
Large-Scale Mitochondrial DNA Analysis of the Domestic
Goat Reveals Six Haplogroups with High Diversity
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Background. From the beginning of domestication, the transportation of domestic animals resulted in genetic and
demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic
diversity helps to better understand the history of domestic species. Methodology/Principal Findings. The genetic diversity
of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from
regions poorly studied until now (mainly the Fertile Crescent). These individuals represented 1540 haplotypes for the HVI
segment of the mitochondrial DNA (mtDNA) control region. This large-scale study allowed the establishment of a clear
nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent
enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile
Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within
geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup
(more than 90% of the individuals). The large-scale distribution of other haplogroups (except one), may be related to human
migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial
markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent
demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it
remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals.
Conclusions/Significance. We propose standard criteria for the definition of the different haplogroups based on the result of
mismatch analysis and on the use of sequences of reference. Such a method could be also applied for clarifying the
nomenclature of mitochondrial haplogroups in other domestic species.
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INTRODUCTION
More than 10,000 years ago, the transition of humans from

hunting to the manipulation of the behavior of certain animals

lead to the process of domestication [1]. This process contributed

to the rise of human civilization by enabling people to settle into

a sedentary lifestyle. The goat was one of the first domesticated

animals [2–4]. It was a source of milk, meat, dung for fuel and

materials for clothing and building such as hair, bone and skin

[1,5]. Archaeological studies suggested that the domestic goat

Capra hircus was domesticated from the bezoar Capra aegagrus in the

Fertile Crescent [e.g. 6–8]. This origin was confirmed by genetic

studies based on mitochondrial [e.g. 9,10] and nuclear DNA [11].

From the beginning of the domestication process, the exchange

and transportation of domestic animals has been related to human

migration and trade. This resulted in genetic (e.g., selection, gene

flow) and demographic processes that explain the present worldwide

distribution of more than 300 different breeds of Capra hircus and

their genetic structure [2]. Thus, the present genetic diversity bears

the molecular signature of past events, such as rapid demographic

expansions. Therefore, the study of this diversity helps to reconstitute

the evolutionary history of the goat [12] and could bring new facts

that help to understand the history of domestication.

Mitochondrial DNA is commonly used for the study of

domesticated species. The control region has been especially used

for describing the genetic polymorphism of goats [13], because it is

variable and structured enough across the geographical range of

the species, and evolves at a constant rate [12]. Moreover, it allows

maternal lineages to be followed and is less sensitive to

introgression from wild species than nuclear DNA [13]. However,

studies on nuclear genes are needed because they give information

on gene flow and selection processes that had a great influence on

the evolution of livestock species [12].

Luikart et al. [13] conducted the first study of the overall genetic

structure of domestic goats at the worldwide scale. They analyzed

406 individuals representing 88 breeds from the old world. They

found three mitochondrial haplogroups (A, B and C) that diverged

more than 200,000 years ago and have undergone demographic
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expansion at different times. This would suggest multiple maternal

origins of domestic goats or introgression of other haplotypes after

the first domestication event. Moreover, they showed that most of

genetic diversity occurred within breeds, and interpreted the very

weak geographic structure as the result of the extensive

transportation of goats among continents.

The initial global survey by Luikart et al. [13] has been followed

by regional studies describing more precisely the genetic diversity

of goat breeds. However, these studies were always realized in

restricted geographic regions corresponding to different countries

such as Pakistan [14], India [15], China [16], South Korea [17],

Sicily [18], Spain [19,20] and Portugal [21]. The existence of

three new haplogroups has been suggested [14,15,18]. However,

this has sometimes been based only on a few individuals, and

without comparing the new divergent haplotypes to a sample

representative of the worldwide haplotype diversity. In general, the

identification of a new haplogroup might be controversial in the

absence of standardized criteria. All previous studies describing the

mitochondrial polymorphism of domestic animals use the term of

‘‘maternal lineage’’ for characterizing a group of closely related

haplotypes. However, this term is ambiguous as it usually

corresponds to many haplotypes, and thus to many maternal

lineages sensu stricto. As a consequence, we propose to use

‘‘mitochondrial haplogroup’’ instead of ‘‘maternal lineage’’, a term

that is already in common use in genetic studies.

