi)

Homozygous

sharing one

allele (AiAi)

Homozygous

sharing zero

alleles (AkAk)

Heterozygous

sharing two

alleles (AiAj)

Heterozygous

sharing one

allele (AiAl)

Heterozygous

sharing zero

alleles (AkAl)

Homozygous (AiAi) 0.25(1 + pi)
2 0.25pk

2 0.5(pipl + pl) 0.5pkpl

Heterozygous (AiAj) 0.25pi(1 + pi) 0.25pk
2 0.5[pipj + 0.5(1 + pi + pj)] 0.5(pipl + 0.5pl) 0.5pkpl

Figure 1 Empirical probability density functions of the log-Sib Index

(up) and log-Half-sib Index (down) under the two hypotheses tested in

each (null hypothesis on left). In the middle, empirical pdf of the Log-

PR of being full sibs (H0) vs. being half-sibs. All of them obtained for a

random set of frequencies for 20 markers with five alleles each and 106

simulations.
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being different from each other, we try to find the proba-

bility of genotype A3A4 conditioned to the fact that a half-sib

of him carries A1A2. Then

P A3A4jhs ^ A1A2½ �
¼ 0:5p3 P A3A4jGF ¼ A1A3½ � þ P A3A4jGF ¼ A2A3½ �½ �
þ 0:5p4 P A3A4jGF ¼ A1A4½ � þ P A3A4jGF ¼ A2A4½ �½ �:

Now, P[A3A4|GF = A1A3] is the probability of the individ-

ual carrying allele A4 and the father passing A3, which

equals 1/2p4. Therefore, P A3A4jhs ^ A1A2½ � = 0.5p3[1/

2p4 + 1/2p4] + 1/2p4[1/2p3 + 1/2p3] = p3p4.

As in the previous situation, we can build up a table with

all the possible cases, such as Table 2.

As before, it is easy to show that the probabilities in each

row sum one, as expected from a well defined probability

measure.

Again, a more general formula can be induced from the

table:

P AkAljhs ^ AiAjð Þ ¼ 0:25 2 2 � dklð Þpkpl þ dik 1 þ dijð Þplð
þ djl 1 � dijð ÞpkÞ;

and the same comments of the previous case regarding

alleles ordering in the haplotypes apply here.

Thus, the Half-sib Index for locus A is defined as

HSIA ¼ 2 2 � dklð Þpkpl þ dik 1 þ dijð Þpl þ djl 1 � dijð Þpk

4 2 � dklð Þpkpl
;

and the joint Half-sib Index for multiple and independent

loci is

HSI ¼
YM

m¼1

HSIm:

Hypothesis testing

Simulation routines were developed to study the perfor-

mance of the test under several situations. Empirical power

values and probability density functions were obtained for

different marker configurations, allele frequency situations

and significance levels. Allele frequencies were simulated for

populations with 10, 20 and 30 markers, all of them having

the same number of alleles, either 5 or 10. The sets of fre-

quencies were generated in three different ways: at random,

uniformly with slight variations and uniformly with slight

variations except but some extreme frequency alleles. Uni-

form with slight variations means here that if the number of

alleles for a certain locus is n, each allele is present not with

frequency 1/n, but 1/n ± 0.01 (f1 = 1/n + 0.01, f2 =

1/n ) 0.01, and so on, with fn = 1/n ) 0.01 if n is even and

fn = 1/n if n is odd). Uniform with slight variations but with

some extreme frequency alleles means the same as above

except that 20% of the loci involved are considered to have

extreme frequency alleles, that is, all the alleles but one are

present with frequency 0.01. The power was obtained for

three significance levels: 0.001, 0.0001 and 0.00001. To

obtain the power of one test for a set of allele frequencies,

100 000 pairs of individuals were simulated with those

frequencies under null and another 100 000 under alter-

nate hypotheses. Formulae in Table 1 or 2, depending on

the contrast, were applied to the 100 000 pairs on each

hypothesis, and thus 200 000 values of the statistic were

obtained, 100 000 under each hypothesis. For a signifi-

cance level a, the (1 ) a) · 100 000th highest value of the

100 000 H0 values was taken as the rejection threshold,

and so the power was obtained as the proportion of H1

values above that threshold. Probability density values were

empirically approximated by taking histogram values as pdf

values, with histogram values calculated for 1000 narrow

intervals. The method was applied as well in a real Irish-

Setter dog breed population, to test the parentage of two

putative full sibs. Allelic frequencies were estimated from a

total of 64 individuals.

Tables 3–5 show the figures for the different scenarios.

As expected, the increase of information from markers

results in an increase in power. Reasonable values are

obtained for full-sib parentage determination for a non-

rare situation of 20 markers with five alleles each. If the

number of markers grows up to 30, maintaining the

plausible value of five alleles per marker locus, it makes

the test show good levels of power, even for a significance

level as low as 10)4. Raising the number of alleles per

locus would keep the power high even for a = 10)5. As

depicted in Fig. 2, in the perhaps overly optimistic situa-

tion of having 10 alleles per locus for a total of 30

markers, the density functions of the natural logarithm of

Table 2 The nine possible cases for P AkAljhs ^ AiAj

� �
. In rows the possibilities for the individual in the condition; in columns the possibilities

for the individual whose genotype’s probability is calculated.