In this context, the goals of the present study are (i) to characterize

the domestic goat mtDNA diversity based on a worldwide sampling

and make a global synthesis including previous studies, (ii) to

establish the relationships between mitochondrial haplogroups and

to propose a clear nomenclature, and (iii) to give standard criteria for

the definition of mitochondrial haplogroups. For this purpose we

used data from previous studies (1484 sequences retrieved from

GeneBank), and we analyzed 946 new samples from all over the old

world. New samples were especially taken from localities that have

not been adequately sampled before, and that may have played an

important role in the history of goat domestication (i.e., Middle East

and especially the Fertile Crescent).

RESULTS

Sequence polymorphism
The HVI fragment of the control region shows a high poly-

morphism with 336 variable sites over the 558 bp of the

alignment. We observed 285 substitutions (226 transitions and

59 transversions) and 110 insertions/deletions (from 1 to 76 bp).

The 2430 individuals correspond to 1540 different haplotypes.

Phylogenetic analysis and genetic structure of

domestic goats
The Neighbor-joining tree of the 2430 domestic goats (Figure 1)

shows 6 highly divergent groups corresponding to different

mitochondrial haplogroups called A, B, C, D, F (according to

previous studies) and G. Each group has high haplotype diversity

(Table 1), and has been defined by high bootstrap values (except

a bootstrap of 53 % for A ; Figure 1A), and by high mean pairwise

distance with all other groups (see below). The A haplogroup is the

most represented when considering either the number of

individuals or the number of haplotypes and is highly dominant

all over the old world (Table 1 and Figure 2). Except for two

individuals situated at the base of the B group, this clade is

composed of two sub-groups, B1 (35 haplotypes) and B2 (9

haplotypes), as previously defined by Chen et al. [16]. The B

group is mostly found in whole Asia, with a few individuals from

the Sub-Saharan Africa and one European goat from Greece. The

B2 individuals are restricted to China and Mongolia. Goats from

the C group are from whole Asia and Europe and the D group is

present in the whole Asia and Northern Europe. The three goats

from the F group are from Sicily. The G group has not been

Figure 1. Neighbor-joining trees of domestic goat based on 1540
mtDNA haplotypes (A) and on the 22 reference mtDNA haplotypes
(B). Distances were calculated using the Kimura 2-Parameter model
with gamma correction (alpha = 0.28). On the (A) tree, the numbers on
the branches represent bootstrap values out of 1000 replications, and
the stars point out the position of reference individuals for each
haplogroup used to construct the (B) tree (see Table 5).
doi:10.1371/journal.pone.0001012.g001

Table 1. Genetic diversity of goat mtDNA haplogroups
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

haplogroup # individuals (%) # haplotypes (%) haplotype diversity

A 2208 (90.86) 1440 (93.51) 0.999260.0001

B 144 (5.92) 46 (2.99) 0.900060.0197

B1 107 (4.40) 35 (2.27) 0.840260.0333

B2 35 (1.44) 9 (0.58) 0.815160.0481

C 35 (1.44) 23 (1.49) 0.971460.0136

D 13 (0.54) 10 (0.65) 0.948760.0506

F 3 (0.12) 3 (0.19) 1.0000

G 27 (1.11) 18 (1.17) 0.954460.0254

doi:10.1371/journal.pone.0001012.t001..
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reported until now, and is present in Middle East and Northern

Africa, near the Fertile Crescent.

The haplotype diversity is very high all over the Eurasia and

Africa with a value above 0.97 in 39 of the 54 studied countries

(Table 2). More than 77% of the mtDNA variation is distributed

within breeds while about 11% is found among breeds within

geographic regions and 12 % among geographic regions (Table 3).

Nevertheless this low but significant geographic structure is

coherent with the fact that all breeds are composed of individuals

from the A group, with eventually a lower percentage of

individuals from other haplogroups (for about 25% of the breeds).

This low geographic structure is also confirmed by the distribution

of all haplogroups that are present in several regions (except for F).

Most of the mtDNA diversity is distributed among groups and

within geographic regions, while less than 4% of this variability is

found among regions within groups (Table 3).

Figure 2. Geographic distribution of domestic goat mtDNA haplogroups. The size of each circle is proportional to the sample size and each specific
haplotype is represented by a different colour.
doi:10.1371/journal.pone.0001012.g002
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Demography of mitochondrial haplogroups
Because of the low number of goats in the F group, demographic

parameters were not estimated for this group. The overall

mismatch distribution shows a multi-modal distribution (Figure 3).

The first peak with a maximum of 10 pairwise differences

corresponds to the differences between haplotypes from the same

group. Two other peaks with maxima at 27 and 39 pairwise

differences correspond to differences between haplotypes from

different groups. The distributions of within-groups and between-

groups pairwise differences have a very thin overlap around 20

mismatches. The mismatch distribution analysis reveals a unimodal

bell-shaped distribution of pairwise sequence differences for all

haplogroups (Figure 3), except for B that is bimodal (data not

shown). B1 and B2 are unimodal, and individuals from these sub-

groups generally differ by 8 or 9 mismatches (always less than 14

mismatches). This unimodal pattern that is less clear for the D

group, perhaps because of the low sample size (n = 13), would be

coherent with recent demographic expansions. The time of

expansion would differ according to the group, as suggested by

the different means of pairwise distribution (Figure 3) and the

estimations made under a model of pure demographic expansion

[22] (Table 4). However, the validity of the expansion model used

for estimating the expansion time is only accepted for the A, C

groups (SSD P-Values ,0.00001 and #0.05 respectively see

Table 4). All groups have high growth rates indicating high

demographic expansion (Table 4). The estimates differ according

Table 3. Partition of the genetic variance among haplogroups, breeds and continental regions revealed by hierarchical AMOVAs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Source of variation AMOVA haplogroups/regions AMOVA regions/breeds

Among haplogroups
Among regions
within haplogroups Within regions Among regions

Among breeds
within regions Within breeds

d.f. 5 20 2404 6 166 1429

% of variation 74.62 3.56 21.82 12.06 10.79 77.14

P value ,0.0001 ,0.0001 ,0.0001 ,0.0001

doi:10.1371/journal.pone.0001012.t003..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

Figure 3. Mismatch distributions for mtDNA haplogroups of domestic goats. For the overall dataset, the distribution of pairwise differences were
realized separately for comparisons between and within haplogroups.
doi:10.1371/journal.pone.0001012.g003
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to the groups, but the overlapping of confidence intervals, as well

as the different sample sizes, preclude further interpretation.

DISCUSSION

High mtDNA diversity in domestic goat
The very high mt DNA diversity may partly result from a high

mutation rate of the control region. Higher pedigree divergence

rates than phylogenetic divergence rates have been shown for the

control region in human [23] and other animals (e.g.,[24,25]).

This could explain that we observe a higher diversity than the one

expected with the phylogenetic mutation rate estimated for

Bovidae (i.e., 30.1 % of divergence per Myr on the total control

region sequence based on the Bos/Bison divergence [26]). Such

high variability could also result from the selection of poly-

morphism but, to our knowledge, this has never been shown for

the control region. Another explanation would be the capture of

a large part of the diversity of the wild ancestor (i.e., the bezoar)

during the domestication, with a large maternal effective

population size. Testing this last hypothesis requires comparing

the diversity of goats to that of the bezoar [27].

Characteristics and nomenclature of mitochondrial

haplogroups
Five reliable mitochondrial haplogroups have previously been

described in domestic goats [13–15,18]. However, most of the

previous studies were based on local samples and thus only

considered a part of the whole haplotype variability. Therefore, it

may be difficult to assess the pertinence of defining a new group on

the base of few haplotypes. It would also be difficult to make the

correspondence between several studies analyzing samples from

different geographic origins. Our study can lead to a clear

nomenclature of goat mitochondrial haplogroups, because we

analyzed 2430 goats representing 1540 different haplotypes from

all over Africa, Asia and Europe (946 new sequences mainly from

the region of domestication and 1484 sequences from previous

studies). We revealed the existence of 6 highly divergent groups.

Five of them (A, B, C, D and F) have already been described, and

one (G) is a new group. The two sequences that have been

previously used to define the E group [15] now fall within the A

haplogroup. This is partly due to the finding of new haplotypes,

which are intermediate between those from A and E used by Joshi

et al. [15]. Therefore, the E group cannot be considered as

a mitochondrial haplogroup anymore. The B clade is composed of

two groups (B1 and B2) that have previously been described as

‘‘sub-lineages’’ by Chen et al. [16]. We agree that the B1 and B2

are part of the same haplogroup because the genetic divergence

between them (pairwise differences always lower than 14

mismatches) is lower than the divergence between all pairs of

haplogroups (more than 20 mismatches). They must be considered

as two subgroups because even with a low divergence they are

supported by robust bootstrap values.