Homozygous

sharing two

alleles (AiAi)

Homozygous

sharing one

allele (AiAi)

Homozygous

sharing zero

alleles (AkAk)

Heterozygous

sharing two

alleles (AiAj)

Heterozygous

sharing one

allele (AiAl)

Heterozygous

sharing zero

alleles (AkAl)

Homozygous (AiAi) 0.5pi(1 + pi) 0.5pk
2 0.5(2pipl + pl) pk pl

Heterozygous (AiAj) 0.25pi(1 + 2pi) 0.5pk
2 0.5[2pipj + 0.5 (pi + pj)] 0.5(2pipl + 0.5pl) pk pl
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the test under the null (independent individuals) and

alternate (full-sibs) hypotheses have almost no intersec-

tion, which makes the contrast have very little error.

Results also suggest that the test performs better for uni-

form allelic frequency distributions than for the cases in

which alleles with extreme frequencies are involved.

On the other hand, power values for half-sib testage,

both vs. independency and vs. full-sibship are not very

encouraging, because for optimum conditions of having

30 markers with 10 alleles each and the lowest signifi-

cance level, power gets to about 75% in the best cases.

This outcome was expected, as testing for half-sibship

with no parent information implies allowing for different

genotypes on the non-shared parent, so there is a loss of

information which lowers the power of the test. Figure 2

shows this situation more graphically, because distribu-

tions under null and alternate hypothesis share much of

their support. In any case, for individual purposes, testing

is always advisable, as it may happen that the individuals

are in fact genetically distant and P-values result con-

clusive.

Figure 3 shows the plots for a real data set from an Irish-

Setter dog breed population. A total of 18 molecular

markers (microsatellites) were analysed, with the number of

alleles ranging from 3 to 14, the mean number being 6.94

and a mean expected heterozygosity value of 0.64. Table 6

shows the figures for power in this situation. Reasonable

power is obtained only for full-sibship vs. independency

comparisons for a = 0.001.

Simulations were also performed to determine whether

sampling variation on the allele frequencies affect power

calculations. First, 1000 sets of random allele frequencies

for 15 markers, each of them with seven alleles, were

generated, and for each set, the power for the independent

vs. full sibs test was calculated. The mean power among the

1000 sets was of 0.864 ± 0.010 for a = 0.001. This shows

that very different sets of allele frequencies provide similar

power estimates, so the power of the test relies in the

Figure 2 Empirical probability density functions of the log-Sib Index for extreme marker situations: the least informative (10 markers, five alleles/

marker) in the left column and the most (30 markers, 10 alleles/marker) in the right. Pdfs were obtained for random sets of allelic frequencies

(upper row) and pseudo-uniform ones (lower row).
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number of markers and alleles, more than in the frequencies

distribution. For the Irish-Setter population, the estimated

frequencies were taken as true values and from them 1000

samples of 25, 50 and 100 individuals, respectively, were

generated. For each sample of individuals allelic frequencies

were re-estimated, and the new estimations were used to

calculate the power of the independent vs. full sibs test. The

mean power for a = 0.001 was of 0.775 ± 0.017 for a

25-individual sampling scheme, 0.796 ± 0.014 for a

50-individual one and 0.806 ± 0.012 for the 100 samples.

We see then that multiplying by four the sample size to

estimate the allelic frequencies increases the accuracy of

power estimation by only 0.5%, which supports our previ-

ous conclusion. We can also conclude that, as expected, the

higher the sample size, the more accurate the estimation in

terms of deviation with respect to the assumed real value of

0.816 (see Table 6). Nevertheless, with a reasonably low

sample size of 50 individuals the mean error in the power

estimation is only 2.5%.

Other authors have developed similar methods. Goodnight

& Queller (1999) presented Kinship, a software for perform-

ing likelihood tests of pedigree relationships. Their method,

however, is based on inaccurate probability calculations.

Take, for instance, the most unquestionably wrong case,

that of two supposed unrelated individuals carrying four

different alleles for a certain marker, say A1A2 and A3A4. It is

clear that the likelihood of the two genotypes under the non-

relationship hypothesis must be 2p1p2 · 2p3p4 = 4p1p2p3p4,

where pi stands for the frequency of Ai, i = 1,…,4. According

to Goodnight and Queller’s procedure and the formulae in

Table 2 of Goodnight & Queller (1999), the likelihood would

equal 4
4 p1p2p3p4 = p1p2p3p4, which is clearly incorrect.

Probably the inaccuracy lies in the allele by allele approach

that they followed in the deduction of their formulae. In any

case, their results are not comparable with ours, because

they calculate the number of loci needed for a power of 0.5

and a significance level of 0.05, which is too high a figure for

the usual forensic applications. Furthermore, they consider

loci with 20 equally frequent alleles per locus, which is a

certainly unrealistic situation to simulate.

Conclusions

Formulae are given to compute the probabilities ratio for

different hypotheses when sibs or half-sibs are implied and

parents are not known. Results, obtained under the Hardy–

Weinberg assumptions and assuming that population allele

frequencies are known without error, show that the amount

of information generally used by the service laboratories can

be sufficient to test full-sib or, with some less certainty, half-

sib parentage, as more marker information will be required

to reach equivalent power.
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