Standard criteria for defining goat mitochondrial

haplogroups
More generally, previous considerations point out the problem of

defining groups and sub-groups. A new haplogroup is defined

when it highly diverges from all other haplotypes. However, the

haplogroups may change over time, as more and more haplotypes

will be available. We faced this situation for the E haplogroup that

is no valid any more. There is therefore a need for standard and

easy-to-use criteria in order to assign new goat haplotypes to

existing haplogroups or to define new haplogroups. A haplotype

can be related to an existing group if it presents a moderate genetic

divergence from this group. The difficulty may be to define what is

a ‘‘moderate’’ divergence. It can be deduced from the distributions

of pairwise sequence differences within and between haplogroups.

For goats, almost all haplotypes from the same group differ by less

than 20 mismatches (whatever the group) while haplotypes from

different groups usually present more than 20 mismatches

(Figure 3). This threshold value would give a quick and easy

indication for almost all studied haplotypes. However, it may be

inadequate for some haplotypes (about 1% in our study) because

the two mismatch distributions overlap.

Given the increasing number of sequences available, analyzing

new haplotypes together with all previously published sequences

will be time consuming and will require huge computational

resources. Moreover several programs cannot be used because the

algorithm complexity does not allow managing such datasets.

Especially when a few haplotypes from restricted localities are

studied, their assignation to haplogroups should be quick and easy.

For a first approach, an accurate solution would be to place the

new different haplotypes in a phylogenetic tree containing

sequences of reference representative of the diversity of C. hircus

mitochondrial DNA. For this purpose we have selected 22

haplotypes representing the variability of the 6 present goat

mitochondrial haplogroups (Table 5 and Figure 1B).

Four of the 1540 haplotypes present a tandemly repeated

sequence of 76 bp. Three individuals are from the A group (from

Iran, Morocco and India) and one from the B1 sub-group (Malaysia).

Such tandem repeats are common in vertebrate species [28] and

have already been found in the Bovidae family [29]. They are

attributed to slippage-mispairing events that are more likely to

appear in regions where the polymerase activity is interrupted [28].

This phenomenon corresponding to a single duplication event is

Table 4. Estimation of demographic parameters from genetic data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

haplogroups t (0.95 CI) Validity of the expansion model SSD (P-value) Rough estimation of Expansion time Growth rate (0.95 CI)

A 10.07 (9.74–10.42) 0.00071 (P,0.0001) ,9000–9700 308 (199–344)

B1 1.855 (0.73–3.19) 0.0008 (P = 0.70) - 333 (201–412)

B2 1.584 (1.10–2.65) 0.0095 (P = 0.20) - 108 (14–324)

C 6.37 (4.99–7.84) 0.00795 (P = 0.05) ,4600–7300 185 (158–291)

D 9.10 (5.50–13.01) 0.0141 (P = 0.20) - 334 (173–509)

G 5.79 (2.85–11.22) 0.0021 (P = 1.00) - 209 (144–293)

Note. - See material and methods for the methods used for estimating the demographic parameters. CI: Confidence Interval. SSD: sum of square deviations between the
observed and the expected mismatch distributions.
doi:10.1371/journal.pone.0001012.t004..
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found in a few individuals from different haplogroups, and has

occurred more than once in the history of goats.

Genetic structure of domestic goats
Our results show that most of the genetic variation is found among

goat haplogroups, with a weak phylogeographic structure. The

strongly dominant A group (91 % of the goats) is distributed

worldwide, and even if the other groups have more restricted

distributions they still occupy large geographic areas (Figure 2).

The F group is the exception, with three haplotypes restricted to

a single locality (Sicily) that could have been brought along from

recently captured wild goats. However, the sampling effort may

still be insufficient to see the whole distribution of haplogroups

other than A, because of their low frequency. The differences

among geographic regions at the worldwide scale are low (about

12%) but significant. This is concordant with previous results

showing a very weak phylogeographic structure of goats [13] and

sheep [30,31] compared to cattle [32,33]. The genetic differences

among continental regions could partly result from the differential

geographic distribution of mitochondrial haplogroups. However,

there is still a low but significant genetic variation (3.5%) among

region within groups, indicating regional differentiations of

haplotypes. At the regional scale, the lack of geographic structure

has also been reported in several places [16,19,21] while a structure

has been found in India [15]. The weak phylogeographic structure

found today in goats has been explained by a high mobility of this

species in relation to human migration and commercial trade

[12,13,34]. This mobility would have been higher than those of

cattle due to their versatility in feeding habits and ability to live

under extreme conditions [1]. However, the mixing of goat

haplogroups could have existed before the worldwide translocation

of goats. The presence of goats in Cyprus 10,000 years ago [35]

suggests that goats could have been translocated within the

domestication area since the first domestication events. Moreover,

we cannot exclude that the mt-haplogroups were already mixed in

the wild ancestor before domestication. When considering the

local scale, the genetic pattern of domestic goats also seems related

to human history. For instance, the geographic structure found in

Indian goats would have a common historical basis in the

sequential migrations of human populations with different cultural

and linguistic characteristics [15].

However, the information given by mitochondrial markers is

limited because it does not detect male-mediated gene flow and

does not predict the nuclear genomic diversity [12]. In particular,

the breeds cannot be distinguished on the base of mtDNA

[16,19,20] while nuclear markers show a genetic structure [36–

38]. Our study confirmed that more than 77 % of the mtDNA

variation is found within breeds and that nearly 25% of the breeds

are composed of at least 2 haplogroups. This is in accordance with

the recent fragmentation of local goat populations into discrete

breeds about 200 years ago, under strong selection pressures on

a few phenotypic traits [39]. This structure can be seen on nuclear

markers linked to selected parts of the genome, but not on

mitochondrial markers. Then, looking at the evolutionary history

of breeds using mtDNA markers could lead to misinterpretation.

For example, a breed composed of two mitochondrial haplogroups

would have a bimodal mismatch distribution due to within- and

between-breeds pairwise differences, and should not be interpreted

in term of demographic history of the breed. Thus, fully

understanding the evolutionary history of domestic goats would

also require the use of nuclear markers.

Demography of mitochondrial haplogroups
The present structure of the genetic diversity retains the signature

of past demographic events and helps reconstitute the evolutionary

history [40]. The estimation of demographic parameters remains

difficult because of the difficulties of verifying the hypothesis of the

models used, of estimating accurate initial parameters (e.g.,

absolute date of domestication) and sometimes because of low

sample sizes. However, rough estimations from the present work

and previous studies [13,15,16] are concordant and agree on the

same scenario. All haplogroups had a recent demographic

expansion corresponding roughly to the period when domestica-

tion took place about 10,000 years ago. It is difficult to give relative

dates of expansion because of large confidence intervals, especially

for D and G groups, but our results confirm that the expansions of

B and C groups were more recent than that of A [13]. Also, our

results show that all groups had high growth rates, with a tendency

for slower growth in B2 sub-group and C and G. A faster growth of

A relative to C is in accordance with archaeozoological data: the

genotyping of fossil goats showed that about 7000 years ago A and

C were equally represented in Southern France [34] while A is

strongly dominant in Southern Europe now.

Limits of genetic data from domestic goats for

reconstituting the history of domestication
Divergence time between haplogroups has been estimated on

adequate molecular markers (mainly cytochrome b) between

103,000 and 597,800 years [13–16]. All these values are far

greater than the domestication time, showing that most of goat

genetic diversity existed before domestication, and that several

haplogroups were domesticated in one or several events. However,

Table 5. The 22 reference individuals of the 6 domestic goat
haplogroups

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

haplogroup
Geographic origin
(Country)

Accession
Number Reference

A India AY155721 Joshi et al. 2004

A Italy EF618134 This Study

A France EF617779 This Study

A Jordan EF618200 This Study

A Iran EF617945 This Study

A Iran EF617965 This Study

B1 Laos AB044303 Mannen et al. 2001

B1 Azerbaijan EF617706 This Study

B2 Mongolia AJ317833 Luikart et al. 2001

B2 China DQ121578 Liu et al. 2006

C India AY155708 Joshi et al. 2004

C Switzerland AJ317838 Luikart et al. 2001

C Spain EF618413 This Study

C China DQ188892 Liu et al. 2005

D India AY155952 Joshi et al. 2004

D Austria EF617701 This Study

D China DQ188893 Liu et al. 2005

F Sicily DQ241349 Sardina et al. 2006

F Sicily DQ241351 Sardina et al. 2006

G Iran EF618084 This Study

G Turkey EF618535 This Study

G Egypt EF617727 This Study

doi:10.1371/journal.pone.0001012.t005..
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the genetic data available for domestic goats does not permit

furthering our understanding of the domestication process and

identifying potential domestication centre(s). A higher genetic

diversity would have been expected near the Fertile Crescent

where the goat domestication took place according to archaeo-

logical data, and where extensive sampling has been done. But the

haplotype diversity is similar all over the world (more than 80% of

the countries with a haplotype diversity greater than 0.9), because

of the high migration rates in domestic goats due to human

migration and commercial trade.

Moreover, the presence of a possible ancestral haplotype in

a particular area does not prove that this is a domestication centre,

since many events could have occurred to mask the real history

(e.g., coalescence or founder effects). For instance the domestica-

tion of a B sub-group in China supported by genetic data [16] is

doubtful since the wild ancestor of the domestic goat (i.e. the

bezoar Capra aegagrus) has credibly never been present in this area

[11,41]. Overall, in order to fully understand the domestication of

goats it is necessary to characterize the genetic diversity of wild

goat species, and to establish the evolutionary relationships

between wild and domesticated haplotypes.

MATERIALS AND METHODS

Sampling and DNA extraction
Samples were collected from 946 individuals from 42 countries of the

old world (See Table 2) from which 569 individuals were studied

within the Econogene project (www.econogene.eu). Samples con-

sisted of ear tissue preserved in ethanol 95% until extraction, or of

blood collection. DNA was extracted from tissue using the Qiagen

DNeasy tissue kit following the manufacturer’s instructions, and

from blood samples using QIAamp DNA blood kit.

To have a good coverage of the goat breeds, the dataset was

completed with 1484 sequences containing the Capra hircus HVI

control region (450 to 1200 bp long) retrieved from GenBank

(Table 2).

DNA amplification and sequencing
The HVI segment of the control region was sequenced for all

blood and tissue DNA extracts. Using the primers CAP-F (59-

CGTGTATGCAAGTACATTAC-39) and CAP-R (59-CTGAT-

TAGTCATTAGTCCATC-39), we amplified a fragment of

598 bp (without primers) that corresponds to the positions

15,653 to 16,250 on the complete goat mitochondrial sequence

of reference ([42]; accession number AF533441). PCR amplifica-

tions were conducted in a 25 ml volume with 2 mM MgCl2,

200 mM of each dNTP, 1 mM of each primer and 1 unit of

AmpliTaq Gold Polymerase (Applied Biosystems). After a 10 min

period at 95uC for polymerase activation, 35 cycles were run with the

following steps: 95uC: 30 s, 55uC: 30 s, 72uC: 1 min. PCR products

were purified using the Qiaquick PCR purification kit (Qiagen).

35 ng of purified DNA from this PCR product was used for

sequencing with the CAP-F or CAP-R primer. Sequence reactions

were performed for both DNA strands by using the ABI PRISM Dye

Terminator Cycle Sequencing Reaction Kit (Applied Biosystems) in

a 20 ml volume with 2 mM of each primer. 25 cycles were run with

the following steps 96uC: 30 s, 55uC: 30 s, 60uC: 4 min. Excess dye

terminators were removed by spin-column purification and the

products were electrophorezed on an ABI 3700 PRISM DNA

sequencer (Applied Biosystems) using the POP 7 polymer.

Sequences were edited for correction with the SeqScape v2.5

software (Applied Biosystems). All sequences were deposited in

GenBank (Accession Numbers EF617601- EF618546, Table 2 and

Table S1).

Sequences from GenBank and from our dataset were aligned

with Mega v3.1 [43], and then adjusted by eye. For further

analyses, we only kept the region used by Luikart et al. [13]

because this is the part of the sequence available for most of the

GenBank records, and also the most informative one. This region

is 481 bp long and corresponds to the positions 15,707 to 16,187

on the Capra hircus reference sequence (mtDNA complete sequence

of C. hircus, Accession number AF533441 [42]). According to the

insertion/deletion events, the analyzed sequences ranged from 481

to 558 bp. For Indian goats a shorter fragment of 453 bp has been

sequenced [15] and the 28 missing nucleotides were treated as

missing data. The alignment of the 2430 sequences used in this

study is provided as supplementary information (Table S1).

Data analysis
The substitution model used for the HVI region was the Kimura

2-parameters model, as previously used on several subsets of the

present dataset (e.g., [13,15]). The heterogeneity in substitution

rates among nucleotide sites was modelled by a gamma distribu-

tion. The alpha parameter was estimated as the mean of 10

estimations by a maximum-likelihood method under the Kimura

2-parameters model using PAML v 2.0.2 [44]. Each estimation was

based on the analysis of 1000 individuals randomly chosen in the

dataset of 2430 individuals. The estimated value (alpha = 0.28) was

similar to that estimated for the same region on a smaller sample of

domestic and wild goats by Luikart et al. [13]. These settings were

used for further phylogenetic reconstruction and analysis of genetic

diversity. We used 1484 published sequences for checking the

validity of the halpogroups previously defined (see Table 2 and Table

S1 for references and GenBank accession numbers).

Given the very high number of sequences analyzed, the

phylogenetic tree was constructed using the Neighbor-joining

method using PAUP* v 4.0 [45], with 1000 bootstraps for

measuring branch robustness. The ARLEQUIN v 3.0 software

[46] was used for estimating haplotype and nucleotide diversity,

for analyzing mismatch distribution within mitochondrial hap-

logroups, and for estimating the parameters of demographic

expansion. Four individuals that showed a 76 bp insertion were

discarded for mismatch analyses and the analyses were thus

performed on 481 bp long sequences. The expansion time was

estimated under a model of pure demographic expansion [22]

with parameters set to default values in ARLEQUIN 3.0. The

parameter of demographic expansion t was estimated according to

the method of Schneider and Excoffier [47]. The validity of the

expansion model was tested using the sum of square deviations (SSD)

between the observed and expected mismatches [47]. Growth rates

of mitochondrial haplogroups were estimated with Lamarc v2.2 [48]

using a bayesian framework allowing migrations across haplogroups

(with a maximum of 10000 migration events, default priors used for

migration rates estimation). The estimation of growth rates was done

with linear prior (upper bound of 1000 and lower bound of 2500),

10 initial chains (500 samples, sampling interval of 20 and burn-in

period of 1000) and 2 final chains (10000 samples, sampling interval

of 20 and burn-in period of 1000).

In order to test the geographic structure of the mtDNA

haplotype diversity, the goat distribution has been partitioned in 7

geographic regions (Northern Europe, Southern Europe, Northern

Africa, Sub-Saharan Africa, Middle East, Western Asia and

Eastern Asia, see Table 2). Two hierarchical AMOVA were

performed using ARLEQUIN v3.0 to test the partition of the

genetic variance among haplogroups and among continents within

haplogroups, as well as among continents and among breeds

within continents. This second AMOVA was performed on the

1602 goats for which the breeds were known.
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SUPPORTING INFORMATION

Table S1 Alignements of the 2430 control region sequences of

domestic goat. The code for geographic regions are defined in

Table 2. Missing data are coded as ‘?’.

Found at: doi:10.1371/journal.pone.0001012.s001 (1.24 MB

XLS)
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Milano, Milano, Italy,

Dalamitra Stella, Biological Sciences, University of East Anglia, Norwich,

UK,

Daniela Krugmann, Institut für Tierzucht und Haustiergenetik, Justus-

Liebig University of Giessen, Giessen, Germany,

Dobi Petrit, Department of Animal Production, Faculty of Agriculture,

Tirana, Albania,

Dominik Popielarczyk, Department of Sheep and Goat Breeding, Warsaw

Agricultural University, Warsaw, Poland,

Dunner Susana, Universidad Computense de Madrid, Madrid, Spain,

D’Urso Giuseppe, Dipartimento di Scienze Agronomiche e delle
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Milano, Milano, Italy,

Marletta Donata, Dipartimento di Scienze Agronomiche e delle Produ-
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Tuscia, Viterbo, Italy,

Pellecchia Marco, Istituto di Zootecnica, Università Cattolica del S. Cuore,
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